Skip to content


Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?


Failed to load latest commit information.
Latest commit message
Commit time
January 4, 2020 17:55
December 20, 2019 20:17
January 22, 2023 10:46
December 20, 2019 20:17
January 1, 2020 21:59


Python GitHub Web

DeepDanbooru is anime-style girl image tag estimation system. You can estimate your images on my live demo site, DeepDanbooru Web.


DeepDanbooru is written by Python 3.7. Following packages are need to be installed.

  • tensorflow>=2.7.0
  • tensorflow-io>=2.22.0
  • Click>=7.0
  • numpy>=1.16.2
  • requests>=2.22.0
  • scikit-image>=0.15.0
  • six>=1.13.0

Or just use requirements.txt.

> pip install -r requirements.txt

alternatively you can install it with pip. Note that by default, tensorflow is not included.

To install it with tensorflow, add tensorflow extra package.

> # default installation
> pip install .
> # with tensorflow package
> pip install .[tensorflow]


  1. Prepare dataset. If you don't have, you can use DanbooruDownloader for download the dataset of Danbooru. If you want to make your own dataset, see Dataset Structure section.
  2. Create training project folder.
> deepdanbooru create-project [your_project_folder]
  1. Prepare tag list. If you want to use latest tags, use following command. It downloads tag from Danbooru server. (Need Danbooru account and API key)
> deepdanbooru download-tags [your_project_folder] --username [your_danbooru_account] --api-key [your_danbooru_api_key]
  1. (Option) Filtering dataset. If you want to train with optional tags (rating and score), you should convert it as system tags.
> deepdanbooru make-training-database [your_dataset_sqlite_path] [your_filtered_sqlite_path]
  1. Modify project.json in the project folder. You should change database_path setting to your actual sqlite file path.
  2. Start training.
> deepdanbooru train-project [your_project_folder]
  1. Enjoy it.
> deepdanbooru evaluate [image_file_path or folder]... --project-path [your_project_folder] --allow-folder

Dataset Structure

DeepDanbooru uses following folder structure for input dataset. SQLite file can be any name, but must be located in same folder to images folder. All of image files are located in sub-folder which named first 2 characters of its filename.

├── images/
│   ├── 00/
│   │   ├── 00000000000000000000000000000000.jpg
│   │   ├── ...
│   ├── 01/
│   │   ├── 01000000000000000000000000000000.jpg
│   │   ├── ...
│   └── ff/
│       ├── ff000000000000000000000000000000.jpg
│       ├── ...
└── my-dataset.sqlite

The core is SQLite database file. That file must be contains following table structure.

├── id (INTEGER)
├── md5 (TEXT)
├── file_ext (TEXT)
├── tag_string (TEXT)
└── tag_count_general (INTEGER)

The filename of image must be [md5].[file_ext]. If you use your own images, md5 don't have to be actual MD5 hash value.

tag_string is space splitted tag list, like 1girl ahoge long_hair.

tag_count_general is used for the project setting, minimum_tag_count. Images which has equal or larger value of tag_count_general are used for training.

Project Structure

Project is minimal unit for training on DeepDanbooru. You can modify various parameters for training.

├── project.json
└── tags.txt

tags.txt contains all tags for estimating. You can make your own list or download latest tags from Danbooru server. It is simple newline-separated file like this:



AI based multi-label girl image classification system, implemented by using TensorFlow.








No packages published