# Khan/khan-exercises

Strip trailing whitespace

1 parent d9ef48a commit cf021797154870d443c5614d2cb670adee34d584 spicyj committed Jun 2, 2011
Showing with 327 additions and 327 deletions.
2. +1 −1 exercises/absolute_value.html
5. +1 −1 exercises/age_word_problems.html
6. +15 −15 exercises/arithmetic_word_problems.html
7. +1 −1 exercises/average_word_problems.html
8. +10 −10 exercises/direct_and_inverse_variation.html
9. +2 −2 exercises/divisibility_intro.html
10. +3 −3 exercises/division_3.html
11. +1 −1 exercises/equivalent_fractions.html
12. +4 −4 exercises/evaluating_expressions_1.html
13. +1 −1 exercises/functions_1.html
14. +8 −8 exercises/functions_2.html
15. +5 −5 exercises/greatest_common_divisor.html
16. +17 −17 exercises/kinematic_equations.html
17. +2 −2 exercises/least_common_multiple.html
18. +5 −5 exercises/limits_1.html
19. +4 −4 exercises/linear_equations_1.html
20. +13 −13 exercises/mean_median_and_mode.html
21. +1 −1 exercises/multiplication_1.html
22. +1 −1 exercises/multiplying_and_dividing_negative_numbers.html
23. +3 −3 exercises/order_of_operations.html
24. +4 −4 exercises/percentage_word_problems_1.html
25. +8 −8 exercises/place_value.html
26. +6 −6 exercises/prime_numbers.html
28. +3 −3 exercises/rate_problems_1.html
29. +1 −1 exercises/recognizing_fractions.html
30. +7 −7 exercises/simplifying_fractions.html
31. +3 −3 exercises/special_derivatives.html
32. +2 −2 exercises/subtracting_decimals.html
33. +3 −3 exercises/writing_expressions_1.html
34. +1 −1 khan-exercise.css
35. +17 −17 khan-exercise.js
36. +1 −1 utils/angles.js
37. +23 −23 utils/calculus.js
38. +25 −25 utils/graph.js
39. +9 −9 utils/kinematics.js
40. +35 −35 utils/math-random.js
41. +2 −2 utils/math-table.js
42. +38 −38 utils/math.js
43. +4 −4 utils/mathformat.js
44. +1 −1 utils/polynomials.js
45. +7 −7 utils/stat.js
46. +16 −16 utils/template-inheritance.js
47. +4 −4 utils/word-problems.js
 @@ -21,4 +21,4 @@ The process for writing exercises is rather well documented. More information ab * [How to Get Involved](https://github.com/Khan/khan-exercises/wiki/Getting-Involved) * [How to Write Exercises](https://github.com/Khan/khan-exercises/wiki/Exercise-Markup) -* [How to Test Exercises](https://github.com/Khan/khan-exercises/wiki/Testing-Exercises) +* [How to Test Exercises](https://github.com/Khan/khan-exercises/wiki/Testing-Exercises)
 @@ -27,4 +27,4 @@ - +
 @@ -13,15 +13,15 @@
-

A + B

+

A + B

A+B

+(B) = -B*-1

A + B = A+B

-

A - B

+

A - B

A-B

-(B) = +B*-1

 @@ -19,4 +19,4 @@ - +
 @@ -187,4 +187,4 @@ - +
 @@ -20,13 +20,13 @@
- person(1) is putting plural( item(1) ) into plural( group(1) ). - - If he(1) puts plural( ITEMS_PER_GROUP, item(1) ) + person(1) is putting plural( item(1) ) into plural( group(1) ). + + If he(1) puts plural( ITEMS_PER_GROUP, item(1) ) in each group(1) he(1) will groupVerb(1) plural( GROUPS, group(1) ) and have plural( ITEMS_LEFT, item(1) ) left over. - + If he(1) instead puts plural( NEW_ITEMS_PER_GROUP, item(1) ) in each group(1), how many plural( group(1) ) of @@ -37,20 +37,20 @@

- plural( GROUPS, group(1) ) of + plural( GROUPS, group(1) ) of plural( ITEMS_PER_GROUP, item(1) ) each results in GROUPS \times ITEMS_PER_GROUP = ITEMS_IN_GROUPS plural( item ).

