Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

565 lines (551 sloc) 25.384 kb
<!DOCTYPE html>
<html data-require="math graphie convert-values">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Pythagorean identities</title>
<script data-main="../local-only/main.js" src="../local-only/require.js"></script>
</head>
<body>
<div class="exercise">
<div class="problems">
<div id="sincos">
<div class="vars">
<var id="OPTIONS">
shuffle(["\\sin\\theta", "\\cos\\theta",
"\\tan\\theta", "\\sec\\theta", "\\csc\\theta",
"\\cot\\theta"]).slice(0,3)
</var>
<var id="FUNC">randFromArray(OPTIONS)</var>
<var id="MULT">random() &lt; 0.5</var>
</div>
<p class="question">
</p><div data-if="MULT">
<code>(\sin^2 \theta + \cos^2 \theta)(<var>FUNC</var>)
= \; ?</code>
</div>
<div data-else="">
<code>\dfrac{<var>FUNC</var>}
{\sin^2 \theta + \cos^2 \theta} = \; ?</code>
</div>
<p></p>
<div class="solution"><code><var>FUNC</var></code></div>
<ul class="choices" data-show="3">
<li data-each="OPTIONS as op"><code><var>op</var></code></li>
</ul>
<div class="hints">
<div>
<p>We can use the identity
<code>\blue{\sin^2 \theta} + \orange{\cos^2 \theta}
= 1</code>
to simplify this expression.</p>
<div class="graphie">
init({
range: [[-1.2, 1.2], [-1.3, 1.3]],
scale: 130
});
with(KhanUtil.currentGraph) {
style({
stroke: "#ddd",
strokeWidth: 1,
arrows: "-&gt;"
});
circle([0, 0], 1);
line([-1.2, 0], [1.2, 0]);
line([0, -1.2], [0, 1.2]);
line([1.2, 0], [-1.2, 0]);
line([0, 1.2], [0, -1.2]);
style({
strokeWidth: 2.5,
arrows: ""
});
ang = 2*Math.PI/3;
line([0, 0], [cos(ang), sin(ang)],
{stroke: "black"});
label([cos(ang)/2, sin(ang)/2],
"1", "above right");
line([0, 0], [cos(ang), 0],
{stroke: ORANGE});
label([cos(ang), sin(ang)/2],
"\\blue{\\sin\\theta}", "left");
line([cos(ang), 0],
[cos(ang), sin(ang)],
{stroke: BLUE});
label([cos(ang)/2, 0],
"\\orange{\\cos\\theta}", "below");
arc([0,0], 0.2, 0, 120,
{stroke: "black", arrows: "-&gt;"});
label([0,0.1], "\\theta", "above right");
}
</div>
<p>We can see why this is true by using the
Pythagorean Theorem.</p>
</div>
<p data-if="MULT">
So, <code>(\sin^2 \theta + \cos^2 \theta)(<var>FUNC</var>)
= 1 \cdot <var>FUNC</var> = <var>FUNC</var></code>
</p>
<p data-else="">
So, <code>\dfrac{<var>FUNC</var>}
{\sin^2 \theta + \cos^2 \theta} =
\dfrac{<var>FUNC</var>}{1} = <var>FUNC</var></code>
</p>
</div>
</div>
<div id="1MinusSinCos">
<div class="vars">
<var id="MULT">random() &lt; 0.5</var>
<var id="SIN">random() &lt; 0.5</var>
<var id="IDENT, EQUIV">
SIN ? ["1 - \\sin^2\\theta", "\\cos^2\\theta"]
: ["1 - \\cos^2\\theta", "\\sin^2\\theta"]
</var>
<var id="OPTIONS, FUNC, ANS">
trig.getOptionsResult(EQUIV, (MULT ? "*" : "/"))
</var>
<var id="FUNC_SIMP">
MULT ?
