# Khan/khan-exercises

### Subversion checkout URL

You can clone with
or
.
Fetching contributors…

Cannot retrieve contributors at this time

290 lines (262 sloc) 10.872 kB
 Order of operations
randRange(1, 10) randRange(1, 10) randRange(1, 10) randRange(1, 10) randRange(1, 10)

Simplify the following expression.

A + (B \times C)

A+B*C

= A + (B*C)

= A + B*C

= A+B*C

A + B \times C

A+B*C

= A + B*C

= A+B*C

A \times (B + C)

A*(B+C)

= A \times B+C

= A*(B+C)

A + (\dfrac{B*C}{C})

A+B

= A + (B)

= A + B

= A+B

A + \dfrac{B*C}{C}

A+B

= A + B

= A+B

\dfrac{ (A*(B+C)) }{ B + C }

A

= \dfrac{ (A*(B+C)) }{ ((B+C)) }

= \dfrac{ (A*(B+C)) }{ B+C }

= A

\dfrac{ (A*(B-C)) }{ (B - C) }

A

= \dfrac{ (A*(B-C)) }{ ((B-C)) }

= \dfrac{ (A*(B-C)) }{ B-C }

= A

(A + (B - C \times D)) \times E

(A+(B-(C*D)))*E

= (A + (B - (C*D))) \times E

= (A + ((B-(C*D)))) \times E

= (A + (B-(C*D))) \times E

= ((A+(B-(C*D)))) \times E

= (A+(B-(C*D))) \times E

= (A+(B-(C*D)))*E

A + (B - C \times D) \times E

A+((B-(C*D))*E)

= A + (B - (C*D)) \times E

= A + ((B-(C*D))) \times E

= A + ((B-(C*D))*E)

= A+((B-(C*D))*E)

A - B \times C + \dfrac{ (D*E) }{ E }

A-B*C+D

= A - B \times C + D

= A - (B*C) + D

= (A-B*C) + D

= A-B*C+D

A \times B + C \times \dfrac{ (D*E) }{ E }

(A*B)+(C*D)

= A \times B + C \times D

= (A*B) + C \times D

= (A*B) + (C*D)

= (A*B)+(C*D)

(A + B \times C) - D \times E

(A+B*C)-(D*E)

= (A + (B*C)) - D \times E

= (A+(B*C)) - D \times E

= (A+(B*C)) - (D*E)

= (A+B*C)-(D*E)

Something went wrong with that request. Please try again.