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INTRODUCTION

The verification of numerical schemes for solving the equations of inviscid and viscous compressible unsteady flow equations is
limited to a small number of analytical solutions of the equations govemning the one-dimensional unsteady flow including
moving discontinuities. Among them the most important were given first by B. Riemann (1859-1860) and later by W.J.M.
Rankine (1870), P.H. Hugoniot (1887), Lord Rayleigh (1910) and G.I. Taylor (1910). The scope of the present chapter is to
overview the analytical solutions, serving as test case for the accuracy of the numerical schemes. It is worth noting that the
analytical solutions are of importance for Euler and Navier-Stokes equations for laminar flow and does not give any indication
for the behaviour of the numerical schemes in the prediction of turbulent flows. For each analytical solution a corresponding
FORTRAN program is attached.

LINEAR ADVECTION EQUATION

The linear advection equation is used as a simple model for contact discontinuities in fluid dynamics, and is the simplest model
equation for the representation of wave propagation. The linear advection equation is:

u, +cou, =0 ¢}
where ¢, is a positive constant (¢, > 0) called the velocity of the wave. The general solution of equation (1) is
u(x,t) = f(x—c,t) )
f(x) is an arbitrary function defined by the initial conditions of the problem
u(x,0) = f(x) 3)

The solution (3) apparently describes a wave motion to the positive x-axis, since the initial profile f(x) is translated unchanged
in shape a distance ¢t to the right at time t [8].

Oscillatory solution of linear advection equation with a discontinuity in the derivative
{case LADV-1)

The problem of oscillatory solution of linear advection equation is approached using the initial conditions [8]:

—asin(knx),x <0

with o =0.1 and k=6
X, x20 ¢ @

u(x,0) = f(x;a,k) = {

At x=-1 the boundary condition
u(-1,t)=0 (4a)

is imposed. The solution in accordance with the above consideration, is presented in Figure 1 at time instances =0 and =0.5

This test case gives information about the capability of a computational method to capture an oscillating solution with a
discontinuity in the derivative.
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Figure 1: Oscillatory solution of linear advection equation with a discontinuity in the derivative
Simulation of discontinuities (case LADV-2)
To simulate discontinuities we again solve the linear advection equation, this time using piecewice continuous initial data:
(x,0) = £( y=1"% <% Gith w1 and u, =0
wx,U)=1(xu, ,u = = =
LR Ug,.x20 - R &)
At x=-1 the boundary condition
u(-1,t)=0 (5a)
is imposed. The resultant solution is a square wave travelling with speed 1 to the right, as it is depicted in Figure 2 .
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Figure 2: Contact discontinuity, advection equation.
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BURGERS’ EQUATION

Inviscid Burgers’ equation.

The non linear first order equation:
uZ
u, +uu, =0 or u +(?]x =0 (6)

with Initial Conditions

u(x,0)=f(x) for ~w<x<® (6a)

is the x-momentum equation without pressure gradient or other external forces and it is so called inviscid Burgers’ equation.
The general solution of the above equation is given by:

. Loodx
du =0 along the characteristic o u 7)

expressing that u remains constant on the characteristic,
For the above initial distribution of u(x,0)=f(x) the general solution is concluded in an implicit form, as follows [4]:
u(x,ty=f(x-ut) (8)

The characteristics have a slope proportional to 1/f(x,) in the (x,t) plane, where x, is a position at initial state, and if f'(x,) is

positive , which is typical for an expansion profile, they will never intersect. On the other hand for a decreasing initial
distribution of u, that means f'(x,) <0, the characteristics will intersect as for a typical compression profile. An initial profile

with decreasing intensities will lead to a breakdown of a continuous solution and to the appearance of a shock discontinuity. The
shock will appear at the time instance t_, when the tangent to u(x) profiles becomes vertical:

-1
b T (g ©

The shock wave velocity , u_, satisfies the Rankine-Hugoniot relations and is equal to:

1
U, =E(uz+u1) (10)

where u,, u, are the values upstream and downstream of the shock.

At this point the following three types of initial conditions are proposed for the analyses of non oscillatory shock capturing
methods.

