# Khan/khan-exercises

Add basic reciprocal trig function exercise

Reviewers: emily, eater

Reviewed By: eater

CC: eater, emily

Differential Revision: http://phabricator.khanacademy.org/D570
1 parent e23c820 commit 8c7b350c97d5a5421e057c5dc3af2f5315d0a9c6 mwittels committed Aug 16, 2012
Showing with 301 additions and 0 deletions.
1. +300 −0 exercises/reciprocal_trig_funcs.html
2. +1 −0 utils/convert-values.js
 @@ -0,0 +1,300 @@ + + + + + Reciprocal trig functions + + + + +
+
+
+
+ shuffle(randFromArray([[3,4], [6,8], [5,12], [7, 24], [8, 15], [10, 24], [12,16]])) + BC + sqrt(AC * AC + BC * BC) + randFromArray([ + "ABC", + "BAC" + ]) + (ANGLE.substring(0,1) + ANGLE.substring(2)) + + (function(){ + if ( OPPOSITE_NAME === "AC" ){ + return AC; + } + else if ( OPPOSITE_NAME === "BC" ){ + return CB; + } + return AB; + })() + + + "AB" + AB + + fraction(AB, OPPOSITE_VALUE) + fraction(OPPOSITE_VALUE, AB) + AB / OPPOSITE_VALUE +
+ + +
+

\overline{AC} is AC units long

+

\overline{BC} is BC units long

+

\overline{AB} is AB units long

+
+
+

+ What is \csc(\angle ANGLE)? +

+ +
+ betterTriangle(BC, AC, "A", "B", "C", BC, AC, AB); + path([[ 0.4, 0 ], [ 0.4, 0.4 ], [ 0, 0.4 ]]); +
+
+ +
CSC
+ +
+

+ \csc(\angle ANGLE) = + \dfrac{1}{\sin(\angle ANGLE)} +

+

+ How can we find + \sin(\angle ANGLE)? +

+

+ SOH CAH TOA +

+

+ Sin = Opposite over Hypotenuse +

+

+ Opposite = \overline{OPPOSITE_NAME} + = OPPOSITE_VALUE +

+

+ Hypotenuse = \overline{HYPOTENUSE_NAME} + = AB +

+

+ \sin(\angle ANGLE) + = SIMPLE_SIN +

+

+ \csc(\angle ANGLE) + = \dfrac{1}{\sin(\angle ANGLE)} + = SIMPLE_CSC +

+
+
+
+
+ shuffle(randFromArray([[3,4], [6,8], [5,12], [7, 24], [8, 15], [10, 24], [12,16]])) + BC + sqrt(AC * AC + BC * BC) + randFromArray([ + "ABC", + "BAC" + ]) + + "AB" + AB + + ANGLE.substring(1) + + (function(){ + if ( ADJACENT_NAME === "AC" ){ + return AC; + } + else if ( ADJACENT_NAME === "BC" ){ + return BC; + } + + return AB; + })() + + fraction(ADJACENT_VALUE, AB) + fraction(AB, ADJACENT_VALUE) + AB / ADJACENT_VALUE +
+ + +
+

\overline{AC} is AC units long

+

\overline{BC} is BC units long

+

\overline{AB} is AB units long

+
+
+

+ What is \sec(\angle ANGLE)? +

+ +
+ betterTriangle(BC, AC, "A", "B", "C", BC, AC, AB); + path([[ 0.4, 0 ], [ 0.4, 0.4 ], [ 0, 0.4 ]]); +
+
+ +
SEC
+ +
+

+ \sec(\angle ANGLE) = + \dfrac{1}{\cos(\angle ANGLE)} +

+

+ How can we find + \cos(\angle ANGLE)? +

+

+ SOH CAH TOA +

+

+ Cosine = Adjacent over Hypotenuse +

+

+

+ Hypotenuse = \overline{HYPOTENUSE_NAME} + = AB +

+

+ \cos(\angle ANGLE) + = SIMPLE_COS +

+

+ \sec(\angle ANGLE) + = \dfrac{1}{\cos(\angle ANGLE)} + = SIMPLE_SEC +

+
+
+
+
+ shuffle(randFromArray([[3,4], [6,8], [5,12], [7, 24], [8, 15], [10, 24], [12,16]])) + BC + sqrt(AC * AC + BC * BC) + randFromArray([ + "ABC", + "BAC" + ]) + (ANGLE.substring(0,1) + ANGLE.substring(2)) + + (function(){ + if ( OPPOSITE_NAME === "AC" ){ + return AC; + } + else if ( OPPOSITE_NAME === "BC" ){ + return CB; + } + return AB; + })() + + + ANGLE.substring(1) + + (function(){ + if ( ADJACENT_NAME === "AC" ){ + return AC; + } + else if ( ADJACENT_NAME === "BC" ){ + return BC; + } + + return AB; + })() + + fraction(OPPOSITE_VALUE, ADJACENT_VALUE) + + fraction(ADJACENT_VALUE, OPPOSITE_VALUE) + + ADJACENT_VALUE / OPPOSITE_VALUE +
+ + +
+

\overline{AC} is AC units long

+

\overline{BC} is BC units long

+

\overline{AB} is AB units long

+
+
+

+ What is \cot(\angle ANGLE)? +

+ +
+ betterTriangle(BC, AC, "A", "B", "C", BC, AC, AB); + path([[ 0.4, 0 ], [ 0.4, 0.4 ], [ 0, 0.4 ]]); +
+
+ +
COT
+ +
+

+ \cot(\angle ANGLE) = + \dfrac{1}{\tan(\angle ANGLE)} +

+

+ How can we find + \tan(\angle ANGLE)? +

+

+ SOH CAH TOA +

+

+ Tangent = Opposite over Adjacent +

+

+ Opposite = \overline{OPPOSITE_NAME} + = OPPOSITE_VALUE +

+

+

+ \tan(\angle ANGLE) + = SIMPLE_TAN +

+

+ \cot(\angle ANGLE) + = \dfrac{1}{\tan(\angle ANGLE)} + = SIMPLE_COT +

+
+
+
+
+ +
 @@ -401,3 +401,4 @@ \$.extend(KhanUtil, { } } }); +