Khan/khan-exercises

Add exercise with variable in the denominator

1 parent 3ed16a8 commit 4eb4924e7ab4e29960ee206059ef1c6018837c8c petercollingridge committed Mar 24, 2013
Showing with 79 additions and 57 deletions.
 @@ -30,89 +30,111 @@
randRangeWeighted(1, 10, 1, 0.4) - randRange(2, 12) + randRange(2, 10)
- randRange(2, 12) + randRange(2, 10)
randRangeWeighted(1, 10, 1, 0.4)
+ getLCM(DENOMINATOR1, DENOMINATOR2) + DENOMINATORCOEFF / DENOMINATOR1 + DENOMINATORCOEFF / DENOMINATOR2 + NUMERATOR1 * F1 + S * (NUMERATOR2 * F2) + getGCD(NUMERATORCOEFF, DENOMINATORCOEFF)
- getLCM( DENOMINATOR1, DENOMINATOR2 ) - COMMONDENOM / DENOMINATOR1 - COMMONDENOM / DENOMINATOR2 - NUMERATOR1 * F1 + S * (NUMERATOR2 * F2) - getGCD(FINALNUMERATOR, COMMONDENOM) - getExpressionRegex(FINALNUMERATOR / FACTOR, X, 0) - COMMONDENOM / FACTOR + expr(["*", NUMERATOR1, X]) + expr(["*", NUMERATOR2, X]) + DENOMINATOR1 + DENOMINATOR2 + expr(["*", NUMERATOR1 * F1, X]) + expr(["*", NUMERATOR2 * F2, X]) + + expr(["*", NUMERATORCOEFF, X]) + DENOMINATORCOEFF + + expr(["*", NUMERATORCOEFF / FACTOR, X]) + DENOMINATOR / FACTOR + + getExpressionRegex(NUMERATORCOEFF / FACTOR, X, 0) + SIMPLEDENOMINATOR
+
-

Simplify the following expression:

-

- Y = \dfrac{expr(["*", NUMERATOR1, X])}{DENOMINATOR1} - SIGN \dfrac{expr(["*", NUMERATOR2, X])}{DENOMINATOR2} -

+
+
+ NUMERATOR1 + NUMERATOR2 + expr(["*", DENOMINATOR1, X]) + expr(["*", DENOMINATOR2, X]) + NUMERATOR1 * F1 + NUMERATOR2 * F2 -
-
- NUMERSOL - DENOMSOL -
-
-
- -
- Y = - - a -
- a -
- - - - - - - - - + NUMERATORCOEFF + expr(["*", DENOMINATORCOEFF, X]) -

a simplifed expression, like x + 2

+ NUMERATORCOEFF / FACTOR + expr(["*", DENOMINATORCOEFF / FACTOR, X]) + getExpressionRegex(NUMERATORCOEFF / FACTOR, X, 0) + COMMONDENOM / FACTOR + + + + + +

Simplify the following expression:

+

+ Y = \dfrac{N1}{D1} + SIGN \dfrac{N2}{D2} +

+ +
+
+ NUMERSOL + DENOMSOL +
+
+
+ +
+ Y = + + a +
+ a +
+ + + + + + +

In order to addsubtract expressions, they must have a common denominator.

-

The smallest common denominator is the least common multiple of DENOMINATOR1 and DENOMINATOR2.

-

\lcm(DENOMINATOR1, DENOMINATOR2) = COMMONDENOM

-

- Y = \dfrac{F1}{F1} \cdot \dfrac{expr(["*", NUMERATOR1, X])}{DENOMINATOR1} - SIGN \dfrac{F2}{F2} \cdot \dfrac{expr(["*", NUMERATOR2, X])}{DENOMINATOR2} -

- -

- Y = \dfrac{expr(["*", NUMERATOR1 * F1, X])}{COMMONDENOM} - SIGN \dfrac{expr(["*", NUMERATOR2 * F2, X])}{COMMONDENOM} -

-

- Y = \dfrac{expr(["*", NUMERATOR1 * F1, X]) SIGN - expr(["*", NUMERATOR2 * F2, X])}{COMMONDENOM} -

+

The smallest common denominator is the least common multiple of D1 and D2.

+

\lcm(D1, D2) = DENOMINATOR

- Y = \dfrac{expr(["*", FINALNUMERATOR, X])}{COMMONDENOM} + Y = \dfrac{F1}{F1} \cdot \dfrac{N1}{D1} + SIGN \dfrac{F2}{F2} \cdot \dfrac{N2}{D2}

+

Y = \dfrac{NF1}{DENOMINATOR}SIGN \dfrac{NF2}{DENOMINATOR}

+

Y = \dfrac{NF1 SIGNNF2}{DENOMINATOR}

+

Y = \dfrac{NUMERATOR}{DENOMINATOR}

-
To simplify the expression, divide the numerator and denominator by FACTOR:
-
Y = \dfrac{expr(["*", FINALNUMERATOR / FACTOR, X])}{COMMONDENOM / FACTOR}
+
Simplify the expression by dividing the numerator and denominator by FACTOR:
+
Y = \dfrac{SIMPLENUMERATOR}{SIMPLEDENOMINATOR}