Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

580 lines (565 sloc) 26.276 kb
<!DOCTYPE html>
<html data-require="math math-format polynomials graphie interactive word-problems">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Recognizing slope of curves</title>
<script data-main="../local-only/main.js" src="../local-only/require.js"></script>
</head>
<body>
<div class="exercise">
<div class="vars" data-ensure="SOLUTION_INTERVAL != null &amp;&amp; SOLUTION_INTERVAL[1] - SOLUTION_INTERVAL[0] &gt; 1.2">
<!-- Some hard-coded polynomial functions -->
<var id="COEF, XRANGE, YRANGE">randFromArray([
[[ 1, 0, -16, 0, 49], [-5, 5], [-100, 100]],
[[-1, 0, 16, 0, -49], [-5, 5], [-250, 100]],
[[ 1, 3, -14, -35, 21], [-5, 5], [-100, 200]],
[[-1, -3, 14, 35, 0], [-5, 5], [-200, 100]],
[[ 1, 4, -1, -4], [-5, 5], [ -40, 120]],
[[ -1, -4, 1, 4], [-5, 5], [-150, 40]],
[[ 1, 0, -16, 0], [-5, 5], [ -50, 50]],
[[ -1, 0, 16, 0], [-5, 5], [ -70, 60]],
[[ 1, 0, -22, 27], [-5, 5], [ -30, 70]],
[[ -1, 0, 22, -27], [-5, 5], [ -70, 30]],
[[ 1, 1, -13, -14], [-5, 5], [ -40, 40]],
[[ -1, -1, 13, 14], [-5, 5], [ -40, 40]],
[[ 1, 0, -12], [-5, 5], [ -20, 20]],
[[ -1, 0, 12], [-5, 5], [ -20, 20]],
[[ 1, -1, -6], [-5, 5], [ -20, 20]],
[[ -1, 1, 6], [-5, 5], [ -30, 20]],
[[ 1, 0, -3], [-5, 5], [ -20, 30]],
[[ -1, 0, 3], [-5, 5], [ -30, 20]],
[[ 1, 2, 0], [-5, 5], [ -10, 35]],
[[ -1, -2, 0], [-5, 5], [ -40, 20]]
])</var>
<var id="POLYNOMIAL">new Polynomial(0, COEF.length - 1, COEF.reverse())</var>
<var id="FNX">function(x) {return POLYNOMIAL.evalOf(x);}</var>
<var id="DDX">function(x) {return POLYNOMIAL.derivative().evalOf(x);}</var>
<!-- Break XRANGE into intervals based on the roots of FNX -->
<var id="FNX_INTERVALS">_.reduce(findRootsNumerically(FNX, XRANGE), function(intervals, root) {
var last = _.last(intervals)
return _.initial(intervals).concat([[last[0], root], [root, last[1]]]);
}, [XRANGE])</var>
<!-- Break XRANGE into intervals based on the roots of DDX -->
<var id="DDX_INTERVALS">_.reduce(findRootsNumerically(DDX, XRANGE), function(intervals, root) {
var last = _.last(intervals)
return _.initial(intervals).concat([[last[0], root], [root, last[1]]]);
}, [XRANGE])</var>
<!-- Find just the positive intervals -->
<var id="FNX_INTERVALS_POS">_.filter(FNX_INTERVALS, function(intv) {
return FNX(intv[0] + (intv[1] - intv[0]) / 2) &gt; 0;
})</var>
<!-- Find just the negative intervals -->
<var id="FNX_INTERVALS_NEG">_.filter(FNX_INTERVALS, function(intv) {
return FNX(intv[0] + (intv[1] - intv[0]) / 2) &lt; 0;
})</var>
<!-- Find just the increasing intervalsng -->
<var id="DDX_INTERVALS_POS">_.filter(DDX_INTERVALS, function(intv) {
return DDX(intv[0] + (intv[1] - intv[0]) / 2) &gt; 0;
})</var>
<!-- Find just the decreasing intervalsng -->
<var id="DDX_INTERVALS_NEG">_.filter(DDX_INTERVALS, function(intv) {
return DDX(intv[0] + (intv[1] - intv[0]) / 2) &lt; 0;
})</var>
<!-- Break XRANGE into intervals based on the roots of FNX and DDX -->
<!-- I.e. each interval has the same positive-ness and increasing-ness -->
