Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

348 lines (307 sloc) 19.608 kb
<!DOCTYPE html>
<!-- TODO: Improve hints -->
<html data-require="math graphie math-format">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Trigonometry 1.5</title>
<script src="../khan-exercise.js"></script>
<script>
function fractionSQRoot(b, root){
var natRoot = KhanUtil.splitRadical(root)[0];
var underRoot = KhanUtil.splitRadical(root)[1];
var d = KhanUtil.reduce(natRoot*underRoot, b)[0];
var n = KhanUtil.reduce(natRoot*underRoot,b)[1];
if ( d === 1 ){
if(n != 1){
return n + "\\sqrt{" + underRoot +"}";
}
else{
return "\\sqrt{" +underRoot + "}";
}
}
else if( underRoot != 1 ){
if(n != 1){
return "\\frac{" + n + "\\sqrt{" + underRoot +"} }{"+ d + "}";
}
else{
return "\\frac{ \\sqrt{" +underRoot + "}}{" + d + "}";
}
}
else{
return "\\frac{" + n + "}{" + d + "}";
}
}
function bestTriangle(width, height, A, B, C, a, b, c, whichAngle, keyValues) {
var scale = 5 / Math.sqrt(width * width + height * height);
width *= scale;
height *= scale;
with ( KhanUtil.currentGraph ) {
// Leave some space for the labels
init({ range: [[-1.5, width + 1], [-1, height + 1]] });
path([ [0, 0], [width, 0], [0, height], true ]);
var ang=Math.round(Math.atan(height/width) *(180/Math.PI));
if ( whichAngle === "ACB" || whichAngle === "BCA" ){
arc( [0, 0], 0.5, 0, 90 );
}
else if ( whichAngle === "ABC" || whichAngle === "CBA" ){
arc( [width, 0], 0.5, 180 - ang, 180 );
}
else if ( whichAngle === "CAB" || whichAngle === "BAC" ){
arc( [0, height], 0.5, 270, -ang );
}
label( [0, height], A, "above left" );
label( [0, 0], C, "below left" );
label( [width, 0], B, "below right" );
if( "AB" in keyValues ){
label( [width/2, height/2], keyValues.AB, "above right", {
labelDistance: 3
} );
}
if ( "AC" in keyValues ){
label( [0, height/2],keyValues.AC , "left" );
}
if ( "CA" in keyValues ){
label( [0, height/2],keyValues.CA , "left" );
}
if ( "BC" in keyValues ){
label( [width/2, 0], keyValues.BC, "below" );
}
if ( "CB" in keyValues ){
label( [width/2, 0], keyValues.CB, "below" );
}
}
}
</script>
</head>
<body>
<div class="exercise">
<div class="vars">
<var id="AC, BC">shuffle(randFromArray([[6,8], [8, 15], [10, 24], [12,16], [14, 48], [20, 48], [16, 30]]))</var>
<var id="CB">BC</var>
<var id="CB">BC</var>
<var id="AB">sqrt(AC * AC + BC * BC)</var>
<var id="ANGLE">randFromArray([
"ABC",
"BAC"
])</var>
<var id="WRONG_A" data-ensure="WRONG_A !== AC && WRONG_A !== BC && WRONG_A !== sqrt(AB)">randRange(1, 10)</var>
<var id="WRONG_B" data-ensure="WRONG_B !== AC && WRONG_B !== BC && WRONG_B !== WRONG_A && WRONG_B !== sqrt(AB)">randRange(1, 10)</var>
<var id="OPPOSITE_NAME">(ANGLE.substring(0,1)+ANGLE.substring(2))</var>
<var id="OPPOSITE_VALUE">
(function(){
if( OPPOSITE_NAME === "AC" ){
return AC;
}
else if( OPPOSITE_NAME === "BC" ){
return CB;
}
return AB;
})()
</var>
<var id="HYPOTENUSE_NAME">"AB"</var>
