Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

184 lines (175 sloc) 11.07 kb
<!DOCTYPE html>
<html data-require="math math-format expressions graphie">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Solutions to systems of equations</title>
<script data-main="../local-only/main.js" src="../local-only/require.js"></script>
</head>
<body>
<div class="exercise">
<div class="vars">
<var id="INDICES">[randRange( 2, 3 ), randRange( 0, 3 )]</var>
<var id="M1">randRangeNonZero( -6, 6 )</var>
<var id="M2" data-ensure="M1 !== M2">randRangeNonZero( -6, 6 )</var>
<var id="Y1">randRangeNonZero( -10, 10 )</var>
<var id="Y2" data-ensure="Y1 !== Y2">randRangeNonZero( -10, 10 )</var>
<var id="MULT" data-ensure="MULT[0] !== 1 &amp;&amp; MULT[1] !== 1">[randRange( 1, 3 ) * randRangeNonZero( -1, 1 ), randRange( 1, 3 ) * randRangeNonZero( -1, 1 )]</var>
<var id="AB_VALS">[{ a: M1, b: Y1 }, { a: M2, b: Y2 }]</var>
<var id="COUNT">[0, 1]</var>
</div>
<div class="problems">
<div id="original" data-weight="0">
<div class="vars">
<var id="EQUATIONS">
(function() {
var equations = [];
var i = 0;
while ( i &lt; 2 ) {
if( INDICES[i] === 0 ) {
equations.push( "y = " + expr(["+", ["*", AB_VALS[i].a, "x"], AB_VALS[i].b]) );
}
if( INDICES[i] === 1 ) {
equations.push( "y = " + expr(["+", AB_VALS[i].b, ["*", AB_VALS[i].a, "x"]]) );
}
if( INDICES[i] === 2 ) {
equations.push( expr(["+", ["*", -AB_VALS[i].a, "x"], "y"]) + " = " + AB_VALS[i].b );
}
if( INDICES[i] === 3 ) {
equations.push( expr(["+", ["*", -AB_VALS[i].a * MULT[i], "x"], ["*", MULT[i], "y"]]) + " = " + AB_VALS[i].b * MULT[i] );
}
i++;
}
return equations;
})()
</var>
<var id="SIGNS_1">[AB_VALS[0].a &gt; 0 ? "+" : "-", AB_VALS[1].a &gt; 0 ? "+" : "-"]</var>
<var id="SIGNS_2">[( AB_VALS[0].a * MULT[0] ) &gt; 0 ? "+" : "-", ( AB_VALS[1].a * MULT[1] ) &gt; 0 ? "+" : "-"]</var>
</div>
<p class="problem">Determine how many solutions exist for the system of equations.</p>
<div class="question">
<p><code>\color{<var>BLUE</var>}{<var>EQUATIONS[0]</var>}</code><br>
<code>\color{<var>GREEN</var>}{<var>EQUATIONS[1]</var>}</code></p>
</div>
<ul class="choices" data-category="true">
<li>One solution</li>
<li>Infinite solutions</li>
<li>No solutions</li>
</ul>
<div class="hints">
<p>Convert both equations to slope-intercept form:</p>
<div data-unwrap="">
<p data-each="COUNT as INDEX"><code>\color{<span data-if="INDEX === 0"><var>BLUE</var></span><span data-else=""><var>GREEN</var></span>}{<var>EQUATIONS[INDEX]</var>}</code><br>
<span data-if="INDICES[INDEX] === 1"><code>\color{<span data-if="INDEX === 0"><var>BLUE</var></span><span data-else=""><var>GREEN</var></span>}{y = <var>expr(["+", ["*", AB_VALS[INDEX].a, "x"], AB_VALS[INDEX].b])</var>}</code></span>
<span data-if="INDICES[INDEX] === 2"><code><var>expr(["*", -AB_VALS[INDEX].a, "x"])</var>\color{<var>PINK</var>}{<var>SIGNS_1[INDEX]</var><var>expr(["*", abs( AB_VALS[INDEX].a ), "x"])</var>} + y = <var>AB_VALS[INDEX].b</var>\color{<var>PINK</var>}{<var>SIGNS_1[INDEX]</var><var>expr(["*", abs( AB_VALS[INDEX].a ), "x"])</var>}</code><br>
<code>y = <var>AB_VALS[INDEX].b</var><var>SIGNS_1[INDEX]</var><var>expr(["*", abs( AB_VALS[INDEX].a ), "x"])</var></code><br>
<code>\color{<span data-if="INDEX === 0"><var>BLUE</var></span><span data-else=""><var>GREEN</var></span>}{y = <var>expr(["+", ["*", AB_VALS[INDEX].a, "x"], AB_VALS[INDEX].b])</var>}</code></span>
<span data-if="INDICES[INDEX] === 3"><code><var>expr(["*", -AB_VALS[INDEX].a * MULT[INDEX], "x"])</var>\color{<var>PINK</var>}{<var>SIGNS_2[INDEX]</var><var>expr(["*", abs( AB_VALS[INDEX].a * MULT[INDEX] ), "x"])</var>} + <var>expr(["*", MULT[INDEX], "y"])</var> = <var>AB_VALS[INDEX].b * MULT[INDEX]</var>\color{<var>PINK</var>}{<var>SIGNS_2[INDEX]</var><var>expr(["*", abs( AB_VALS[INDEX].a * MULT[INDEX] ), "x"])</var>}</code><br>