<var id="COMBINED_INTERVALS">_.reduce(
sortNumbers(findRootsNumerically(FNX, XRANGE).concat(findRootsNumerically(DDX, XRANGE))),
function(intervals, root) {
var last = _.last(intervals)
return _.initial(intervals).concat([[last[0], root], [root, last[1]]]);
},
[XRANGE]
)</var>
<!-- Find intervals that are solutions -->
<var id="SOLUTION_INTERVALS">_.filter(COMBINED_INTERVALS, function(intv) {
return PREDICATE(intv[0] + (intv[1] - intv[0]) / 2);
})</var>
<!-- Sort to find the widest solution interval -->
<var id="SOLUTION_INTERVAL">
_.sortBy(SOLUTION_INTERVALS, function(intv) {
return intv[0] - intv[1];
})[0]
</var>
</div>
<div class="solution" data-type="custom">
<div class="instruction"></div>
<div class="guess">
graph.slidingWindow.getX()
</div>
<div class="validator-function">
var correct = _.reduce(_.range(guess, guess + 1, 0.02), function(correct, x) {
return correct &amp;&amp; PREDICATE(x);
}, true);
if (!graph.moved &amp;&amp; !correct) {
return ""
}
return correct;
</div>
<div class="show-guess">
graph.slidingWindow.moveTo(guess, 0);
</div>
</div>
<p class="question">
</p>
<div class="problem">
<div class="graphie" id="fnplot">
initAutoscaledGraph([XRANGE, YRANGE]);
addMouseLayer();
plot(FNX, XRANGE, {
stroke: BLUE,
strokeWidth: 3
});
graph.moved = false;
// start the selection at the first zero of f'(x) which is
// guaranteed to be wrong but not give info about the right answer
var startX = DDX_INTERVALS[0][1] - 0.5;
graph.slidingWindow = addRectGraph({
x: startX,
y: YRANGE[0],
width: 1,
height: YRANGE[1] - YRANGE[0],
normalStyle: {
area: { "fill-opacity": 0.2 },
edges: { "stroke-width": 0 }
},
hoverStyle: {
area: { "fill-opacity": 0.3 }
},
fixed: {
points: [true, true, true, true],
edges: [true, true, true, true]
},
constraints: {
constrainX: false,
constrainY: true,
xmin: XRANGE[0],
xmax: XRANGE[1]
},
onMove: function() {
graph.moved = true;
}
});
</div>
<p class="graph-caption">
<code class="hint_blue">f(x) = <var>POLYNOMIAL.text()</var></code>
</p>
</div>
<div class="problems">
<div id="increasing">
<div class="vars" data-apply="prependVars">
<var id="PREDICATE">function(x) { return DDX(x) &gt; 0; }</var>
</div>
<p class="question" data-apply="appendContents">
A function <code>f(x)</code> is plotted below.
Highlight an interval where <code>f^\prime(x) &gt; 0</code>.
</p>
<div class="hints">
<p>
The first derivative, <code>f^\prime(x)</code>, is greater
than <code>0</code> wherever the function is increasing.
</p>
<div>
<p data-if="isSingular(DDX_INTERVALS_POS.length)">
The interval
where <code>f(x)</code> is increasing
is
<span class="hint_orange">highlighted</span> above.
</p><p data-else="">
The intervals
where <code>f(x)</code> is increasing
are
<span class="hint_orange">highlighted</span> above.
</p>
<div class="graphie" data-update="fnplot">
_.each(DDX_INTERVALS_POS, function(interval) {
plot(FNX, interval, {
stroke: ORANGE,
strokeWidth: 16,
opacity: 0.7
});
});
</div>
</div>
<div>
<p>
Select any part of the function that is highlighted.