<var id="HYPOTENUSE_VALUE">AB</var>
<var id="ADJACENT_NAME">ANGLE.substring(1)</var>
<var id="ADJACENT_VALUE">
(function(){
if( ADJACENT_NAME === "AC" ){
return AC;
}
else if( ADJACENT_NAME === "BC" ){
return BC;
}
return AB;
})()
</var>
<var id="SIMPLE_TAN">fraction( reduce(OPPOSITE_VALUE, ADJACENT_VALUE)[0], reduce(OPPOSITE_VALUE, ADJACENT_VALUE)[1] , false, false, false, false)</var>
<var id="TAN">OPPOSITE_VALUE / ADJACENT_VALUE</var>
<var id="SIMPLE_SIN">fraction(reduce(OPPOSITE_VALUE, AB)[0], reduce(OPPOSITE_VALUE, AB)[1])</var>
<var id="SIN">OPPOSITE_VALUE / AB</var>
<var id="SIMPLE_COS">fraction(reduce(ADJACENT_VALUE, AB)[0], reduce(ADJACENT_VALUE, AB)[1])</var>
<var id="COS">ADJACENT_VALUE / AB</var>
</var>
</div>
<div class="problems">
<div id="sin">
<div class="problem">
<p><code>\overline{AB}</code> = <code><var>AB</var></code></p>
</div>
<div class="question">
<p><code>\overline{<var>OPPOSITE_NAME</var>} = {?}</code></p>
<div class="graphie">
var options = {};
options[ OPPOSITE_NAME ] = "?";
options[ "AB" ] = AB;
bestTriangle( BC, AC, "A", "B", "C", "", "", "", ANGLE, options );
path([ [ 0.4, 0 ], [ 0.4, 0.4 ], [ 0, 0.4 ] ]);
</div>
<p><code>\displaystyle \sin( \angle <var>ANGLE</var> ) = <var>SIMPLE_SIN</var> , \cos( \angle <var>ANGLE</var> ) = <var>SIMPLE_COS</var> , \tan( \angle <var>ANGLE</var> ) = <var>SIMPLE_TAN</var></code></p>
</div>
<p class="solution" data-type="rational"><var>OPPOSITE_VALUE</var></p>
<div class="hints" data-apply="appendContents">
<p><code>\overline{AB}</code> is the <b>hypotenuse</b></p>
<p><code>\overline{<var>OPPOSITE_NAME</var>}</code> is <b>opposite</b> to <code>\angle <var>ANGLE</var></code></p>
<p>SOH CAH TOA</p>
<p>We know the hypotenuse and need to solve for the opposite side so we can use the sine function (SOH)</p>
<p><code>\displaystyle \sin( \angle <var>ANGLE</var> ) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{\overline{<var>OPPOSITE_NAME</var>}}{\overline{AB}}= \frac{\overline{<var>OPPOSITE_NAME</var>}}{<var>AB</var>} </code></p>
<p>Since we have already been given <code>\sin( \angle <var>ANGLE</var> )</code>, we can set up a proportion to find <code>\overline{<var>OPPOSITE_NAME</var>}</code>.</p>
<p><code>\displaystyle \sin( \angle <var>ANGLE</var> ) = <var>SIMPLE_SIN</var> = \frac{\overline{<var>OPPOSITE_NAME</var>}}{<var>AB</var>}</code></p>
<div>
<p>Simplify.</p>
<p class="final_answer"><code>\overline{<var>OPPOSITE_NAME</var>} = <var>OPPOSITE_VALUE</var></code></p>
</div>
</div>
</div>
<div id="sin2">
<div class="problem">
<p><code>\overline{<var>OPPOSITE_NAME</var>} = <var>OPPOSITE_VALUE</var></code></p>
</div>
<div class="question">
<p><code>\overline{AB} = {?}</code></p>
<div class="graphie">
var options = {};
options[ OPPOSITE_NAME ] = OPPOSITE_VALUE;
options[ "AB" ] = "?";
bestTriangle( BC, AC, "A", "B", "C", "", "", "", ANGLE, options );
