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1. INTRODUCTION 

In the last few years, the nonlinear partial differential equation, 

known as Burgers’ equation, received considerable attention ([l], [2], [3], [4], 
PI, VI), both b ecause of its statistical properties ([I], [5], [6]) and because 
of the role that it occupies in the hierarchy of approximations emanating 
from the Navier-Stokes equations [4]. In particular, as a descriptor of appro- 
priately restricted one-dimensional gas dynamic [4] and acoustical ([7], [S]) 
phenomena, it was shown on several occasions to be a very successful model 
equation. Its main “claim to fame,” however, is that it belongs to that rather 
small [19] class of physically significant nonlinear partial differential equa- 
tions, for which exact and complete solutions are known, in terms of the 
initial oalues ([2], [3]). 

More precisely, the situation is the following. The Hopf transformation [2] 
carries Eq. (1) into the linear heat equation. Furthermore, as a compkteb 
accidental feature of this transformation, initial values prescribed for (1) are 
transformed in a very simple manner to initial values for the heat equation. 
The same is not true, however, concerning boundary values. As a result, 
problems yielding unique solutions under initial conditions alone (e.g., for 
- co < x < cc) have been analyzed and utilized extensively; while 
others (e.g., 0 < x < co, a < x < b) have been neglected almost completely. 
A notable exception is the paper by Kochina [18]: she discusses Eq. (1) for 
the ray 0 < x < co. 

From a physical point of view, problems for the halfplane 0 < x < a 
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or the strip Q < x < b are rather important. In order to solve them, however, 
one has to resort to numerical techniques in almost every case, and lose 
thereby the qualitatively very important information that is available from a 
closed form solution. 

Our aim here, therefore, is to present a technique for the closed form 
solution of (1) in the halfplane 0 < x < co, by “sacrificing” a part of the 
information concerning the initial distribution of values, but retaining the 
exact boundary condition. We shall also discuss the connection of our 
results with some others, and obtain a solution for (1) under periodic bound- 
ary conditions. 

2. PHYSICAL INTERPRETATION 

In order to keep our presentation as general as possible, while not quite 
discussing matters in abstracto, let us define the symbols in (1) in a somewhat 
general manner. Thus, we shall take the gas dynamic point of view and let n 
be the constant multiple of one of the significant flow quantities; t is a time- 
like, while x a space-like variable. 6, a positive constant, is the diffusion num- 
ber. A particular example would be the treatment by Lighthill [4] of one- 
dimensional waves of finite amplitude. He interprets these quantities in the 
following way: 

z, = excess wavelet velocity; 

t = time; 

x = X - ct (moving frame of reference; c = ambient sound speed); 

v = kinematic viscosity; 

~,q’ = shear and dilational viscosity numbers; 

Pr = Prandtl number; 

y = ratio of specific heats. 

An easy way to see the physical balance, as described by (l), is given by 
Cole [3]. He shows that multiplication of (1) by v and a subsequent integration 
with respect to x yields the following energy relation: the total rate of change 
of kinetic energy in the system, together with the net flow of this energy out 
across the boundaries and with the total dissipation present, is exactly balanced 
by the rate at which work is done at the boundaries. 
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3. GENERAL SOLUTION; INFINITE LINE 

As Hopf [2] and Cole [3] have shown, the transformation 

z( = - 26 i In 0(x, t) (2) 

changes (1) into the linear heat equation: 

et = so,,; (3) 

and, therefore, any boundary and/or initial conditions prescribed for (1) 
must be appropriately “translated” to the framework of reference of (3). This 
is possible in the important case of the pure initial value problem, where 

is prescribed. For then, by writing the transformation (2) in its inverted 
form, 

@(x, 0 = exp (- & I” v(y, t) dy) , (2’) 

one obtains the appropriate initial condition for (3): 

@(X3 O+> = exp [ - $ IS v(y, 0+) dy] = exp [ - & /‘f(r) dy] , 

-co<x<a3. (4’) 

Now (4’) will give a solution, unique up to a multiplicative constant, for (3); 
and then, formula (2) yields the unique solution from this for (1). 