trig.showSimplified(FUNC) : trig.showSimplified(FUNC, true)
</var>
</div>
<p class="question">
</p><div data-if="MULT">
<code>(<var>IDENT</var>)(<var>FUNC</var>) = \; ?</code>
</div>
<div data-else="">
<code>\dfrac{<var>IDENT</var>}{<var>FUNC</var>}
= \; ?</code>
</div>
<p></p>
<div class="solution"><code><var>ANS</var></code>
</div>
<ul class="choices" data-show="3">
<li data-each="OPTIONS as op"><code><var>op</var></code></li>
</ul>
<div class="hints">
<div>
<p>We can use the identity
<code>\blue{\sin^2 \theta} + \orange{\cos^2 \theta}
= 1</code>
to simplify this expression.</p>
<div class="graphie">
init({
range: [[-1.2, 1.2], [-1.3, 1.3]],
scale: 130
});
with(KhanUtil.currentGraph) {
style({
stroke: "#ddd",
strokeWidth: 1,
arrows: "-&gt;"
});
circle([0, 0], 1);
line([-1.2, 0], [1.2, 0]);
line([0, -1.2], [0, 1.2]);
line([1.2, 0], [-1.2, 0]);
line([0, 1.2], [0, -1.2]);
style({
strokeWidth: 2.5,
arrows: ""
});
ang = 2*Math.PI/3;
line([0, 0], [cos(ang), sin(ang)],
{stroke: "black"});
label([cos(ang)/2, sin(ang)/2],
"1", "above right");
line([0, 0], [cos(ang), 0],
{stroke: ORANGE});
label([cos(ang), sin(ang)/2],
"\\blue{\\sin\\theta}", "left");
line([cos(ang), 0],
[cos(ang), sin(ang)],
{stroke: BLUE});
label([cos(ang)/2, 0],
"\\orange{\\cos\\theta}", "below");
arc([0,0], 0.2, 0, 120,
{stroke: "black", arrows: "-&gt;"});
label([0,0.1], "\\theta", "above right");
}
</div>
<p>We can see why this is true by using the
Pythagorean Theorem.</p>
</div>
<div>
<p>So, <code><var>IDENT</var> = <var>EQUIV</var></code></p>
</div>
<div>
<p>Plugging into our expression, we get</p>
<div data-if="MULT">
<p><code>\qquad
(<var>IDENT</var>)(<var>FUNC</var>)
=
(<var>EQUIV</var>)(<var>FUNC</var>)
</code></p>
</div>
<div data-else="">
<p><code>\qquad
\dfrac{<var>IDENT</var>}{<var>FUNC</var>}
=
\dfrac{<var>EQUIV</var>}{<var>FUNC</var>}
</code></p>
</div>
</div>
<div data-if="FUNC !== '\\sin^2\\theta' && FUNC !== '\\cos^2\\theta'">
<p>To make simplifying easier, let's put everything
in terms of <code>\sin</code> and <code>\cos</code>.
<code><var>FUNC</var> = <var>FUNC_SIMP</var></code>,
so we can plug that in to get</p>
<div data-if="MULT">
<p><code>\qquad
(<var>EQUIV</var>)(<var>FUNC</var>)
=
\left(<var>EQUIV</var>\right)
\left(<var>FUNC_SIMP</var>\right)
</code></p>
</div>
<div data-else="">
<p><code>\qquad
\dfrac{<var>EQUIV</var>}{<var>FUNC</var>}
=
\dfrac{<var>EQUIV</var>}{<var>FUNC_SIMP</var>}
</code></p>
</div>
</div>
<div>
This is <code><var>ANS</var></code>.
