# Khan/khan-exercises

Two doctypes were being output. Only output one.

1 parent e9807ff commit d53a57cf03ed10f7a4f02e677de6f8cd4a0390b7 jeresig committed Apr 16, 2013
Showing 444 changed files with 492 additions and 934 deletions.
 @@ -1,5 +1,4 @@ - Finding absolute values
 @@ -1,5 +1,4 @@ - Absolute value equations
 @@ -1,5 +1,4 @@ - Absolute value of complex numbers @@ -32,7 +31,7 @@ of complex numbers can be determined using the distance formula.

-
+
graphInit({ range: [[-10, 10], [-10, 10]], scale: 20,
 @@ -1,5 +1,4 @@ - Adding and subtracting complex numbers
 @@ -1,5 +1,4 @@ - Adding and subtracting decimals word problems @@ -38,7 +37,7 @@

To find the total amount person(1) needs to pay, we need to add the price of the plural(fruit(1)) and the price of the plural(fruit(2)).

Price of plural(fruit(1)) + price of plural(fruit(2)) = total price.

-
+

To find how much faster person(2) was than person(1), we need to find the difference between their times in seconds.

person(1)'s time - person(2)'s time = difference in times. -

+

graph.subtractor = new DecimalSubtractor( time_1_integer, time_1_decimal, time_2_integer, time_2_decimal ); graph.subtractor.show(); graph.subtractor.showDecimals(); @@ -125,7 +124,7 @@

To find the weights of the 2 babies, we need to add their weights together.

person(2)'s weight + person(3)'s weight = total weight.

-
+

To find out how much change person(1) received, we can subtract the price of the storeItem(1,1) from the amount of money he(1) paid.

The amount person(1) paid - the price of the storeItem(1,1) = the amount of change person(1) received.

-
+
graph.subtractor = new DecimalSubtractor( amount_paid_integer, amount_paid_decimal, price_1_integer, price_1_decimal ); graph.subtractor.show(); graph.subtractor.showDecimals(); @@ -207,7 +206,7 @@

To find the difference in rainfall, we can subtract the amount of rain in person(1)'s town from the amount of rain in person(2)'s town.

Rain in person(2)'s town - rain in person(1)'s town = the difference in rain between the two towns.

-
+
graph.subtractor = new DecimalSubtractor( rain_2_integer, rain_2_decimal, rain_1_integer, rain_1_decimal ); graph.subtractor.show(); graph.subtractor.showDecimals(); @@ -244,7 +243,7 @@

To find the total distance person(1) travels, we need to add the two distances together.

Distance on vehicle(1) + distance on vehicle(2) = total distance.

-
+
 @@ -1,5 +1,4 @@ - Adding and subtracting fractions
 @@ -1,5 +1,4 @@ - Adding and subtracting negative numbers @@ -22,7 +21,7 @@ []
-
+
init({ range: [ [0, 13], [-3, 1] ] }); @@ -72,7 +71,7 @@ []
-
+
init({ range: [ [0, 13], [-3, 1] ] });
 @@ -1,5 +1,4 @@ - Adding and subtracting polynomials
 @@ -1,5 +1,4 @@ - Adding and subtracting with like denominators
 @@ -1,5 +1,4 @@ - Adding and subtracting with like denominators 2
 @@ -1,5 +1,4 @@ - Adding decimals @@ -39,7 +38,7 @@

\Huge{roundTo( A_DECIMAL, A * pow( 10, -A_DECIMAL ) ).toFixed( A_DECIMAL ) + roundTo( B_DECIMAL, B * pow( 10, -B_DECIMAL ) ).toFixed( B_DECIMAL ) = {?}}

A / pow( 10, A_DECIMAL ) + B / pow( 10, B_DECIMAL )

-
+
 @@ -1,5 +1,4 @@ - Adding decimals 0.5 @@ -37,7 +36,7 @@

\Huge{roundTo( A_DECIMAL, A * pow( 10, -A_DECIMAL ) ).toFixed( A_DECIMAL ) + roundTo( B_DECIMAL, B * pow( 10, -B_DECIMAL ) ).toFixed( B_DECIMAL ) = {?}}

