

OpenCL ICD Loader
Status and Perspectives

Brice Videau
Argonne National Laboratory

Khronos F2F Meeting, Montréal, 2023-10-27

OpenCL ICD Loader Status

OpenCL ICD Loader Features

● Multiplexing of vendor drivers
– Through vendor provided dispatch tables

● Provides a layering system
– Global layers, enabled for each call
– Introspection utility (cllayerinfo)

● Configuration through environment variables (or registry
on windows)

OpenCL ICD Loader Issues

● Not a well behaved library
– Leaks memory
– Cannot be unloaded gracefully

● Doesn’t unload vendor drivers
● Doesn’t de-initialize and unload layers

● Dispatching issues
– The loader doesn’t know the size of the vendor provided dispatch table,

leading to segfaults when calling outside the dispatch table range

OpenCL ICD Loader Missing Features

● No layer can be added while inside the application
– Instance layers (Vulkan)

Potential Solutions

Library Behavior

● Expected behavior
– libOpenCL.xx should not leak memory
– libOpenCL.xx should be able to be opened and closed

● Solution: library destructor (and constructor?)
– Leverages host system synchronization to avoid race conditions

● Caveats:
– Vendor libraries need to support being loaded/unloaded (optional in

vulkan, env variable) could be an extension
– Layers need an explicit de-initialization function (new version of API)

New Dispatch Strategy - 1

● Expected behavior
– libOpenCL.xx should not rely on a vendor provided dispatch table

● Solution: loader managed dispatch (Vulkan)
– API to query all entry points: clGetFunctionAddressForPlatformKHR

(queried through clGetExtensionFunctionAddress)
– Change OpenCL objects layouts (more on the next slide)
– Maintain backward compatibility?

New Dispatch Strategy - 2

● OpenCL objects layouts
– cl_khr_icd2

– Currently: struct _cl_platform_id { cl_icd_dispatch *dispatch; };

– Proposed: struct _cl_platform_id { cl_icd_dispatch *dispatch; void *disp_data; };

– Use clGetPlatformIDs entry (first entry of the dispatch table, unused by the loader) to look a for a tag.

– A well chosen tag should allow distinguishing objects from old OpenCL implementations
● Low bits set, not a valid pointer to a function on most architectures

– 64 bit: 0x4F50454E434C3331 (ASCII “OPENCL31”)
– 32 bit: 0x434C3331 (ASCII “CL31”)

– disp_data can be set by the loader (but could also be set by compliant implementation, more on that later)

– disp_data would contain necessary dispatch information from the loader

New Dispatch Strategy - 3

● As of today ICD Loader dispatch:

● Backward compatible Strategy:

API call if layers
else

Regular
dispatch

Layer
1

Layer
3

Loader
dispatch

Layer
2

Regular
dispatch

API call if layers
else

if tag
else

old
dispatch

new
dispatch

Layer
1

Layer
3

Loader
dispatchLayer

2

if tag
else

old
dispatch

new
dispatch

New Dispatch Strategy - 4

● Use disp_data to store dispatch information about object
– Loader managed dispatch tables (akin to Vulkan)

– Proof of concept here:
https://github.com/Kerilk/OpenCL-ICD-Loader/commits/managed-dispatch

– Populated through new clGetFunctionAddressForPlatformKHR

– When objects are created the disp_data is set to that of their parent
● Can be done by the loader, but not in extension functions like:

extern CL_API_ENTRY cl_int CL_API_CALL clEnqueueSVMUnmapARM(cl_command_queue command_queue,
void* svm_ptr, cl_uint num_events_in_wait_list, const cl_event* event_wait_list, cl_event* event);

● Maybe better to let the vendor driver copy the disp_data pointer from the
command_queue to the event

https://github.com/Kerilk/OpenCL-ICD-Loader/commits/managed-dispatch

Instances and Layers

Can We Extend Further?

● Proposed solutions would fix current shortcomings
– Library behavior
– Dispatching issues

● Can we extend things further?
– Application controlled

● Instances
● layers

– Similar to what Vulkan proposes
– Sketched by Ben Ashbaugh (Intel) in 2018

Yes We Can (or at least we should be able to...)

● Vulkan proved loader managed dispatch is enough for application controlled layers

● Application controlled layer without instances:

– Would be limited to per platform, since dispatch data is inherited from platform to devices

● Idea, similar to Vulkan: create an instance to encapsulate an application controlled layer setup
(and other state potentially, loader implemented)

– clCreateInstance(...layers configuration...) / clDestroyInstance / clGetPlatformIDsForInstance

● Add concept of instance platforms and devices, instance specific handles for platform and
devices (has to be implemented by vendors)

– clGetInstancePlatformsIDsKHR(cl_instance instance, cl_uint num_entries, cl_platform_id
*platforms, cl_uint *num_platforms)

– clReleaseInstancePlatformIDsKHR()

– clGetDeviceIDs called with an instance platform would return instance devices.

– Instance handles can be used as regular handles in the rest of the API (like sub-devices)

Instance Layers Dispatching

if layers
else

new
dispatch

Layer
1

Layer
3

Layer
term

I Layer
term

Layer
2

API call if I layers
else

I Layer
1

I Layer
3I Layer

2

Conclusion

cl_khr_icd2

● As outlined cl_khr_icd2 would allow
– Fixing library behavior
– Solving dispatching issues
– Enabling new features such as instance layers
– Maintain backward compatibility

● Instances would only be supported for ck_khr_icd2 implementations
● Legacy drivers would not be unloaded
● New implementations would continue working on old loaders

Impact on Vendors

● Extension specifying if vendor driver can be unloaded? (or part of cl_khr_icd2)

● cl_khr_icd2 would be

– 3 new entry points
● clGetFunctionAddressForPlatformKHR
● clGetInstancePlatformsIDsKHR
● clReleaseInstancePlatformIDsKHR

– 2 new object types: instance platform and devices (but not new C types)

– A pointer copy per object creation

– Most probably a few info queries

● Could reduce this overhead if we abandon instances

Acknowledgment

This research used resources of the Argonne Leadership
Computing Facility, a U.S. Department of Energy (DOE) Office
of Science user facility at Argonne National Laboratory and is
based on research supported by the U.S. DOE Office of
Science-Advanced Scientific Computing Research Program,
under Contract No. DE-AC02-06CH11357.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

