# Khan/khan-exercises

Switch branches/tags
Nothing to show
Fetching contributors…
Cannot retrieve contributors at this time
379 lines (332 sloc) 19.8 KB
 Trigonometry 2
randRange(3, 10) randRange(3, 10) BC AC * AC + BC * BC formattedSquareRootOf(AC * AC + BC * BC) randFromArray([ "ABC", "BAC" ]) randRange(1, 10) randRange(1, 10) (ANGLE.substring(0,1)+ANGLE.substring(2)) (function(){ if( OPPOSITE_NAME === "AC" ){ return AC; } else if( OPPOSITE_NAME === "BC" ){ return CB; } return AB_STRING; })() "AB" AB_STRING ANGLE.substring(1) (function(){ if( ADJACENT_NAME === "AC" ){ return AC; } else if( ADJACENT_NAME === "BC" ){ return BC; } return AB_STRING; })() fraction( OPPOSITE_VALUE, ADJACENT_VALUE, false, false, false, false) fractionReduce( OPPOSITE_VALUE, ADJACENT_VALUE, false, false) "\\frac{" + OPPOSITE_VALUE + "}{" + formattedSquareRootOf(AB) + "}" fractionSQRoot( OPPOSITE_VALUE , AB ) "\\frac{" + ADJACENT_VALUE + "}{" + formattedSquareRootOf(AB) + "}" fractionSQRoot( ADJACENT_VALUE , AB ) i18n._("opposite") i18n._("hypotenuse") i18n._("adjacent")

\overline{AB} = AB_STRING

\overline{OPPOSITE_NAME} = {?}

var options = {}; options[ OPPOSITE_NAME ] = "?"; options[ "AB" ] = AB_STRING; bestTriangle( BC, AC, "A", "B", "C", "", "", "", ANGLE, options ); path([ [ 0.4, 0 ], [ 0.4, 0.4 ], [ 0, 0.4 ] ]);

\displaystyle \sin( \angle ANGLE ) = SIN , \cos( \angle ANGLE ) = COS , \tan( \angle ANGLE ) = TAN

OPPOSITE_VALUE
• AB_STRING
• WRONG_A
• WRONG_B

\overline{AB} is the hypotenuse

\overline{OPPOSITE_NAME} is opposite to \angle ANGLE

SOH CAH TOA

We know the hypotenuse and need to solve for the opposite side so we can use the sine function (SOH)

\displaystyle \sin( \angle ANGLE ) = \frac{\text{OPPOSITE_TEXT}}{\text{HYPOTENUSE_TEXT}} = \frac{\overline{OPPOSITE_NAME}}{\overline{AB}}= \frac{\overline{OPPOSITE_NAME}}{AB_STRING}

\displaystyle \overline{OPPOSITE_NAME}=AB_STRING \cdot \sin( \angle ANGLE ) = AB_STRING \cdot SIN = OPPOSITE_VALUE

\overline{OPPOSITE_NAME} = OPPOSITE_VALUE

\overline{AB} = {?}

var options = {}; options[ OPPOSITE_NAME ] = OPPOSITE_VALUE; options[ "AB" ] = "?"; bestTriangle( BC, AC, "A", "B", "C", "", "", "", ANGLE, options ); path([ [ 0.4, 0 ], [ 0.4, 0.4 ], [ 0, 0.4 ] ]);

\displaystyle \sin( \angle ANGLE ) = SIN , \cos( \angle ANGLE ) = COS , \tan( \angle ANGLE ) = TAN

AB_STRING
• OPPOSITE_VALUE
• WRONG_A
• WRONG_B

\overline{OPPOSITE_NAME} is the opposite to \angle ANGLE

\overline{AB} is the hypotenuse (note that it is opposite the right angle)

SOH CAH TOA

We know the opposite side and need to solve for the hypotenuse so we can use the sin function (SOH)

\displaystyle \sin( \angle ANGLE ) = \frac{\text{OPPOSITE_TEXT}}{\text{HYPOTENUSE_TEXT}} = \frac{\overline{OPPOSITE_NAME}}{\overline{AB}} = \frac{OPPOSITE_VALUE}{\overline{AB}}

\displaystyle \overline{AB}=\frac{OPPOSITE_VALUE}{\sin( \angle ANGLE )} = \frac{OPPOSITE_VALUE}{SIN} = AB_STRING

\overline{AB} = AB_STRING

var options = {}; options[ ADJACENT_NAME ] = "?"; options[ "AB" ] = AB_STRING; bestTriangle( BC, AC, "A", "B", "C", "", "", "", ANGLE, options ); path([ [ 0.4, 0 ], [ 0.4, 0.4 ], [ 0, 0.4 ] ]);

\displaystyle \sin( \angle ANGLE ) = SIN , \cos( \angle ANGLE ) = COS , \tan( \angle ANGLE ) = TAN

• OPPOSITE_VALUE
• AB_STRING
• WRONG_A
• WRONG_B

\overline{AB} is the hypotenuse

SOH CAH TOA

We know the hypotenuse and need to solve for the adjacent side so we can use the cos function (CAH)

\displaystyle \overline{ADJACENT_NAME}=AB_STRING \cdot \cos( \angle ANGLE ) = AB_STRING \cdot COS = ADJACENT_VALUE

\overline{AB} = {?}

var options = {}; options[ ADJACENT_NAME ] = ADJACENT_VALUE; options[ "AB" ] = "?"; bestTriangle( BC, AC, "A", "B", "C", "", "","", ANGLE, options ); path([ [ 0.4, 0 ], [ 0.4, 0.4 ], [ 0, 0.4 ] ]);

\displaystyle \sin( \angle ANGLE ) = SIN , \cos( \angle ANGLE ) = COS , \tan( \angle ANGLE ) = TAN

AB_STRING
• OPPOSITE_VALUE
• WRONG_A
• WRONG_B

\overline{AB} is the hypotenuse (note that it is opposite the right angle)

SOH CAH TOA

We know the adjacent side and need to solve for the hypotenuse so we can use the cos function (CAH)

\overline{OPPOSITE_NAME} = OPPOSITE_VALUE

var options = {}; options[ ADJACENT_NAME ] = "?"; options[ OPPOSITE_NAME ] = OPPOSITE_VALUE; bestTriangle( BC, AC, "A", "B", "C", "", "", "" , ANGLE, options ); path([ [ 0.4, 0 ], [ 0.4, 0.4 ], [ 0, 0.4 ] ]);

\displaystyle \sin( \angle ANGLE ) = SIN , \cos( \angle ANGLE ) = COS , \tan( \angle ANGLE ) = TAN

• AB_STRING
• WRONG_A
• WRONG_B

\overline{OPPOSITE_NAME} is the opposite to \angle ANGLE

SOH CAH TOA

We know the opposite side and need to solve for the adjacent side so we can use the tan function (TOA)

\overline{OPPOSITE_NAME} = {?}

var options = {}; options[ OPPOSITE_NAME ] = "?"; options[ ADJACENT_NAME ] = ADJACENT_VALUE; bestTriangle( BC, AC, "A", "B", "C", "", "", "", ANGLE, options ); path([ [ 0.4, 0 ], [ 0.4, 0.4 ], [ 0, 0.4 ] ]);

\displaystyle \sin( \angle ANGLE ) = SIN , \cos( \angle ANGLE ) = COS , \tan( \angle ANGLE ) = TAN

OPPOSITE_VALUE
• AB_STRING
• WRONG_A
• WRONG_B

\overline{OPPOSITE_NAME} is the opposite to \angle ANGLE