Thus, while (2) is going to have the form of a quotient of two infinite 
series or integrals in general, its explicit form facilitates the analysis of the 
solution to a very great degree. 

4. GENERAL SOLUTION; HALF-INFINITE LINE 

The relative simplicity of the solution of the pure initial value problem 
disappears when we consider a mixed initial-boundary value problem. One 
of some importance is described by the conditions 

fJ(x, o+) = f(x) O<X<CO, 

qo, t> = g(t) t > 0. (5) 
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It can be easily established that, in order to obtain the solution for (1) under 
the conditions (5), one must first solve the integral equation 

&) h(t) = 26 j: d& dT + P(S). 

This is a singular linear Volterra equation of the second kind for a new 
unknown function h(t). The forcing function P(t) is an explicit, but rather 
complicated expression which is calculable from the initial functionf(X) in 
(5); g(t) of (6) is also from (5). The theory of these equations is well devel- 
oped [20] and it is easy to find conditions under which solutions to (6) 
exist [21]. 

However, because of the variable multiplier on the left side of (6), this 
solution is generally available only as the limit of a sequence of approxima- 
tions ([20], [21]). Th us, in order to solve (1) under conditions (5) explicitly, 
one first has to solve (6); then, using h(t) from there, solve the system 

0, = 60,, O<t, o<x<q 

8(x, 0) = exp [ - $ j’f(r) dy] 0 < x < co, (7) 

qo, t) = h(t) 0 < t, 

and then substitute the result in (2). Since, however, the third line of (7) 
is available only approximately, because of the difficulty connected with (6), 
the solution to (1) will also be approximate (in the sense that the initial 
condition will be satisfied exactly, but the boundary condition only appro- 
ximately). 

5. APPROXIMATE METHODS 

Because of the theoretical and practical importance of Eq. (l), several 
techniques have been used to solve the boundary-initial value problem (5). 
Perhaps the three most interesting ones are those of Kochina [la], Bass [17], 
and Blackstock [a]. 

The method of Kochina consists of changing condition (5) to the follow- 
ing: 

40, t> = g(t), t >o, 

l& w(x, t) = w, < 0. 

Under these two conditions, and by taking a periodic g(t), she obtains 
periodic solutions to (1). Nevertheless, her method still requires the solution 
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of an infinite system of coupled algebraic equations. Thus, the solution, for 
practical purposes, is still approximate. 

Bass approaches the problem in a somewhat different way. He too is 
interested in finding solutions to (1) which satisfy certain periodicity require- 
ments; thus, he writes the solution as 

v(x, t> = @,(x9 t> 
1 + 0(x, t); 

and by long division of the quotient of the right side, he obtains a two 
term approximation and, thus, his solution. 

Finally, Blackstock, in his study, observed that Eq. (1) had been derived 
from a more general equation by Mendousse [16]; and that by another 
method of approximating the magnitudes of the terms in that original 
equation, Mendousse also obtained a companion equation: 

11, + Ullt = 8u,, . 

In this last equation, the derivatives taken with respect to x and t in (1) are 
interchanged. Thus, it becomes possible to solve this new equation for the 
single condition 

up+, t) = p(t), -co<t<co. 

6. SOLUTIONS SATISFYING THE BOUNDARY CONDITIONS 

In order to construct solutions to (l), which satisfy the boundary conditions 
exactly, we start with a formal expression for the solutions of the heat 
equation (3): 

Solutions of the form (8) have the property that 

qo, t) =F(t), O,(O, t) = G(t); (9) 

and, for F, G, analytic, they are unique on - co < x < co [ll]. Therefore, 
the solutions of (1) constructed from (8) will have the form 

(1o) 
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Thus, from (lo), 

v(0, t) = - 26 g 

and 

F’(t) VJO, t) = 26 [# - Tqq 1 * (1 lb) 