</div>
</div>
</div>
<div id="1PlusTan">
<div class="vars">
<var id="MULT">random() &lt; 0.5</var>
<var id="TAN">random() &lt; 0.5</var>
<var id="IDENT, EQUIV">
TAN ? ["\\tan^2\\theta + 1", "\\sec^2\\theta"]
: ["\\sec^2\\theta-1", "\\tan^2\\theta"]
</var>
<var id="OPTIONS, FUNC, ANS">
trig.getOptionsResult(EQUIV, (MULT ? "*" : "/"))
</var>
<var id="FUNC_SIMP, EQUIV_SIMP">
[trig.showSimplified(FUNC, !MULT),
trig.showSimplified(EQUIV, !MULT)]
</var>
<var id="ANS_SIMP">
trig.showSimplified(ANS)
</var>
</div>
<p class="question">
</p><div data-if="MULT">
<code>(<var>IDENT</var>)(<var>FUNC</var>) = \; ?</code>
</div>
<div data-else="">
<code>\dfrac{<var>IDENT</var>}{<var>FUNC</var>}
= \; ?</code>
</div>
<p></p>
<div class="solution"><code><var>ANS</var></code>
</div>
<ul class="choices" data-show="3">
<li data-each="OPTIONS as op"><code><var>op</var></code></li>
</ul>
<div class="hints">
<div>
<p>We can derive a useful identity from
<code>\blue{\sin^2 \theta} + \orange{\cos^2 \theta}
= 1</code>
to simplify this expression.</p>
<div class="graphie">
init({
range: [[-1.2, 1.2], [-1.3, 1.3]],
scale: 130
});
with(KhanUtil.currentGraph) {
style({
stroke: "#ddd",
strokeWidth: 1,
arrows: "-&gt;"
});
circle([0, 0], 1);
line([-1.2, 0], [1.2, 0]);
line([0, -1.2], [0, 1.2]);
line([1.2, 0], [-1.2, 0]);
line([0, 1.2], [0, -1.2]);
style({
strokeWidth: 2.5,
arrows: ""
});
ang = 2*Math.PI/3;
line([0, 0], [cos(ang), sin(ang)],
{stroke: "black"});
label([cos(ang)/2, sin(ang)/2],
"1", "above right");
line([0, 0], [cos(ang), 0],
{stroke: ORANGE});
label([cos(ang), sin(ang)/2],
"\\blue{\\sin\\theta}", "left");
line([cos(ang), 0],
[cos(ang), sin(ang)],
{stroke: BLUE});
label([cos(ang)/2, 0],
"\\orange{\\cos\\theta}", "below");
arc([0,0], 0.2, 0, 120,
{stroke: "black", arrows: "-&gt;"});
label([0,0.1], "\\theta", "above right");
}
</div>
<p>We can see why this identity is true by using the
Pythagorean Theorem.</p>
</div>
<div>
<p>Dividing both sides by <code>\cos^2\theta</code>, we get</p>
<p><code>\qquad \dfrac{\sin^2\theta}{\cos^2\theta}
+ \dfrac{\cos^2\theta}{\cos^2\theta}
= \dfrac{1}{\cos^2\theta}</code></p>
<div data-if="!TAN">
<code>\qquad \tan^2\theta + 1 = \sec^2\theta</code>
</div>
<p><code>\qquad <var>IDENT</var>
= <var>EQUIV</var></code></p>
</div>
<div>
<p>Plugging into our expression, we get</p>
<div data-if="MULT">
<p><code>\qquad
(<var>IDENT</var>)(<var>FUNC</var>)
=
\left(<var>EQUIV</var>\right)
\left(<var>FUNC</var>\right)
</code></p>
</div>
<div data-else="">
<p><code>\qquad
\dfrac{<var>IDENT</var>}{<var>FUNC</var>}
=
\dfrac{<var>EQUIV</var>}{<var>FUNC</var>}
</code></p>
</div>
</div>
<div data-if="FUNC !== '\\sin^2\\theta' && FUNC !== '\\cos^2\\theta'">
<p>To make simplifying easier, let's put everything
in terms of <code>\sin</code> and <code>\cos</code>.