</p>
<div class="graphie" data-update="fnplot">
graph.slidingWindow.moveTo(
(SOLUTION_INTERVAL[1] - SOLUTION_INTERVAL[0]) / 2 +
SOLUTION_INTERVAL[0] - 0.5, 0);
</div>
</div>
</div>
</div>
<div id="decreasing">
<div class="vars" data-apply="prependVars">
<var id="PREDICATE">function(x) { return DDX(x) &lt; 0; }</var>
</div>
<p class="question" data-apply="appendContents">
A function <code>f(x)</code> is plotted below.
Highlight an interval where <code>f^\prime(x) &lt; 0</code>.
</p>
<div class="hints">
<p>
The first derivative, <code>f^\prime(x)</code>, is less
than <code>0</code> wherever the function is decreasing.
</p>
<div>
<p data-if="isSingular(DDX_INTERVALS_NEG.length)">
The interval
where <code>f(x)</code> is decreasing
is
<span class="hint_orange">highlighted</span> above.
</p><p data-else="">
The intervals
where <code>f(x)</code> is decreasing
are
<span class="hint_orange">highlighted</span> above.
</p>
<div class="graphie" data-update="fnplot">
_.each(DDX_INTERVALS_NEG, function(interval) {
plot(FNX, interval, {
stroke: ORANGE,
strokeWidth: 16,
opacity: 0.7
});
});
</div>
</div>
<div>
<p>
Select any part of the function that is highlighted.
</p>
<div class="graphie" data-update="fnplot">
graph.slidingWindow.moveTo(
(SOLUTION_INTERVAL[1] - SOLUTION_INTERVAL[0]) / 2 +
SOLUTION_INTERVAL[0] - 0.5, 0);
</div>
</div>
</div>
</div>
<div id="pos-and-increasing">
<div class="vars" data-apply="prependVars">
<var id="PREDICATE">function(x) { return FNX(x) &gt; 0 &amp;&amp; DDX(x) &gt; 0; }</var>
</div>
<p class="question" data-apply="appendContents">
A function <code>f(x)</code> is plotted below.
Highlight an interval where <code>f(x) &gt; 0</code> and
<code>f^\prime(x) &gt; 0</code>.
</p>
<div class="hints">
<p>
The function <code>f(x)</code> is greater than <code>0</code>
wherever it's positive.
</p>
<div>
<p data-if="isSingular(FNX_INTERVALS_POS.length)">
The interval
where <code>f(x)</code> is positive
is
<span class="hint_orange">highlighted</span> above.
</p><p data-else="">
The intervals
where <code>f(x)</code> is positive
are
<span class="hint_orange">highlighted</span> above.
</p>
<div class="graphie" data-update="fnplot">
_.each(FNX_INTERVALS_POS, function(interval) {
plot(FNX, [XRANGE[0] - 1, XRANGE[1] + 1], {
stroke: ORANGE,
strokeWidth: 16,
opacity: 0.7
}).attr("clip-rect",
scalePoint([range[0][0], range[1][1]])[0] + "," +
scalePoint([range[0][0], range[1][1]])[1] + "," +
scaleVector([range[0][1] - range[0][0], range[1][1]])[0] + "," +
scaleVector([range[0][1] - range[0][0], range[1][1]])[1]
);
});
</div>
</div>
<p>
The first derivative, <code>f^\prime(x)</code>, is greater
than <code>0</code> wherever the function is increasing.
</p>
<div>
<p data-if="isSingular(DDX_INTERVALS_POS.length)">
The interval
where <code>f(x)</code> is increasing
is
<span class="hint_red">highlighted</span> above.
</p><p data-else="">
The intervals
where <code>f(x)</code> is increasing
are
<span class="hint_red">highlighted</span> above.
</p>
<div class="graphie" data-update="fnplot">
_.each(DDX_INTERVALS_POS, function(interval) {
plot(FNX, interval, {
stroke: RED,
strokeWidth: 6,
opacity: 0.8
});
});
</div>
</div>
<div>
<p>
Select any part of the function that is highlighted for
both conditions.