<code><var>expr(["*", MULT[INDEX], "y"])</var> = <var>AB_VALS[INDEX].b * MULT[INDEX]</var><var>SIGNS_2[INDEX]</var><var>expr(["*", abs( AB_VALS[INDEX].a * MULT[INDEX] ), "x"])</var></code><br>
<code>y = <var>AB_VALS[INDEX].b</var><var>SIGNS_1[INDEX]</var><var>expr(["*", abs( AB_VALS[INDEX].a ), "x"])</var></code><br>
<code>\color{<span data-if="INDEX === 0"><var>BLUE</var></span><span data-else=""><var>GREEN</var></span>}{y = <var>expr(["+", ["*", AB_VALS[INDEX].a, "x"], AB_VALS[INDEX].b])</var>}</code></span></p>
</div>
<div>
<p>Just by looking at both equations in slope-intercept form, what can you determine?</p>
<p><code>\color{<var>BLUE</var>}{y = <var>expr(["+", ["*", AB_VALS[0].a, "x"], AB_VALS[0].b])</var>}</code><br>
<code>\color{<var>GREEN</var>}{y = <var>expr(["+", ["*", AB_VALS[1].a, "x"], AB_VALS[1].b])</var>}</code></p>
</div>
</div>
</div>
<div id="one_solution" data-type="original">
<div class="vars">
<var id="AB_VALS">[{ a: M1, b: Y1 }, { a: M2, b: Y2 }]</var>
</div>
<div class="solution">One solution</div>
<div class="hints" data-apply="appendContents">
<div>
<p>The linear equations have different slopes.</p>
<div class="graphie" id="grid">
graphInit({
range: [[-10, 10], [-10, 10]],
scale: [18, 18],
tickStep: 1,
labelStep: 1,
unityLabels: false,
labelFormat: function( s ) { return "\\small{" + s + "}"; },
axisArrows: "&lt;-&gt;"
});
plot(function( x ) {
return ( AB_VALS[0].a * x + AB_VALS[0].b );
}, [-10, 10], {
stroke: "BLUE"
});
plot(function( x ) {
return ( AB_VALS[1].a * x + AB_VALS[1].b );
}, [-10, 10], {
stroke: "GREEN"
});
</div>
</div>
<p>When two equations have different slopes, the lines will intersect once with one solution.</p>
</div>
</div>
<div id="infinite_solutions" data-type="original">
<div class="vars">
<var id="AB_VALS">[{ a: M1, b: Y1 }, { a: M1, b: Y1 }]</var>
</div>
<div class="solution">Infinite solutions</div>
<div class="hints" data-apply="appendContents">
<div>
<p>Both equations have the same slope and the same y-intercept, which means the lines would completely overlap.</p>
<div class="graphie" id="grid">
graphInit({
range: [[-10, 10], [-10, 10]],
scale: [18, 18],
tickStep: 1,
labelStep: 1,
unityLabels: false,
labelFormat: function( s ) { return "\\small{" + s + "}"; },
axisArrows: "&lt;-&gt;"
});
plot(function( x ) {
return ( AB_VALS[0].a * x + AB_VALS[0].b );
}, [-10, 10], {
stroke: "BLACK"
});
</div>
</div>
<p>Since any solution of <code>\color{<var>BLUE</var>}{<var>EQUATIONS[0]</var>}</code> is also a solution of <code>\color{<var>GREEN</var>}{<var>EQUATIONS[1]</var>}</code>, there are infinitely many solutions.</p>
</div>
</div>
<div id="zero_solutions" data-type="original">
<div class="vars">
<var id="AB_VALS">[{ a: M1, b: Y1 }, { a: M1, b: Y2 }]</var>
</div>
<div class="solution">No solutions</div>
<div class="hints" data-apply="appendContents">
<div>
<p>Both equations have the same slope with different y-intercepts. This means the equations are parallel.</p>
<div class="graphie" id="grid">
graphInit({
range: [[-10, 10], [-10, 10]],
scale: [18, 18],
tickStep: 1,
labelStep: 1,
unityLabels: false,
labelFormat: function( s ) { return "\\small{" + s + "}"; },
axisArrows: "&lt;-&gt;"
});
plot(function( x ) {
return ( AB_VALS[0].a * x + AB_VALS[0].b );
}, [-10, 10], {
stroke: "BLUE"
});
plot(function( x ) {
return ( AB_VALS[1].a * x + AB_VALS[1].b );
}, [-10, 10], {
stroke: "GREEN"
});
</div>
</div>
<p>Parallel lines never intersect, thus there are NO SOLUTIONS.</p>
</div>
</div>
</div>
</div>
</body>
</html>
Jump to Line
Something went wrong with that request. Please try again.