We know <code><var>EQUIV</var>
= <var>EQUIV_SIMP</var></code>
and <code><var>FUNC</var> = <var>FUNC_SIMP</var></code>,
so we can substitute to get</p>
<div data-if="MULT">
<p><code>\qquad
\left(<var>EQUIV</var>\right)
\left(<var>FUNC</var>\right)
=
\left(<var>EQUIV_SIMP</var>\right)
\left(<var>FUNC_SIMP</var>\right)
</code></p>
</div>
<div data-else="">
<p><code>\qquad
\dfrac{<var>EQUIV</var>}{<var>FUNC</var>}
=
\dfrac{<var>EQUIV_SIMP</var>}{<var>FUNC_SIMP</var>}
</code></p>
</div>
</div>
<div data-else="">
<p>To make simplifying easier, let's put everything
in terms of <code>\sin</code> and <code>\cos</code>.
We know <code><var>EQUIV</var>
= <var>EQUIV_SIMP</var></code>, so we can substitute
to get</p>
<div data-if="MULT">
<p><code>\qquad
\left(<var>EQUIV</var>\right)
\left(<var>FUNC</var>\right)
=
\left(<var>EQUIV_SIMP</var>\right)
\left(<var>FUNC_SIMP</var>\right)
</code></p>
</div>
<div data-else="">
<p><code>\qquad
\dfrac{<var>EQUIV</var>}{<var>FUNC</var>}
=
\dfrac{<var>EQUIV_SIMP</var>}{<var>FUNC_SIMP</var>}
</code></p>
</div>
</div>
<div data-if="ANS !== '\\sin^2\\theta' && ANS !== '\\cos^2\\theta' && ANS !== '1'">
This is <code><var>ANS_SIMP</var> = <var>ANS</var></code>.
</div>
<div data-else="">
This is <code><var>ANS</var></code>.
</div>
</div>
</div>
<div id="1PlusCot">
<div class="vars">
<var id="MULT">random() &lt; 0.5</var>
<var id="COT">random() &lt; 0.5</var>
<var id="IDENT, EQUIV">
COT ? ["1 + \\cot^2\\theta", "\\csc^2\\theta"]
: ["\\csc^2\\theta-1", "\\cot^2\\theta"]
</var>
<var id="OPTIONS, FUNC, ANS">
trig.getOptionsResult(EQUIV, (MULT ? "*" : "/"))
</var>
<var id="FUNC_SIMP, EQUIV_SIMP">
[trig.showSimplified(FUNC, !MULT),
trig.showSimplified(EQUIV, !MULT)]
</var>
<var id="ANS_SIMP">
trig.showSimplified(ANS)
</var>
</div>
<p class="question">
</p><div data-if="MULT">
<code>(<var>IDENT</var>)(<var>FUNC</var>) = \; ?</code>
</div>
<div data-else="">
<code>\dfrac{<var>IDENT</var>}{<var>FUNC</var>}
= \; ?</code>
</div>
<p></p>
<div class="solution"><code><var>ANS</var></code>
</div>
<ul class="choices" data-show="3">
<li data-each="OPTIONS as op"><code><var>op</var></code></li>
</ul>
<div class="hints">
<div>
<p>We can derive a useful identity from
<code>\blue{\sin^2 \theta} + \orange{\cos^2 \theta}
= 1</code>
to simplify this expression.</p>
<div class="graphie">
init({
range: [[-1.2, 1.2], [-1.3, 1.3]],
scale: 130
});
with(KhanUtil.currentGraph) {
style({
stroke: "#ddd",
strokeWidth: 1,
arrows: "-&gt;"
});
circle([0, 0], 1);
line([-1.2, 0], [1.2, 0]);
line([0, -1.2], [0, 1.2]);
line([1.2, 0], [-1.2, 0]);
line([0, 1.2], [0, -1.2]);
style({
strokeWidth: 2.5,
arrows: ""
});
ang = 2*Math.PI/3;
line([0, 0], [cos(ang), sin(ang)],
{stroke: "black"});