</p>
<div class="graphie" data-update="fnplot">
graph.slidingWindow.moveTo(
(SOLUTION_INTERVAL[1] - SOLUTION_INTERVAL[0]) / 2 +
SOLUTION_INTERVAL[0] - 0.5, 0);
</div>
</div>
</div>
</div>
<div id="pos-and-decreasing">
<div class="vars" data-apply="prependVars">
<var id="PREDICATE">function(x) { return FNX(x) &gt; 0 &amp;&amp; DDX(x) &lt; 0; }</var>
</div>
<p class="question" data-apply="appendContents">
A function <code>f(x)</code> is plotted below.
Highlight an interval where <code>f(x) &gt; 0</code> and
<code>f^\prime(x) &lt; 0</code>.
</p>
<div class="hints">
<p>
The function <code>f(x)</code> is greater than <code>0</code>
wherever it's positive.
</p>
<div>
<p data-if="isSingular(FNX_INTERVALS_POS.length)">
The interval
where <code>f(x)</code> is positive
is
<span class="hint_orange">highlighted</span> above.
</p><p data-else="">
The intervals
where <code>f(x)</code> is positive
are
<span class="hint_orange">highlighted</span> above.
</p>
<div class="graphie" data-update="fnplot">
_.each(FNX_INTERVALS_POS, function(interval) {
plot(FNX, [XRANGE[0] - 1, XRANGE[1] + 1], {
stroke: ORANGE,
strokeWidth: 16,
opacity: 0.7
}).attr("clip-rect",
scalePoint([range[0][0], range[1][1]])[0] + "," +
scalePoint([range[0][0], range[1][1]])[1] + "," +
scaleVector([range[0][1] - range[0][0], range[1][1]])[0] + "," +
scaleVector([range[0][1] - range[0][0], range[1][1]])[1]
);
});
</div>
</div>
<p>
The first derivative, <code>f^\prime(x)</code>, is less
than <code>0</code> wherever the function is decreasing.
</p>
<div>
<p data-if="isSingular(DDX_INTERVALS_NEG.length)">
The interval
where <code>f(x)</code> is decreasing
is
<span class="hint_red">highlighted</span> above.
</p><p data-else="">
The intervals
where <code>f(x)</code> is decreasing
are
<span class="hint_red">highlighted</span> above.
</p>
<div class="graphie" data-update="fnplot">
_.each(DDX_INTERVALS_NEG, function(interval) {
plot(FNX, interval, {
stroke: RED,
strokeWidth: 6,
opacity: 0.8
});
});
</div>
</div>
<div>
<p>
Select any part of the function that is highlighted for
both conditions.
</p>
<div class="graphie" data-update="fnplot">
graph.slidingWindow.moveTo(
(SOLUTION_INTERVAL[1] - SOLUTION_INTERVAL[0]) / 2 +
SOLUTION_INTERVAL[0] - 0.5, 0);
</div>
</div>
</div>
</div>
<div id="neg-and-increasing">
<div class="vars" data-apply="prependVars">
<var id="PREDICATE">function(x) { return FNX(x) &lt; 0 &amp;&amp; DDX(x) &gt; 0; }</var>
</div>
<p class="question" data-apply="appendContents">
A function <code>f(x)</code> is plotted below.
Highlight an interval where <code>f(x) &lt; 0</code> and
<code>f^\prime(x) &gt; 0</code>.
</p>
<div class="hints">
<p>
The function <code>f(x)</code> is less than <code>0</code>
wherever it's negative.
</p>
<div>
<p data-if="isSingular(FNX_INTERVALS_NEG.length)">
The interval
where <code>f(x)</code> is negative
is
<span class="hint_orange">highlighted</span> above.
</p><p data-else="">
The intervals
where <code>f(x)</code> is negative
are
<span class="hint_orange">highlighted</span> above.