- +

- plural( ITEMS_IN_GROUPS, item(1) ) plus - ITEMS_LEFT left over equals + plural( ITEMS_IN_GROUPS, item(1) ) plus + ITEMS_LEFT left over equals TOTAL_ITEMS total plural( item(1) ).

- +

- plural( TOTAL_ITEMS, item(1) ) + plural( TOTAL_ITEMS, item(1) ) divided into groups of NEW_ITEMS_PER_GROUP is TOTAL_ITEMS \div NEW_ITEMS_PER_GROUP = NEW_GROUPS plural( group(1) ). @@ -59,7 +59,7 @@

- +
randRange( 4, 12 ) randRange( 4, 12 ) @@ -70,7 +70,7 @@
person(1) bought plural( ITEM_1_COUNT, storeItem(1, 1) ), - all costing the same amount, from the store(1) store. + all costing the same amount, from the store(1) store. He(1) also bought a storeItem(1, 2) for plural( ITEM_2_COST, "dollar" ). @@ -85,7 +85,7 @@

Of the plural( TOTAL_SPENT, "dollar" ), he(1) spent plural( ITEM_2_COST, "dollar" ) on a storeItem(1, 2), so he(1) must have spent - a total of TOTAL_SPENT - ITEM_2_COST = TOTAL_SPENT_ON_1 + a total of TOTAL_SPENT - ITEM_2_COST = TOTAL_SPENT_ON_1 dollars on plural( storeItem(1, 1) ).

@@ -112,8 +112,8 @@
When person(1) places plural( ITEMS, item(1) ) in each group(1) he(1) ends up with plural( GROUPS, group(1) ). - - If he(1) wants plural( NEW_GROUPS, group(1) ), + + If he(1) wants plural( NEW_GROUPS, group(1) ), how many plural( item(1) ) should he(1) put in each group(1)?
 @@ -81,4 +81,4 @@ - +
 @@ -15,7 +15,7 @@ rand(2) randRange(2, 9) - + MULTIPLIER_IS_FRACTIONAL ? MULTIPLIER_VALUE : "\\frac{1}{"+MULTIPLIER_VALUE+"}" MULTIPLIER_IS_FRACTIONAL ? "\\frac{1}{"+MULTIPLIER_VALUE+"}" : MULTIPLIER_VALUE @@ -30,7 +30,7 @@
• V1 and V2 are in direct variation
• - +

STATEMENT.

Which of these equations could represent the relationship between V1 and V2?

@@ -72,10 +72,10 @@ - +

\frac{V1}{V2} = MULTIPLIER

- +

If you divide each side of this expression by V2, you get \frac{V1}{V2} = k for some constant k.

\frac{V1}{V2} = MULTIPLIER fits this pattern, with k = MULTIPLIER.

@@ -84,13 +84,13 @@

MULTIPLIER \cdot V1 = V2

- +

If you divide each side of this expression by k, you get \frac{1}{k} \cdot V1 = V2.

MULTIPLIER \cdot V1 = V2 fits this pattern, with k = MULTIPLIER_INVERSE.

- +
@@ -100,7 +100,7 @@
• V1 and V2 are in inverse variation
- +

STATEMENT.

Which of these equations could represent the relationship between V1 and V2?

V1 = MULTIPLIER \cdot \frac{1}{V2}

@@ -146,7 +146,7 @@

V1 \cdot V2 = MULTIPLIER

- +

If you multiply each side of this expression by V2, you get V1 \cdot V2 = k for some constant k.

V1 \cdot V2 = MULTIPLIER fits this pattern, with k = MULTIPLIER.

@@ -155,7 +155,7 @@

MULTIPLIER \cdot \frac{1}{V1} = V2

- +

If you divide each side of this expression by k, you get \frac{V1}{k} = \frac{1}{V2}.

@@ -167,4 +167,4 @@
- +
 @@ -17,7 +17,7 @@ var factorization = getPrimeFactorization( NUMBER ), num_factors = round( factorization.length / 2 ), answer = 1; - + for (var i = 0; i < num_factors && factorization.length; i++) { var index = floor( random() * factorization.length ); answer *= factorization[index]; @@ -38,7 +38,7 @@

- +

In other words, we are looking for a number between LOW and HIGH such that NUMBER is divisible by it.

