Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

91 lines (81 sloc) 4.616 kb
<!DOCTYPE html>
<html data-require="math math-format">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Factoring quadratics 1</title>
<script data-main="../local-only/main.js" src="../local-only/require.js"></script>
</head>
<body>
<div class="exercise">
<div class="problems">
<div>
<div class="vars">
<div data-ensure="abs(A) !== abs(B)">
<var id="A">randRangeNonZero( -10, 10 )</var>
<var id="B">randRangeNonZero( -10, 10 )</var>
</div>
<var id="SQUARE">1</var>
<var id="CONSTANT">SQUARE*A*B</var>
<var id="SIMPLECONSTANT">A*B</var>
<var id="LINEAR">SQUARE*(-A-B)</var>
<var id="SIMPLELINEAR">-A-B</var>
</div>
<p class="question">
Factor the expression below completely. All coefficients should be integers.
</p>
<p class="problem"><code><var>plus(SQUARE + "x^2")</var> + <var>plus( LINEAR + "x" )</var> + <var>CONSTANT</var></code></p>
<p class="solution" data-type="expression" data-same-form>(x-<var>A</var>)(x-<var>B</var>)</p>
<div class="hints">
<div>
<p>When we factor a polynomial, we are basically reversing this process of multiplying linear expressions together:</p>
<p><code>
\qquad \begin{eqnarray}
(x + a)(x + b) \quad&amp;=&amp;\quad xx &amp;+&amp; xb + ax &amp;+&amp; ab \\ \\
&amp;=&amp;\quad x^2 &amp;+&amp; \green{(a + b)}x &amp;+&amp; \blue{ab}
\end{eqnarray}
</code></p>
</div>
<div>
<p><code>
\qquad \begin{eqnarray}
\hphantom{(x + a)(x + b) \quad}&amp;\hphantom{=}&amp;\hphantom{\quad xx }&amp;\hphantom{+}&amp;\hphantom{ (a + b)x }&amp;\hphantom{+}&amp; \\
&amp;=&amp;\quad x^2 &amp;
<var>SIMPLELINEAR &gt;= 0 ? "+" : ""</var>&amp;
<var>plus( "\\green{" + SIMPLELINEAR + "}x" )</var>&amp;
<var>SIMPLECONSTANT &gt;= 0 ? "+" : ""</var>&amp;
<var>plus( "\\blue{" + SIMPLECONSTANT + "}" )</var>
\end{eqnarray}
</code></p>
<p>
The coefficient on the <code>x</code> term is <code class="hint_green"><var>SIMPLELINEAR</var></code>
and the constant term is <code class="hint_blue"><var>SIMPLECONSTANT</var></code>, so to reverse the steps above, we need to find two numbers
that <span class="hint_green">add up to <code><var>SIMPLELINEAR</var></code></span> and <span class="hint_blue">multiply to
<code><var>SIMPLECONSTANT</var></code></span>.
</p>
</div>
<div>
<p>You can try out different factors of <code>\blue{<var>SIMPLECONSTANT</var>}</code> to see if you can find two
that satisfy both conditions. If you're stuck and can't think of any, you can also rewrite the conditions as a system of equations and
try solving for <code>\pink{a}</code> and <code>\pink{b}</code>:</p>
<p><code>\qquad \pink{a} + \pink{b} = \green{<var>SIMPLELINEAR</var>}</code></p>
<p><code>\qquad \pink{a} \times \pink{b} = \blue{<var>SIMPLECONSTANT</var>}</code></p>
</div>
<div>
<p>The two numbers <code>\pink{<var>-A</var>}</code> and <code>\pink{<var>-B</var>}</code> satisfy both conditions:</p>
<p><code>
\qquad \pink{<var>-A</var>} + \pink{<var>-B</var>} = \green{<var>SIMPLELINEAR</var>}
</code></p>
<p><code>
\qquad \pink{<var>-A</var>} \times \pink{<var>-B</var>} = \blue{<var>SIMPLECONSTANT</var>}
</code></p>
</div>
<p><b>
<span>So we can factor the expression as:</span>
<code>(x <var>A &lt; 0 ? "+" : ""</var> \pink{<var>-A</var>})(x <var>B &lt; 0 ? "+" : ""</var> \pink{<var>-B</var>})</code>
</b></p>
</div>
</div>
</div>
</div>
</body>
</html>
Jump to Line
Something went wrong with that request. Please try again.