# Khan/khan-exercises

### Subversion checkout URL

You can clone with HTTPS or Subversion.

Fetching contributors…

Cannot retrieve contributors at this time

120 lines (99 sloc) 6.597 kb
 Areas of circles and sectors
randRange(5, 355) randRange(5, 10) 2 * Math.PI * R 2 * R + "\\pi" ANGLE/360 * C fractionReduce(ANGLE * C, 360) + "\\pi" PI * R * R ANGLE/360 * A_C R * R + "\\pi" fractionReduce(ANGLE * R * R, 360) + "\\pi" randRange(0, 359)

A circle with area PRETTY_A_C has a sector with a ANGLE^\circ central angle.

What is the area of the sector?

init({ range: [[-R - 2, R + 2], [-R - 2, R + 2]], scale: [15, 15] }); circle([0, 0], R, { stroke: BLUE }); arc([0, 0], R, ROTATE_ARC, ROTATE_ARC + ANGLE, true, { stroke: ORANGE, fill: ORANGE, "fill-opacity": 0.1 }); graph.cAngle = 180 + ((ROTATE_ARC + ANGLE) + ROTATE_ARC) / 2; graph.aCL = label(polar(R/2, graph.cAngle), "\\color{"+BLUE+"}{"+PRETTY_A_C+"}", "below"); graph.aAngle = (ROTATE_ARC * 2 + ANGLE) / 2; graph.angle = arc([0, 0], R * 0.12, ROTATE_ARC, ROTATE_ARC + ANGLE, { stroke: PURPLE }); graph.angleL = label([0, 0], "\\color{"+PURPLE+"}{"+ANGLE+"^\\circ}", labelDirection(graph.aAngle)); graph.aSL = label(polar(R/2, graph.aAngle), "\\color{"+ORANGE+"}{"+PRETTY_A_S+"}"); $(graph.aSL).hide(); graph.arcL = label(polar(R, graph.aAngle), "\\color{"+ORANGE+"}{"+PRETTY_S+"}", labelDirection(graph.aAngle));$(graph.arcL).hide();

A_S

The ratio between the sector's central angle \theta and 360^\circ equals the ratio between the sector's area, A_s, and the whole circle's area, A_c.

\dfrac{\theta}{360^\circ} = \dfrac{A_s}{A_c}

\dfrac{ANGLE^\circ}{360^\circ} = \dfrac{A_s}{PRETTY_A_C}

PRETTY_A_S = A_s

$(graph.aSL).show(); A circle with radius R has a sector with a ANGLE^\circ central angle.$(graph.aCL).hide(); graph.r = path([[0, 0], polar(R, graph.cAngle)], { stroke: BLUE }); graph.rL = label(polar(R/2, graph.cAngle), "\\color{"+BLUE+"}{"+R+"}", "above");

First, calculate the area of the whole circle.

Then the area of the sector is some fraction of the whole circle's area.

A_c = \pi r^2

A_c = \pi (R)^2

A_c = PRETTY_A_C

$(graph.aCL).show(); A circle has a sector with area PRETTY_A_S and central angle ANGLE^\circ. What is the area of the circle?$(graph.aCL).hide(); $(graph.aSL).show(); A_C The ratio between the sector's central angle \theta and 360^\circ equals the ratio between the sector's area, A_s, and the whole circle's area, A_c. \dfrac{\theta}{360^\circ} = \dfrac{A_s}{A_c} \dfrac{ANGLE^\circ}{360^\circ} = \dfrac{PRETTY_A_S}{A_c} PRETTY_A_C = A_c$(graph.aCL).show();
Something went wrong with that request. Please try again.