path([ [ 0.4, 0 ], [ 0.4, 0.4 ], [ 0, 0.4 ] ]);
</div>
<p><code>\displaystyle \sin( \angle <var>ANGLE</var> ) = <var>SIMPLE_SIN</var> , \cos( \angle <var>ANGLE</var> ) = <var>SIMPLE_COS</var> , \tan( \angle <var>ANGLE</var> ) = <var>SIMPLE_TAN</var></code></p>
</div>
<div class="solution" data-type="rational"><var>AB</var></div>
<div class="hints" data-apply="appendContents">
<p><code>\overline{<var>OPPOSITE_NAME</var>}</code> is the <b>opposite</b> to <code>\angle <var>ANGLE</var></code></p>
<p><code>\overline{AB}</code> is the <b>hypotenuse</b> (note that it is opposite the right angle).</p>
<p>SOH CAH TOA</p>
<p>We know the opposite side and need to solve for the hypotenuse so we can use the sin function (SOH).</p>
<p><code>\displaystyle \sin( \angle <var>ANGLE</var> ) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{\overline{<var>OPPOSITE_NAME</var>}}{\overline{AB}} = \frac{<var>OPPOSITE_VALUE</var>}{\overline{AB}} </code></p>
<p>Since we have already been given <code>\sin( \angle <var>ANGLE</var> )</code>, we can set up a proportion to find <code>\overline{AB}</code>.</p>
<p><code>\displaystyle \sin( \angle <var>ANGLE</var> ) = <var>SIMPLE_SIN</var> = \frac{<var>OPPOSITE_VALUE</var>}{\overline{AB}}</code></p>
<div>
<p>Simplify.</p>
<p class="final_answer"><code>\overline{AB} = <var>AB</var></code></p>
</div>
</div>
</div>
<div id="cos">
<div class="problem">
<p><code>\overline{AB} = <var>AB</var></code></p>
</div>
<div class="question">
<p><code>\overline{<var>ADJACENT_NAME</var>} = {?}</code></p>
<div class="graphie">
var options = {};
options[ ADJACENT_NAME ] = "?";
options[ "AB" ] = AB;
bestTriangle( BC, AC, "A", "B", "C", "", "", "", ANGLE, options );
path([ [ 0.4, 0 ], [ 0.4, 0.4 ], [ 0, 0.4 ] ]);
</div>
<p><code>\displaystyle \sin( \angle <var>ANGLE</var> ) = <var>SIMPLE_SIN</var> , \cos( \angle <var>ANGLE</var> ) = <var>SIMPLE_COS</var> , \tan( \angle <var>ANGLE</var> ) = <var>SIMPLE_TAN</var></code></p>
</div>
<div class="solution" data-type="rational"><var>ADJACENT_VALUE</var></div>
<div class="hints" data-apply="appendContents">
<p><code>\overline{AB}</code> is the <b>hypotenuse</b></p>
<p><code>\overline{<var>ADJACENT_NAME</var>}</code> is <b>adjacent</b> to <code>\angle <var>ANGLE</var></code></p>
<p>SOH CAH TOA</p>
<p>We know the hypotenuse and need to solve for the adjacent side so we can use the cos function (CAH)</p>
<p><code>\displaystyle \cos( \angle <var>ANGLE</var> ) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{\overline{<var>ADJACENT_NAME</var>}}{\overline{AB}}= \frac{\overline{<var>ADJACENT_NAME</var>}}{<var>AB</var>} </code></p>
<p>Since we have already been given <code>\cos( \angle <var>ANGLE</var> )</code>, we can set up a proportion to find <code>\overline{<var>ADJACENT_NAME</var>}</code>.</p>
<p><code>\displaystyle \cos( \angle <var>ANGLE</var> ) = <var>SIMPLE_COS</var> = \frac{\overline{<var>ADJACENT_NAME</var>}}{<var>AB</var>}</code></p>