These simple results can be used to solve a number of problems. We take 
first 

vt + v’u, = ~Tc,, v(0, t) = P(t); (12) 

and disregard any initial conditions. Then, by choosing F(t) = - 26 and 
G(t) = P(t) in (lla), (10) gives the solution 

v(x, t) = 
- 26 f G’“)(t) & 

n=o 

- 28 + f G(“)(t) (2;2;;), ’ 
(13) 

n=0 

Another type of problem arises when one considers the situation produced 
by a moving piston, with displacement H(t) and velocity H’(t), at, say, x = 0. 
The boundary condition for such a situation, and for subsonic piston move- 
ment, is [22] 

v[H(t), t] = H’(t). (14) 

Condition (14), if expanded in a Taylor series, where all but the first two 
terms are neglected, becomes 

v(0, t) + H(t) v,,(O, t) = H’(t). (14’) 

When the displacement and the velocity of the piston are large (a rocket, 
for instance, can, in this context, be considered as a forward moving piston), 
then the first term in (14’) can be neglected. This, together with (l), defines 
the problem 

vt fvv, =hea, 

Observe that while problem (12) is an incompletely defined one, (15)-if 
regarded as a problem for - co < x < co-is well defined. In fact, it is 
equivalent to an initial value problem [l 11. 
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Now (15) and (11) together imply that we must take 

G(t) = 0 and H’(t)= 
H(t) 

glo. 
F(t) ’ 

so that 

F(t) = [H(t)]-1’” and G(t) = 0. W 

Thus, from (10) we obtain the solution as 

+, t) = _ 2s ~o[(H~t))-‘/21~““’ sn+1;:+: I)! . 
z. Ew))-““1’“’ & 

(17) 

7. SOME OBSERVATIONS 

The physical motivation for the entire preceding discussion was the study 
of propagation of waves of finite amplitude in thermoviscous media. This is 
the reason why we chose, for instance, the series form for solutions of the 
heat equation, instead of the more easily analyzable integral formulation: 
for almost all the known results in this area are available in terms of the 
interaction of harmonics [23]. 

In addition to this, the ad-hoc nature of (13), and the approximations 
involved in arriving at (17) necessitate some scrutiny of these solutions. To 
mention but one important question: conditions for G in (13) and for H in (17) 
must be prescribed, such that the denominators there will be positive-i.e., 
that these solutions of the heat equation will be strictly positive ones. 

While it is quite possible to utilize known results, such as some of Bern- 
stein’s theorems [24] on absolutely and completely monotonic functions, and 
Widder’s results [ 1 l] on nonnegative solutions of the heat equation, in order 
to characterize classes of admissible functions G and H, and ranges of 
convergence for the series, it seems to be more desirable to take our solutions 
as formal ones and analyze their validity as the need arises. The principal 
reasons for this are that most such results are used qualitatively in any case, 
and that because of the approximations involved in obtaining Eq. (1) (see 
again Mendousse [16]) and the boundary conditions, the mathematical 
restrictions imposed on these conditions would be usually physically unreal- 
istic. Thus, the presence of the next section is partly due to a desire to illus- 
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trate precisely this point. We are using (17) there; for applications of (13) are 
somewhat trivial. 

8. FAY'S SOLUTIOK 

Because of the physical background motivating this study, it seems 
desirable to compare expressions (13) and (17) to solutions derived from 
other principles. An instance of this is the work of Fay [9], now considered 
classical. An advantage of this particular comparison is that, except for 
minor modifications, Fay’s results have not been generalized. 

In his paper, Fay was not concerned with piston motion, or indeed with 
any particular boundary value problem. Rather, he sought to determine the 
periodic elements of the most stable wave form for propagation of the type 
that we are considering; i.e., waves of finite amplitude in thermoviscous 
media. The analytical vehicle that he used was an equation of the form 

+,y wzlc = wtt - cw,,t; (F) 

which, while from certain points of view similar, is still quite different from 
Burgers’ equation. Here w is the variable flow quantity, while a, k, and c are 
constants. Equation (F) was one cast in a Lagrangian frame of reference. 
Because of that, his solution was found as an approximated expression for the 
pressure P: 

m sin nX 
P=aoC-- 

n=l smh no ’ 

with a,, a group of constants, X a space-like and 7 a time-like quantity. 
With the freedom of interpretation of the variables that we reserved for 

ourselves at the very outset, we can reduce (17) to (18), by assuming an 
appropriate H(t). Since (18) represents the most stable periodic wave form, 
it is to be expected that a rather simple and “gentle” kind of piston motion 
should produce it; as indeed is the case. 