 @@ -19,19 +19,19 @@ 0 DIVISOR*randRange(101,999) createLongDivisionTable(DIVIDEND,DIVISOR) - +
DIVIDEND / DIVISOR = ?
-

What is the quotient?

+

What is the quotient?

DIVIDEND / DIVISOR
randRange(1,DIVISOR-1) DIVISOR*randRange(101,999)+REMAINDER createLongDivisionTable(DIVIDEND,DIVISOR) -
+

What is the remainder?

REMAINDER
 @@ -66,4 +66,4 @@ - +
 @@ -8,21 +8,21 @@
randRange( 1, 10 ) - + if ( randRange( 0, 1 ) ) { return randRange( 3, 10 ); } else { return -1 * randRange( 3, 10 ); } - + if ( randRange( 0, 1 ) ) { return randRange( 3, 10 ); } else { return -1 * randRange( 3, 10 ); } - + (X * COEFF) + CONSTANT
@@ -46,4 +46,4 @@
- +
 @@ -36,7 +36,7 @@ } return functionPath; - + randRange(-9, 9) FUNCTION_PATH[CORRECT_X + 11][1]
 @@ -26,7 +26,7 @@ for( var i = -10; i < 11; i++ ) { if (Math.abs( randRangeNonZero( -10, 10 ) < 2 ) && functionPath[i+10][1] < 8 ) { functionPath.push([ i, functionPath[i+10][1]+1 ]); - + } else if (Math.abs( randRangeNonZero( -10, 10 ) < 2 ) && functionPath[i+10][1] > -8 ) { functionPath.push([ i, functionPath[i+10][1]-1 ]); @@ -53,13 +53,13 @@ for( var i = -10; i < 11; i++ ) { if (Math.abs( randRangeNonZero( -10, 10 ) < 2 ) && gPath[i+10][1] < 8 ) { gPath.push([i, gPath[i+10][1]+1]); - - } else if (Math.abs( randRangeNonZero( -10, 10 ) < 3 ) && gPath[i+10][1] > -8 ) { + + } else if (Math.abs( randRangeNonZero( -10, 10 ) < 3 ) && gPath[i+10][1] > -8 ) { gPath.push([i, gPath[i+10][1]-1]); - + } else if (Math.abs( randRangeNonZero( -10, 10 ) < 2 ) && gPath[i+10][1] < 7 ) { gPath.push([i, gPath[i+10][1]+2]); - + } else if (Math.abs( randRangeNonZero( -10, 10 ) < 3 ) && gPath[i+10][1] > -7 ) { gPath.push([i, gPath[i+10][1]-2]); @@ -72,7 +72,7 @@ randRangeNonZero(-10, 10) randRangeNonZero(-10, 10) - + randRange(-9, 9) FUNCTION_PATH[CORRECT_X + 11][1] @@ -98,7 +98,7 @@ text( G_PATH[ G_PATH.length - 2 ], "g(x)", "above" ); path( G_PATH ) - +

F_COEF * CORRECT_Y + G_COEF * CORRECT_GY

@@ -108,7 +108,7 @@
line( [ CORRECT_X, 0 ], FUNCTION_PATH[ CORRECT_X+11 ] );
- +
line( [ 0, CORRECT_Y ], FUNCTION_PATH[ CORRECT_X+11 ] ); text( [-10, 9], "f("+CORRECT_X+")="+CORRECT_Y, right );
 @@ -11,26 +11,26 @@ randRange( 1, 10 ) randRange( 1, 10 ) randRange( 1, 5 ) - + A_START * FACTOR B_START * FACTOR getGCD( A, B ) toSentence(getFactors( A )) toSentence(getFactors( B )) - +

What is the greatest common divisor (or factor) of A and B?

Another way to say this is:

GCD(A, B) = ?

- +

GCD

- +

The greatest common divisor is the largest number that is a factor (or divisor) of both A and B.

The factors (or divisors) of A are A_FACTORS.

@@ -41,4 +41,4 @@
- +