A / pow( 10, A_DECIMAL ) + B / pow( 10, B_DECIMAL )

-
+
 @@ -1,5 +1,4 @@ - Adding decimals 2 @@ -37,7 +36,7 @@

\Huge{roundTo( A_DECIMAL, A * pow( 10, -A_DECIMAL ) ).toFixed( A_DECIMAL ) + roundTo( B_DECIMAL, B * pow( 10, -B_DECIMAL ) ).toFixed( B_DECIMAL ) = {?}}

A / pow( 10, A_DECIMAL ) + B / pow( 10, B_DECIMAL )
-
+
 @@ -1,5 +1,4 @@ - Adding fractions
 @@ -1,5 +1,4 @@ - Adding fractions with common denominators
 @@ -1,5 +1,4 @@ - Adding negative numbers @@ -22,7 +21,7 @@ []
-
+
init({ range: [ [0, 13], [-4, 1] ] });
 @@ -1,5 +1,4 @@ - Adding subtracting mixed numbers 0.5
 @@ -1,5 +1,4 @@ - Adding subtracting mixed numbers 1
 @@ -1,5 +1,4 @@ - Adding vectors @@ -24,7 +23,7 @@ \vec b &= BX \hat\imath + BY \hat\jmath \end{align*}

-
+
graphInit({ range: 10, scale: 20,
 @@ -1,5 +1,4 @@ - 1-digit addition
 @@ -1,5 +1,4 @@ - 2-digit addition @@ -20,7 +19,7 @@
-
+
 @@ -1,5 +1,4 @@ - Addition with carrying @@ -21,7 +20,7 @@
-
+
 @@ -1,5 +1,4 @@ - 4-digit addition with carrying @@ -28,7 +27,7 @@
-
+
 @@ -1,5 +1,4 @@ - Age word problems
 @@ -1,5 +1,4 @@ - Age word problems
 @@ -1,5 +1,4 @@ - Alternate exterior angles @@ -18,7 +17,7 @@

The two horizontal lines are parallel, and there is a third line that intersects them as shown below.

If we know that the blue angle is MEASURE degrees, what is the measure of the orange angle?

MEASURE

-
+
init({ range: [ [ -1, 11 ], [-1, 4] ] });
 @@ -1,5 +1,4 @@ - Alternate exterior angles 2 @@ -26,7 +25,7 @@

The two horizontal lines are parallel, and there is a third line that intersects them as shown below.

Solve for x:

SOLUTION

-
+
var eq1 = A + "x + " + B + "^\\circ"; var eq2 = C + "x + " + D + "^\\circ"; @@ -45,7 +44,7 @@
-

Alternate exterior angles are equal to one another. Watch this video to understand why.

+

Alternate exterior angles are equal to one another. Watch this video to understand why.

The \color{BLUE}{\text{blue angle}} and the \color{ORANGE}{\text{orange angle}} are alternate exterior angles. Therefore, we can set them equal to one another.

\color{BLUE}{Ax + B} = \color{ORANGE}{Cx + D}

 @@ -1,5 +1,4 @@ - Alternate interior angles @@ -18,7 +17,7 @@

The two horizontal lines are parallel, and there is a third line that intersects them as shown below.

If we know that the blue angle is MEASURE degrees, what is the measure of the orange angle?

MEASURE

-
+
init({ range: [ [ -1, 11 ], [-1, 4] ] });
 @@ -1,5 +1,4 @@ - Alternate interior angles 2 @@ -26,7 +25,7 @@

The two horizontal lines are parallel, and there is a third line that intersects them as shown below.

Solve for x:

SOLUTION

-
+
var eq1 = A + "x + " + B + "^\\circ"; var eq2 = C + "x + " + D + "^\\circ"; @@ -45,7 +44,7 @@
-

Alternate interior angles are equal to one another. Watch this video to understand why.

+

Alternate interior angles are equal to one another. Watch this video to understand why.

The \color{BLUE}{\text{blue angle}} and the \color{ORANGE}{\text{orange angle}} are alternate interior angles. Therefore, we can set them equal to one another.

\color{BLUE}{Ax + B} = \color{ORANGE}{Cx + D}