# KieranWynn/pyquaternion

A fully featured, pythonic library for representing and using quaternions
Python
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Type Name Latest commit message Commit time
Failed to load latest commit information.
demo
docs
pyquaternion
.gitignore
.travis.yml
demo.gif
mkdocs.yml
setup.cfg
setup.py

# pyquaternion

A fully featured, pythonic library for quaternion representation, manipulation, 3D animation and geometry.

Please visit the pyquaternion homepage for full information and the latest documentation.

Designed for Python 2.7+ and 3.0+

Example: Smooth animation with interpolation between random orientations using the pyquaternion module.

## Quickstart

Install from PyPI

`\$ pip install pyquaternion`

Run the following for a basic overview. A copy of this example can be found in demo.py.

```import pyquaternion

# Create a quaternion representing a rotation of +90 degrees about positive y axis.
my_quaternion = pyquaternion.Quaternion(axis=[0, 1, 0], degrees=90)

my_vector = [0, 0, 4]
my_rotated_vector = my_quaternion.rotate(my_vector)

print('\nBasic Rotation')
print('--------------')
print('My Vector: {}'.format(my_vector))
print('Performing rotation of {angle} deg about {axis}'.format(angle=my_quaternion.degrees, axis=my_quaternion.axis))
print('My Rotated Vector: {}'.format(my_rotated_vector))

# Create another quaternion representing no rotation at all
null_quaternion = pyquaternion.Quaternion(axis=[0, 1, 0], angle=0)

print('\nInterpolated Rotation')
print('---------------------')

# The following will create a sequence of 9 intermediate quaternion rotation objects
for q in pyquaternion.Quaternion.intermediates(null_quaternion, my_quaternion, 9, include_endpoints=True):
my_interpolated_point = q.rotate(my_vector)
print('My Interpolated Point: {point}\t(after rotation of {angle} deg about {axis})'.format(
point=my_interpolated_point, angle=round(q.degrees, 4), axis=q.axis
))

print('Done!')```

Example output:

``````Basic Rotation
--------------
My Vector: [0, 0, 4]
Performing rotation of 90.0 deg about [ 0.  1.  0.]
My Rotated Vector: [4.0, 0.0, 0.0]

Interpolated Rotation
---------------------
My Interpolated Point: [0.0, 0.0, 4.0]	(after rotation of 0.0 deg about [ 0.  0.  0.])
My Interpolated Point: [0.62573786016092348, 0.0, 3.9507533623805511]	(after rotation of 9.0 deg about [ 0.  1.  0.])
My Interpolated Point: [1.2360679774997898, 0.0, 3.8042260651806146]	(after rotation of 18.0 deg about [ 0.  1.  0.])
My Interpolated Point: [1.8159619989581872, 0.0, 3.5640260967534712]	(after rotation of 27.0 deg about [ 0.  1.  0.])
My Interpolated Point: [2.3511410091698921, 0.0, 3.2360679774997894]	(after rotation of 36.0 deg about [ 0.  1.  0.])
My Interpolated Point: [2.8284271247461903, 0.0, 2.8284271247461898]	(after rotation of 45.0 deg about [ 0.  1.  0.])
My Interpolated Point: [3.2360679774997894, 0.0, 2.3511410091698921]	(after rotation of 54.0 deg about [ 0.  1.  0.])
My Interpolated Point: [3.5640260967534712, 0.0, 1.8159619989581879]	(after rotation of 63.0 deg about [ 0.  1.  0.])
My Interpolated Point: [3.8042260651806146, 0.0, 1.2360679774997898]	(after rotation of 72.0 deg about [ 0.  1.  0.])
My Interpolated Point: [3.9507533623805515, 0.0, 0.62573786016092403]	(after rotation of 81.0 deg about [ 0.  1.  0.])
My Interpolated Point: [4.0, 0.0, 0.0]	(after rotation of 90.0 deg about [ 0.  1.  0.])
Done!
``````
You can’t perform that action at this time.