We can obtain Fay’s result from our solution (17) by letting 

H(t) = [l + 2 2 f?-“‘t]-“. 
k=l 

We note that (19) is a strictly increasing function of t, such that H(0) = 0, 
H(a) = 1; so that H is a distribution function on [0, co). This is particularly 
significant because of the statistical importance of Burgers’ equation; see (5) 
and (6) for example. 
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Substitution of (19) into (17) yields the following sequence of equalities: 

= - 26 $ In 1 + 2 f [ePkzt cOs(kdX)] 
I k=l 

Here we are using the notation 

&4/2 = A. (20’) 

The reader will note that the last formula in (20) is not quite identical 
with that of Fay, formula (18). We could have obtained (18) exactly, had we 
inserted a factor of (- 1)” in the summation of (19); the reason that we chose 
not to do so is our intention to point out that (17) is indeed a generalization of 
(18), not only qualitatively, but also from a quantitative point of view. 

The development of (20) can be justified by noting the following: the first 
step is a mere rearrangement of the series; which, incidentally, is convergent 
absolutely and uniformly, together with its derivatives, on t > 0. Because 
of this convergence, the term by term differentiation in the next step can 
seen to be justified, as can the interchange of summations in the following 
one. In the next to the last step, we are using the definition of a Jacobian 
Theta function [15]; ending up, finally, with an application of the simple 
series expression for the logarithmic derivative of the 0 function [15]; 
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where 

qx, t) = 1 + 2 f e-n’nt cos 2nx. 
?L=l 

Observe also, that for 

0,(x, t) = 1 + 2 f (- 1)n f?-nQ cos 2nx, 
T&=1 

the logarithmic derivative is given by 

9. BENTON’S SOLUTION 

It may serve a useful purpose to point out that (13) and (17) can be utilized 
to obtain “new” solutions for Burgers’ equation. Thus, we shall now show 
how (17) yields the two expressions which Benton presented in his paper [lo], 
without any indication as to how they were obtained. In our notation, Benton’s 
solutions can be written in the form 

6 
v(x, t) = - 

a + St I “+~tani2(afJj (21) 

with LY and /3 arbitrary constants. The case ,!? = (real number) yields Benton’s 
first solution, and fl = (pure imaginary number) yields his second. Taking the 
inessential constant 01 = 0, we observe that (21) is that solution of (l), in 
which 

v(0, t) = a(b) = 0, v2(0, t) = b(2) = f [l + &] . (22) 

Therefore, the solution of (1) and (22) corresponds to solving the associated 
linear heat equation 0, = SO,, with the boundary conditions 

O(0, I) = tM1j2 exp f; @JO, t) = 0. (22’) 

It is now clear why /3” > 0 yields the shock solutions, and fiz < 0 the smooth 
solutions of (21); this is a result of the well-known behavior ([ll], [12]) of the 
source solution present in (22’). 
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As a byproduct of this analysis, we also obtain another expression similar 
to the last one in (20), namely the equality 

Bx ++$t-(m) = - 26 & In [ f [t-L/2 exp (&)I (9~) $$-I (23) 
n=0 

valid for t > 0,6 > O,pz < 0, and for all x. Note that the right side could be 
continued analytically for values ,@ > 0, except on a null set; in which case 
we would have the convergent quotient of two unconditionally divergent 
series, representing the function on the left side. 

One can, of course, obtain several other similar formulas and achieve the 
reduction of these results into simpler form. In particular, it can be shown 
that certain asymptotic estimations of the solutions of initial value problems 
(e.g., Cole [3] and Blackstock [7]) correspond to exact boundary value solu- 
tions. 

