Document number:P0795R0

Date: 20171016 (pre-Albuquerque)

Project: Programming Language C++, WG21, SG14, EWG

Authors: Simon Brand, Neil Henning, Michael Wong, Christopher Di Bella, Kenneth Benzie
Email: simon@codeplay.com, neil@codeplay.com, michael@codeplay.com

Reply to: michael@codeplay.com

From Vulkan with love: a plea to
reconsider the Module Keyword to be
contextual

The problem

This paper is a late comment to the Module PDTS ballot.

N4681 proposes adding module as a non-contextual keyword. This will create incompatibilities
with C++ code bases which already use module as an identifier. A simple text replacement may
suffice for many projects, but for widely-used standards or libraries, this could have a big
knock-on effect and may cause those projects to not adopt a new version of the standard.

This is because the Module keyword is too common and already in common use in many
codebases through a simple search of Github, Google codebases. Any hundreds of use of
Module has already been in existence as can be seen in the Alternatives Considered section,
where if the C++ keyword is not made at least contextual, then all these codebases will
potentially have to change.

Indeed one of the biggest concern is from a friendly Consortium that shepherds the
graphics/games/low-latency community of SG14, the Khronos group.

From Khronos, which hosts many of the graphics, and heterogeneous programming
specifications including OpenCL and SYCL, it includes one of the latest graphics specifications
known as Vulkan, the replacement to OpenGL which is one of the hottest graphics interface for
Games (in addition to Directx). This defect report [
https://github.com/KhronosGroup/Vulkan-Docs/issues/568] identifies a name collision with
Modules keyword when used with VS 2015.



mailto:simon@codeplay.com
mailto:neil@codeplay.com
mailto:michael@codeplay.com
https://github.com/KhronosGroup/Vulkan-Docs/issues/568

Michael Wong chairs the SYCL Heterogeneous C++ language group within Khronos, and was
asked by representatives from Nvidia, Qualcomm, Imagination, Adobe(indeed a continuous
stream of people in the Khronos meeting connected with him) as well as a number of graphics
company to represent this view point. At the time of the Khronos meeting, he had just also
concurrently submitted the Canadian comments and ballot based on his own internal caucus
(which disapproved Module for its own reason), but before the Khronos Vulkan concerned was
raised, hence this late comment paper. However, he did make the editor of Module aware of
both the Canadian position, and the Vulkan concern. For the record, all the authors here like the
Modules TS and would like it to proceed forward to TS and consider this a friendly amendment.

Vulkan provides a class VkPipelineShaderStageCreateInfo which has a member
variable named module:

#include <vulkan/vulkan.h>

typedef struct VkPipelineShaderStageCreateInfo

VKkStructureType sType;
const voidx* pNext;
VkPipelineShaderStageCreateFlags flags;
VkShaderStageFlagBits stage;
VkShaderModule module; <« fails here
const charx* pName;
const VkSpecializationInfox pSpecializationInfo;

} VkPipelineShaderStageCreatelnfo;

VkPipelineShaderStageCreateInfo pipelineShaderStage;

{

pipelineShaderStage.module = myModule; // error

}

MSVC 2015 update 3 error message with /experimental :module

vulkan.h(1691): error C2059: syntax error: 'module’
vulkan.h(1691): error C2238: unexpected token(s) preceding ';'
test.cpp(6): error C2059: syntax error: 'module’

test.cpp(6): error C2039: 'shaderStageCreateInfo': is not a member of
'"VkPipelineShaderStageCreatelInfo'

vulkan.h(1686): note: see declaration of
'"VkPipelineShaderStageCreatelInfo'

Clang 5.0.0 error message with -fconcepts-ts:



vulkan.h:2011:41: error: expected member name or ';' after declaration
specifiers
VkShaderModule module;

A

AT A A AU I N

test.cpp:6:25: error: expected unqualified-id
pipelineShaderStage.module = myModule;

If module is kept as a non-contextual keyword then the Vulkan standard would need to be
changed if compatibility with C++ with modules is to be supported. Many other codebases would
also need to change to remove its use to align with the new C++.

Proposed Solution

module could be moved from from Table 5 in [lex.key] to Table 4 in [lex.name]. This would
allow it to be used as an identifier and would fix the issue presented above. The use of module
should be disambiguated as a module-declaration when possible, so the following code would
declare a module rather than a global variable of type module:

struct module{};
module i_am_a_module;

An alternative would be to make the above construct ill-formed.
Using module as a module name would need to be explicitly disallowed:

module module; //bad

Alternatives Considered

If we do not change it then any code which uses module as an identifier will need to be
changed for it to compile under the rules in N4681. A short list of popular projects which would
require changes follows. It was not ascertained whether or not these changes would affect client
code (some are used internally to functions or in tests, for example), but all of these libraries
would need to make code changes to compile under the current rules:

Vulkan
Tensorflow
Swift
Electron
OpenCV
V8
Osquery



Sqlitebrowser
Xmbc
OpenFrameworks
Paddle

Cap’n Proto

Acknowledgement