</p>
<div class="graphie" data-update="fnplot">
_.each(FNX_INTERVALS_NEG, function(interval) {
plot(FNX, [XRANGE[0] - 1, XRANGE[1] + 1], {
stroke: ORANGE,
strokeWidth: 16,
opacity: 0.7
}).attr("clip-rect",
scalePoint([range[0][0], 0])[0] + "," +
scalePoint([range[0][0], 0])[1] + "," +
scaleVector([range[0][1] - range[0][0], -range[1][0]])[0] + "," +
scaleVector([range[0][1] - range[0][0], -range[1][0]])[1]
);
});
</div>
</div>
<p>
The first derivative, <code>f^\prime(x)</code>, is greater
than <code>0</code> wherever the function is increasing.
</p>
<div>
<p data-if="isSingular(DDX_INTERVALS_POS.length)">
The interval
where <code>f(x)</code> is increasing
is
<span class="hint_red">highlighted</span> above.
</p><p data-else="">
The intervals
where <code>f(x)</code> is increasing
are
<span class="hint_red">highlighted</span> above.
</p>
<div class="graphie" data-update="fnplot">
_.each(DDX_INTERVALS_POS, function(interval) {
plot(FNX, interval, {
stroke: RED,
strokeWidth: 6,
opacity: 0.8
});
});
</div>
</div>
<div>
<p>
Select any part of the function that is highlighted for
both conditions.
</p>
<div class="graphie" data-update="fnplot">
graph.slidingWindow.moveTo(
(SOLUTION_INTERVAL[1] - SOLUTION_INTERVAL[0]) / 2 +
SOLUTION_INTERVAL[0] - 0.5, 0);
</div>
</div>
</div>
</div>
<div id="neg-and-decreasing">
<div class="vars" data-apply="prependVars">
<var id="PREDICATE">function(x) { return FNX(x) &lt; 0 &amp;&amp; DDX(x) &lt; 0; }</var>
</div>
<p class="question" data-apply="appendContents">
A function <code>f(x)</code> is plotted below.
Highlight an interval where <code>f(x) &lt; 0</code> and
<code>f^\prime(x) &lt; 0</code>.
</p>
<div class="hints">
<p>
The function <code>f(x)</code> is less than <code>0</code>
wherever it's negative.
</p>
<div>
<p data-if="isSingular(FNX_INTERVALS_NEG.length)">
The interval
where <code>f(x)</code> is negative
is
<span class="hint_orange">highlighted</span> above.
</p><p data-else="">
The intervals
where <code>f(x)</code> is negative
are
<span class="hint_orange">highlighted</span> above.
</p>
<div class="graphie" data-update="fnplot">
_.each(FNX_INTERVALS_NEG, function(interval) {
plot(FNX, [XRANGE[0] - 1, XRANGE[1] + 1], {
stroke: ORANGE,
strokeWidth: 16,
opacity: 0.7
}).attr("clip-rect",
scalePoint([range[0][0], 0])[0] + "," +
scalePoint([range[0][0], 0])[1] + "," +
scaleVector([range[0][1] - range[0][0], -range[1][0]])[0] + "," +
scaleVector([range[0][1] - range[0][0], -range[1][0]])[1]
);
});
</div>
</div>
<p>
The first derivative, <code>f^\prime(x)</code>, is less
than <code>0</code> wherever the function is decreasing.
</p>
<div>
<p data-if="isSingular(DDX_INTERVALS_NEG.length)">
The interval
where <code>f(x)</code> is decreasing
is
<span class="hint_red">highlighted</span> above.
</p><p data-else="">
The intervals
where <code>f(x)</code> is decreasing
are
<span class="hint_red">highlighted</span> above.
</p>
<div class="graphie" data-update="fnplot">
_.each(DDX_INTERVALS_NEG, function(interval) {
plot(FNX, interval, {
stroke: RED,
strokeWidth: 6,
opacity: 0.8
});
});
</div>
</div>
<div>
<p>
Select any part of the function that is highlighted for
both conditions.
</p>
<div class="graphie" data-update="fnplot">
graph.slidingWindow.moveTo(
(SOLUTION_INTERVAL[1] - SOLUTION_INTERVAL[0]) / 2 +
SOLUTION_INTERVAL[0] - 0.5, 0);
</div>
</div>
</div>
</div>
</div>
</div>
</body>
</html>
Jump to Line
Something went wrong with that request. Please try again.