10. PROPAGATION OF PERIODIC PISTON MOTION 

We now investigate the velocity field created by sinusoidal piston motion. 
Since we are not interested in shocks, we shall take 

H(t) = exp[- OT cos wt]. (24) 

Then, substituting in (17), 

m (exp [+~os,,I)(~) X2n .g [H-l’yt)p) x2n _ c 

n=o 8” (2n)! T&=0 6” (2n)!’ (25) 

In order to perform the differentiations in (29, we write exp[ar/2 cos it] as 
a series of modified Bessel functions, utilizing the formula [15] 

exp[z cos 6~t] = f,(z) + 2 2 l,(z) cos(kwt). 
lo--l 

We shall also need the integral of this expression with respect to t: 

(26) 

I t exp[z cos W&J dr = tf,(z) + 2 2 ‘2 sin@&), (26’) 
0 k=l 
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which is a well defined expression even for w = 0. We rewrite now (25) in 
terms of (26), to obtain 

= exp 
t 
” cos wi? 
2 1 

+ 2 f j f (- 1)” Ik (T) [(KoJ)~~-~ sin kwt + (KuJ)~~ cos kwt] zI . 
n=l k=l Sn( 2n) ! 

Because of the uniform convergence, we may interchange the order of the 
summations and rearrange the series: 

+ 2 f Ik (5) cos(kd /fl (- 1)” $$$I . 
k=l 

Both inner series yield the same cosine function: 

= exp (;coswt) 

(27) 

+ 2 f 
P=l 1 

I* (F) [cos(kw Ax) - l] [ sinEr) + cos(kwt)] 1 . 

(We returned here to the notation of (20’): 8-112 = A.) Multiplication of the 
two bracketed terms in this series allows us to write it as the sum of four 
series; in particular, the two arising from the products of (- 1) with 
[sin(kwt)]/kw and with cos(kwt), yields from (26) and (26’), 

t [I~ (5) + I] - exp [t cos cot] - S:; exp [$ cos ,r] &. (28) 

To reduce the trigonometric products, we use the identities: 

cos(kw Ax) sin(kwt) = 4 [sin kw(t + Ax) + sin kw(t - Ax)], 

cos(kw Ax) cos(kwt) = fr [cos kw(t + Ax) + cos kw(t - Ox)]. 
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Thus, we obtain for the sum of the other two series the expression 

-I, (5) [t + l] + + lexp [f cos w(l + AX)] + exp [s cos w(t - dr)] 

+ 11 [exp [$ cos ti(T + AX)] + exp [G cos u(T - A%)]] 1 dT. 
(29) 

Therefore, (27) can be written as the sum of the following: the first term in 
(27), together with (28) and (29). S ome further simplifications yield, in this 
way, an expression which can be written in the following symmetric form: 

+ +{[F(t + Ax) -F(t)] + [F(t - Ax) -F(t)]} 
(30) 

+ ; jt f[F(r + Ax) -F(T)] +F(T - Ax) -F(T)} d7, 
0 

where 

F(s) = exp [$ cos ws] . (31) 

To recapitulate: expression (30) is the transformed form of (25), with 
H(t) given by (24). Thus, the solution of (l), with the approximated piston 
condition (24), is given, according to (17), by the product of (- 2s) with the 
logarithmic x derivative of (30). This takes the form 

v(xy 2, = 

f ([Fyt - Ax) -F’(t + Ax)] + [F(t - Ax) - F(t + Ax)]} 

M + {[F@ + Ax) -F(t)] + [F(t - Ax) -F(t)]} 

1 
(32) 

-r $ Ax) -F(T)] + [F(T - Ax) -F(T)]} d7 

where 

M=2[t-1,(f)]. 

The suggestiveness of (32) . IS o b vious: the two types of waves, so well- 
known from linear theory, are both present. However, because of the viscous 
mechanism, they contain a “damping’‘-in fact, it is clear here how increased 
viscosity (6 + co A + 0) reduces the propagation to zero. Moreover, the non- 
linearity of the mechanism and/or of the medium are represented in a con- 
ceptually rather simple form. Note that shocks depend on the values oft and 
a:, in particular. Finally, perhaps the most significant feature of (32) is that 
this expression is seen to depend on (8)1/2 instead of 6: a circumstance which 
gives further credence to Burgers’ equation as a model equation for phenom- 
ena of the type here discussed. 

4Q9/3+- =2 
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