# Khan/khan-exercises

Fix a bunch of things

Reviewers: emily

Reviewed By: emily

Differential Revision: http://phabricator.khanacademy.org/D904
1 parent 0ced284 commit 9de7cb73b16bda36e4999239a156fb8f29a08b37 beneater committed Nov 14, 2012
 @@ -4,6 +4,11 @@ Adding and subtracting complex numbers +
@@ -54,8 +59,21 @@ (A_REP_COLORED) OPERATOR (B_REP_COLORED)

-
+ + ANSWER_REAL + + + + + ANSWER_IMAG + + i +
+ Two numbers for both the real and imaginary parts +
+
+ Example: 2 + 3i +

@@ -78,8 +96,7 @@ which equals ANSWER_IMAG.

 @@ -6,8 +6,16 @@ @@ -47,10 +55,48 @@ }); graph.currComplexPolar = new ComplexPolarForm( DENOMINATOR, 10 ); + + redrawComplexPolarForm(); -
- [ ANGLE, RADIUS ] +
+
+
+
+
+ + +
+
+
+
Angle: 0
+
+ + +
+
+
1
+
+
[ + graph.currComplexPolar.getAngleNumerator(), + graph.currComplexPolar.getRadius() + ]
+
+ var angle = guess[0]; + var radius = guess[1]; + + if (angle === 0 && radius === 1) { + return ""; + } + + return angle === ANGLE && radius === RADIUS; +
+
+ redrawComplexPolarForm(guess[0], guess[1]); +
+
+ redrawComplexPolarForm(guess[0], guess[1]); +
 @@ -4,6 +4,11 @@ Dividing complex numbers +
@@ -42,8 +47,21 @@

-
+ + ANSWER_REAL_UNROUNDED + + + + + ANSWER_IMAG_UNROUNDED + + i +
+ Two numbers for both the real and imaginary parts +
+
+ Example: 2 + 3i +

-
-

- The real part of the result is REAL_FRACTION, which is (rounded to 2 decimal places) ANSWER_REAL. -

-

- The imaginary part of the result is IMAG_FRACTION, which is (rounded to 2 decimal places) ANSWER_IMAG. -

-
 @@ -200,12 +200,8 @@ graph.update(); -
-

-
- -

-
+
+
graph the inequality
make sure the correct side is shaded
make sure the line is correctly shown as solid or dashed
 @@ -320,14 +320,6 @@ graph.update(); -
graph the inequalities
make sure the correct sides are shaded
make sure each line is correctly shown as solid or dashed
 @@ -348,12 +348,8 @@ graph.update(); -
-

-
- -

-
+
+
graph the inequalities
make sure the correct sides are shaded
make sure each line is correctly shown as solid or dashed
 @@ -4,6 +4,20 @@ Multiplying and dividing complex number polar forms +
@@ -75,11 +89,49 @@ }); graph.currComplexPolar = new ComplexPolarForm( DENOMINATOR, 10, USE_EULER_FORM ); -
-
+
+
+
+
+
+ + +
+
+
+
Angle: 0
+
+ + +
+
+
1
+
+
[ + graph.currComplexPolar.getAngleNumerator(), + graph.currComplexPolar.getRadius() + ]
+
+ var angle = guess[0]; + var radius = guess[1]; + + if (angle === 0 && radius === 1) { + return ""; + } + + return angle === ANSWER_ANGLE_NUMERATOR && + radius === ANSWER_RADIUS; +
+
+ redrawComplexPolarForm(guess[0], guess[1]); +
+
+ redrawComplexPolarForm(guess[0], guess[1]); +
+

@@ -178,10 +230,48 @@ }); graph.currComplexPolar = new ComplexPolarForm( DENOMINATOR, 10, USE_EULER_FORM ); + + redrawComplexPolarForm();

+
+
+
+
+
+ + +
+
+
+
Angle: 0
+
+ + +
+
+
1
+
+
[ + graph.currComplexPolar.getAngleNumerator(), + graph.currComplexPolar.getRadius() + ]
+
+ var angle = guess[0]; + var radius = guess[1]; + + if (angle === 0 && radius === 1) { + return ""; + } -
+
+ redrawComplexPolarForm(guess[0], guess[1]); +
+
+ redrawComplexPolarForm(guess[0], guess[1]); +
 @@ -4,6 +4,11 @@ Multiplying complex numbers +
@@ -34,8 +39,21 @@

Multiply the following complex numbers:

(A_REP) \cdot (B_REP)

-
+ + ANSWER_REAL + + + + + ANSWER_IMAG + + i +
+ Two numbers for both the real and imaginary parts +
+
+ Example: 2 + 3i +

@@ -45,8 +63,9 @@

First use the distributive property:

- \qquad (A_REP) \cdot (B_REP) = - (A_REAL_COLORED \cdot B_REAL_COLORED) + (A_REAL_COLORED \cdot B_IMAG_COLOREDi) + + \qquad (A_REP) \cdot (B_REP) =
+ + \qquad \qquad (A_REAL_COLORED \cdot B_REAL_COLORED) + (A_REAL_COLORED \cdot B_IMAG_COLOREDi) + (A_IMAG_COLOREDi \cdot B_REAL_COLORED) + (A_IMAG_COLOREDi \cdot B_IMAG_COLOREDi)
@@ -80,9 +99,6 @@ (A_REAL * B_REAL - A_IMAG * B_IMAG) + (ANSWER_IMAGi) = complexNumber( ANSWER_REAL, ANSWER_IMAG)

-

- The real part of the result is ANSWER_REAL and the imaginary part is ANSWER_IMAG. -