label([cos(ang)/2, sin(ang)/2],
"1", "above right");
line([0, 0], [cos(ang), 0],
{stroke: ORANGE});
label([cos(ang), sin(ang)/2],
"\\blue{\\sin\\theta}", "left");
line([cos(ang), 0],
[cos(ang), sin(ang)],
{stroke: BLUE});
label([cos(ang)/2, 0],
"\\orange{\\cos\\theta}", "below");
arc([0,0], 0.2, 0, 120,
{stroke: "black", arrows: "-&gt;"});
label([0,0.1], "\\theta", "above right");
}
</div>
<p>We can see why this identity is true by using the
Pythagorean Theorem.</p>
</div>
<div>
<p>Dividing both sides by <code>\sin^2\theta</code>, we get</p>
<p><code>\qquad \dfrac{\sin^2\theta}{\sin^2\theta}
+ \dfrac{\cos^2\theta}{\sin^2\theta}
= \dfrac{1}{\sin^2\theta}</code></p>
<div data-if="!COT">
<code>\qquad 1 + \cot^2\theta = \csc^2\theta</code>
</div>
<p><code>\qquad <var>IDENT</var>
= <var>EQUIV</var></code></p>
</div>
<div>
<p>Plugging into our expression, we get</p>
<div data-if="MULT">
<p><code>\qquad
(<var>IDENT</var>)(<var>FUNC</var>)
=
\left(<var>EQUIV</var>\right)
\left(<var>FUNC</var>\right)
</code></p>
</div>
<div data-else="">
<p><code>\qquad
\dfrac{<var>IDENT</var>}{<var>FUNC</var>}
=
\dfrac{<var>EQUIV</var>}{<var>FUNC</var>}
</code></p>
</div>
</div>
<div data-if="FUNC !== '\\sin^2\\theta' && FUNC !== '\\cos^2\\theta'">
<p>To make simplifying easier, let's put everything
in terms of <code>\sin</code> and <code>\cos</code>.
We know <code><var>EQUIV</var>
= <var>EQUIV_SIMP</var></code>
and <code><var>FUNC</var> = <var>FUNC_SIMP</var></code>,
so we can substitute to get</p>
<div data-if="MULT">
<p><code>\qquad
\left(<var>EQUIV</var>\right)
\left(<var>FUNC</var>\right)
=
\left(<var>EQUIV_SIMP</var>\right)
\left(<var>FUNC_SIMP</var>\right)
</code></p>
</div>
<div data-else="">
<p><code>\qquad
\dfrac{<var>EQUIV</var>}{<var>FUNC</var>}
=
\dfrac{<var>EQUIV_SIMP</var>}{<var>FUNC_SIMP</var>}
</code></p>
</div>
</div>
<div data-else="">
<p>To make simplifying easier, let's put everything
in terms of <code>\sin</code> and <code>\cos</code>.
We know <code><var>EQUIV</var>
= <var>EQUIV_SIMP</var></code>, so we can substitute
to get</p>
<div data-if="MULT">
<p><code>\qquad
\left(<var>EQUIV</var>\right)
\left(<var>FUNC</var>\right)
=
\left(<var>EQUIV_SIMP</var>\right)
\left(<var>FUNC_SIMP</var>\right)
</code></p>
</div>
<div data-else="">
<p><code>\qquad
\dfrac{<var>EQUIV</var>}{<var>FUNC</var>}
=
\dfrac{<var>EQUIV_SIMP</var>}{<var>FUNC_SIMP</var>}
</code></p>
</div>
</div>
<div data-if="ANS !== '\\sin^2\\theta' && ANS !== '\\cos^2\\theta' && ANS !== '1'">
This is <code><var>ANS_SIMP</var> = <var>ANS</var></code>.
</div>
<div data-else="">
This is <code><var>ANS</var></code>.
</div>
</div>
</div>
</div>
</div>
</body>
</html>
Jump to Line
Something went wrong with that request. Please try again.