<div>
<p>Simplify.</p>
<p class="final_answer"><code>\overline{<var>ADJACENT_NAME</var>} = <var>ADJACENT_VALUE</var></code></p>
</div>
</div>
</div>
<div id="cos2">
<div class="problem">
<p><code>\overline{<var>ADJACENT_NAME</var>}=<var>ADJACENT_VALUE</var></code></p>
</div>
<div class="question">
<p><code>\overline{AB} = {?}</code></p>
<div class="graphie">
var options = {};
options[ ADJACENT_NAME ] = ADJACENT_VALUE;
options[ "AB" ] = "?";
bestTriangle( BC, AC, "A", "B", "C", "", "","", ANGLE, options );
path([ [ 0.4, 0 ], [ 0.4, 0.4 ], [ 0, 0.4 ] ]);
</div>
<p><code>\displaystyle \sin( \angle <var>ANGLE</var> ) = <var>SIMPLE_SIN</var> , \cos( \angle <var>ANGLE</var> ) = <var>SIMPLE_COS</var> , \tan( \angle <var>ANGLE</var> ) = <var>SIMPLE_TAN</var></code></p>
</div>
<div class="solution" data-type="rational"><var>AB</var></div>
<div class="hints" data-apply="appendContents">
<p><code>\overline{<var>ADJACENT_NAME</var>}</code> is <b>adjacent</b> to <code>\angle <var>ANGLE</var></code></p>
<p><code>\overline{AB}</code> is the <b>hypotenuse</b> (note that it is opposite the right angle)</p>
<p>SOH CAH TOA</p>
<p>We know the adjacent side and need to solve for the hypotenuse so we can use the cos function (CAH)</p>
<p><code>\displaystyle \cos( \angle <var>ANGLE</var> ) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{\overline{<var>ADJACENT_NAME</var>}}{\overline{AB}} = \frac{<var>ADJACENT_VALUE</var>}{\overline{AB}} </code></p>
<p>Since we have already been given <code>\cos( \angle <var>ANGLE</var> )</code>, we can set up a proportion to find <code>\overline{AB}</code>.</p>
<p><code>\displaystyle \cos( \angle <var>ANGLE</var> ) = <var>SIMPLE_COS</var> = \frac{<var>ADJACENT_VALUE</var>}{\overline{AB}}</code></p>
<div>
<p>Simplify.</p>
<p class="final_answer"><code>\overline{AB} = <var>AB</var></code></p>
</div>
</div>
</div>
<div id="tan">
<div class="problem">
<p><code>\overline{<var>OPPOSITE_NAME</var>} = <var>OPPOSITE_VALUE</var></code></p>
</div>
<div class="question">
<p><code>\overline{<var>ADJACENT_NAME</var>} = {?}</code></p>
<div class="graphie">
var options = {};
options[ ADJACENT_NAME ] = "?";
options[ OPPOSITE_NAME ] = OPPOSITE_VALUE;
bestTriangle( BC, AC, "A", "B", "C", "", "", "" , ANGLE, options );
path([ [ 0.4, 0 ], [ 0.4, 0.4 ], [ 0, 0.4 ] ]);
</div>
<p><code>\displaystyle \sin( \angle <var>ANGLE</var> ) = <var>SIMPLE_SIN</var> , \cos( \angle <var>ANGLE</var> ) = <var>SIMPLE_COS</var> , \tan( \angle <var>ANGLE</var> ) = <var>SIMPLE_TAN</var></code></p>
</div>
<div class="solution" data-type="rational"><var>ADJACENT_VALUE</var></div>
<div class="hints" data-apply="appendContents">
<p><code>\overline{<var>OPPOSITE_NAME</var>}</code> is the <b>opposite</b> to <code>\angle <var>ANGLE</var></code></p>
<p><code>\overline{<var>ADJACENT_NAME</var>}</code> is <b>adjacent</b> to <code>\angle <var>ANGLE</var></code></p>
