# Khan/khan-exercises

### Subversion checkout URL

You can clone with HTTPS or Subversion.

Fetching contributors…

Cannot retrieve contributors at this time

203 lines (178 sloc) 10.015 kb
 Similar triangles 2
[ "DEF", "GHI", "Both", "None" ] { "DEF": "<code>DEF</code>", "GHI": "<code>GHI</code>", "Both": \$._("Both"), "None": \$._("None") } ANSWERS[randRange(0, 3)]
randomSides() randRange(1, 3)/2 randRange(1, 3)/2 ANSWER === "DEF" || ANSWER === "Both" ? scaleSides(ABC_SIDES, SCALE_DEF) : randomSides(ABC_SIDES) ANSWER === "GHI" || ANSWER === "Both" ? scaleSides(ABC_SIDES, SCALE_GHI) : randomSides(ABC_SIDES)
triangleAngles( ABC_SIDES ) ANSWER === "DEF" || ANSWER === "Both" ? ABC_ANGLES : triangleAngles(DEF_SIDES) ANSWER === "GHI" || ANSWER === "Both" ? ABC_ANGLES : triangleAngles(GHI_SIDES) "\\neq" ABC_SIDES[2] / DEF_SIDES[2] === ABC_SIDES[0] / DEF_SIDES[0] ? "=" : "\\neq" ABC_SIDES[0] / DEF_SIDES[0] === ABC_SIDES[1] / DEF_SIDES[1] ? "=" : "\\neq" ABC_SIDES[2] / GHI_SIDES[2] === ABC_SIDES[0] / GHI_SIDES[0] ? "=" : "\\neq" ABC_SIDES[0] / GHI_SIDES[0] === ABC_SIDES[1] / GHI_SIDES[1] ? "=" : "\\neq" function(){ var tr = new Triangle( [ 2, -1 ], ABC_ANGLES, 5, {} ); tr.labels = {"sides": [ABC_SIDES[2], ABC_SIDES[0], ABC_SIDES[1]], "points" : ["A", "B", "C"] }; tr.rotate( randRange( 0, 360 ) ); tr.boxOut( [ [ [ -4, 1.5 ], [ 10, 1.5 ] ] ], [ 0, -0.5 ] ); return tr; }() function(){ var trA = new Triangle( [ 1, -8 ], DEF_ANGLES, 5*SCALE_DEF, {} ); trA.labels = {"sides": [DEF_SIDES[2], DEF_SIDES[0], DEF_SIDES[1]], "points" : ["D", "E", "F"] }; trA.rotate( randRange( 0, 360 ) ); trA.color = "blue"; trA.boxOut( [ [ [ -1, -10 ], [ -1, 20 ] ] ], [ 0.5, 0 ] ); trA.boxOut( TR.sides, [ 0, -1 ] ); return trA; }() function(){ var trB = new Triangle( [ 8, -6.5 ], GHI_ANGLES, 5*SCALE_GHI, {} ); trB.labels = {"sides": [GHI_SIDES[2], GHI_SIDES[0], GHI_SIDES[1]], "points" : ["G", "H", "I"] }; trB.rotate( randRange( 0, 360 ) ); trB.color = "red"; trB.boxOut( [ [ [ 13, -10 ], [ 13, 20 ] ] ], [ -0.5, 0 ] ); trB.boxOut( TR.sides, [ 0, -1 ] ); trB.boxOut( TR_A.sides, [ 0, -1 ] ); return trB; }()

Which triangles are similar to triangle ABC?

init({ range: [ [-1, 13 ], [ -14, 2.5 ] ], scale: 35 }) TR.draw(); TR.drawLabels(); style({ stroke: "blue", }); TR_A.draw(); TR_A.drawLabels(); style({ stroke: "red", }); TR_B.draw(); TR_B.drawLabels();
• ANS

The sides of similar triangles are always proportional. This is known as

\color{orange}{Side-Side-Side (SSS) Similarity}.

First, let's determine whether ABC and DEF are similar.

In triangle DEF, DE = DEF_SIDES[2], EF = DEF_SIDES[0], and FD = DEF_SIDES[1].

In triangle ABC, AB = ABC_SIDES[2], BC = ABC_SIDES[0], and CA = ABC_SIDES[1].

In order for ABC and DEF to be similar:

\dfrac{AB}{\color{blue}{DE}} = \dfrac{BC}{\color{blue}{EF}} = \dfrac{CA}{\color{blue}{FD}}

Substitute in the proper values for each side.

\dfrac{ABC_SIDES[2]}{\color{blue}{DEF_SIDES[2]}} DEF_COMP_1 \dfrac{ABC_SIDES[0]}{\color{blue}{DEF_SIDES[0]}} DEF_COMP_2 \dfrac{ABC_SIDES[1]}{\color{blue}{DEF_SIDES[1]}}

Since not all the proportions are equal, ABC is not similar to DEF.

Since all the proportions are equal, ABC is similar to DEF.

Next, let's determine whether ABC and GHI are similar.

In triangle GHI, GH = GHI_SIDES[2], HI = GHI_SIDES[0], and IG = GHI_SIDES[1].

In triangle ABC, AB = ABC_SIDES[2], BC = ABC_SIDES[0], and CA = ABC_SIDES[1].

For triangles ABC and GHI to be similar:

\dfrac{AB}{\color{red}{GH}} = \dfrac{BC}{\color{red}{HI}} = \dfrac{CA}{\color{red}{IG}}

Substitute in the proper values for each side.

\dfrac{ABC_SIDES[2]}{\color{red}{GHI_SIDES[2]}} GHI_COMP_1 \dfrac{ABC_SIDES[0]}{\color{red}{GHI_SIDES[0]}} GHI_COMP_2 \dfrac{ABC_SIDES[1]}{\color{red}{GHI_SIDES[1]}}

Since not all the proportions are equal, ABC is not similar to GHI.

Since all the proportions are equal, ABC is similar to GHI.

DEF is similar to ABC

GHI is similar to ABC

DEF and GHI are similar to ABC

Neither DEF nor GHI are similar to ABC

Something went wrong with that request. Please try again.