<p>SOH CAH TOA</p>
<p>We know the opposite side and need to solve for the adjacent side so we can use the tan function (TOA)</p>
<p><code>\displaystyle \tan( \angle <var>ANGLE</var> ) = \frac{\text{opposite}}{\text{adjacent}} = \frac{\overline{<var>OPPOSITE_NAME</var>}}{\overline{<var>ADJACENT_NAME</var>}}= \frac{<var>OPPOSITE_VALUE</var>}{\overline{<var>ADJACENT_NAME</var>}} </code></p>
<p>Since we have already been given <code>\tan( \angle <var>ANGLE</var> )</code>, we can set up a proportion to find <code>\overline{<var>ADJACENT_NAME</var>}</code>.</p>
<p><code>\displaystyle \tan( \angle <var>ANGLE</var> ) = <var>SIMPLE_TAN</var> = \frac{<var>OPPOSITE_VALUE</var>}{\overline{<var>ADJACENT_NAME</var>}}</code></p>
<div>
<p>Simplify.</p>
<p class="final_answer"><code>\overline{<var>ADJACENT_NAME</var>} = <var>ADJACENT_VALUE</var></code></p>
</div>
</div>
</div>
<div id="tan2">
<div class="problem">
<p><code>\overline{<var>ADJACENT_NAME</var>} = <var>ADJACENT_VALUE</var></code></p>
</div>
<div class="question">
<p><code>\overline{<var>OPPOSITE_NAME</var>} = </code> ?</p>
<div class="graphie">
var options = {};
options[ OPPOSITE_NAME ] = "?";
options[ ADJACENT_NAME ] = ADJACENT_VALUE;
bestTriangle( BC, AC, "A", "B", "C", "", "", "", ANGLE, options );
path([ [ 0.4, 0 ], [ 0.4, 0.4 ], [ 0, 0.4 ] ]);
</div>
<p><code>\displaystyle \sin( \angle <var>ANGLE</var> ) = <var>SIMPLE_SIN</var> , \cos( \angle <var>ANGLE</var> ) = <var>SIMPLE_COS</var> , \tan( \angle <var>ANGLE</var> ) = <var>SIMPLE_TAN</var></code></p>
</div>
<div class="solution" data-type="rational"><var>OPPOSITE_VALUE</var></div>
<div class="hints" data-apply="appendContents">
<p><code>\overline{<var>OPPOSITE_NAME</var>}</code> is the <b>opposite</b> to <code>\angle <var>ANGLE</var></code></p>
<p><code>\overline{<var>ADJACENT_NAME</var>}</code> is <b>adjacent</b> to <code>\angle <var>ANGLE</var></code></p>
<p>SOH CAH TOA</p>
<p>We know the adjacent side and need to solve for the opposite side so we can use the tan function (TOA)</p>
<p><code>\displaystyle \tan( \angle <var>ANGLE</var> ) = \frac{\text{opposite}}{\text{adjacent}} = \frac{\overline{<var>OPPOSITE_NAME</var>}}{\overline{<var>ADJACENT_NAME</var>}}= \frac{\overline{<var>OPPOSITE_NAME</var>}}{<var>ADJACENT_VALUE</var>} </code></p>
<p>Since we have already been given <code>\tan( \angle <var>ANGLE</var> )</code>, we can set up a proportion to find <code>\overline{<var>OPPOSITE_NAME</var>}</code>.</p>
<p><code>\displaystyle \tan( \angle <var>ANGLE</var> ) = <var>SIMPLE_TAN</var> = \frac{\overline{<var>OPPOSITE_NAME</var>}}{<var>ADJACENT_VALUE</var>}</code></p>
<div>
<p>Simplify.</p>
<p class="final_answer"><code>\overline{<var>OPPOSITE_NAME</var>} = <var>OPPOSITE_VALUE</var></code></p>
</div>
</div>
</div>
</div>
</div>
</body>
</html>
Jump to Line
Something went wrong with that request. Please try again.