Initial shock discontinuity (case IB-1)

For this case, the Riemann problem for Burgers’ equation is solved. The test case is provided by an initial discontinuous
distribution :

u ,x<0 (11)
u(x,0) = f(x;u,,ug) = { - with u, >u,
Ug,x20
At the left boundary the condition
u(x,,t) =ug (11a)

is imposed. The solution of Burgers’ equation gives a shock propagating at speed (uL +uR)/2 with unmodified intensity
[u]: u, —u,, as shown in Figure 3. If u; = —u_, the shock is stationary and it is used as a non-linear test case for steady-state

methods.
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Figure 3 : Burgers’ solution for a propagating discontinuity.
Initial linear discontinuity (case IB-2)

A different initial distribution with £'(x,) <0 leads to the same shock structure. The initial linear distribution is:

ug, x<0
u(x,0) =f(x;u ,uz )= uL(l —%) +ug %, 0<x<L withu >u; (12)
ug, x>L
and at the left boundary the condition
u(x,,t)y=u, (12a)
is imposed. A shock is formed at time instance
L
t =
u, —uy (13)

and at position x, =t,u_ =L +t.u, . The solution of Figure 4 for t>t, is:

u, +u
u, forx <« —=—=L¢

u(x,t) = 14)

U, +u
uy forx > L —F¢

u, v u

=0
t>t,

Y

;(:L Xx=(u, +ug)t/2

Figure 4 : Shock formation for an initial linear distribution
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Burgers’ equation for a rarefaction wave (case IB-3)

Burgers’ equation with the following initial conditions gives a propagating rarefaction wave.

u x<0
with u, <uy (1%5)

u(x,t=0)=f(x;u, ,uz) ={uR >0

Between points u; t < x <ugt the solution is not determined by the intersection of characteristics. So, a continuous solution is

possible in the following form (Figure 5):
u,  xft<u,

u(x,t) =<x/t u; <x/t<u, (16)
u,  xft>ug

u=up

il
I

! X
|

IuL't

up-t

Figure § : Initial state and time evolution of a propagating rarefaction wave as a solution of Burgers® equation.

Viscous Burgers’ equation (case VB-1)

The complete nonlinear Burgers’ equation adding a viscous term is :
uZ
u, +uu, =va, or u, + o] = Vs 17
x

with Initial Conditions
u(x,0) =f(x) for w0 <x <o (17a)
The “Viscous” Burgers’ equation serves as a model equation for the boundary-layer equation, the “parabolized” Navier-Stokes

equations and the complete Navier-Stokes equations.
The problem with the following initial values:

e _ u ,x<0 |
u(x,0)=f(x;u,,u.) = Ug X 20 with u; >ug (18)

and boundary conditions

u(x = -, t) =u,u(x = ©,t) = uy (18a)
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has a solution of the form:

u=u, + EL_ER . U=“L‘;“R
1+hexp- =% (x - Ut)
2v
where: (19)

[e<ag
h= —(x=ugt)/ At

feag
(x—u,_l)/m

The diffusing shock still propagates with the “inviscid” velocity equal to U. Due to viscosity effects the inviscid discontinuities
are transformed into continuous shaped “steps”, as it is shown for the test case of Figure 6.

Initial conditions
2 00
/"_‘_/ v=1,t=0.05
A
- \
\
.~ v=0.1,t=005 v=11=01
H 150 —
= \
1.00 —
1 I I I 1 I T

1 00 0.50 0.00 050 1 00

Figure 6 : Shock wave solution of viscous unsteady Burgers’ equation (U4, = 2, up =1).

UNSTEADY EULER EQUATIONS

Reflection of a moving shock on a closed boundary (case RMS-1)

The general discontinuity equations for the moving shock are shown in the literature reference [1] to be:

p_u

p @ (20)
d 2 ¢l
Lo 212
u y+1{ uzJ @n
p 2y (o
LA P A L |
p 1(+1[c2 j 22)

u=v-w, A=0-w (23)
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while L,V are the absolute velocities and w the velocity of the shock front. The velocity of sound c in front of the moving

= v2
c J;: (24)

The test problem proposed here is the reflection of a shock wave moving with constant velocity towards the closed boundary of
a tube (figure 7). The fluid behind the shock wave moving to the left, has a velocity with the absolute value v, (v=-v,,

shock wave is given by:

yPo

v, > 0), pressure and density p,,p, (p=p,.p =p, ) respectively, so that the velocity of sound be ¢, = . The given data

0

are p,,P,,V,. which are the initial conditions of the problem at starting point. The reflection condition, which has to be

satisfiedis 0 =0.

Po» Po »7 Y

Figure 7 : Reflection of a moving on the left with constant velocity shock wave on the left closed boundary of a tube.

The velocity of the shock front after the reflection, the pressure and the density behind the reflected shock wave, are given by the
following relationships [2]:

w:l:—31)0+ ﬁluo +y B (25)
4 4 Po
. 2y (v +w)
=p,| l +~——| —2——p, -1 26
P Po|: 'Y'*'l[ Yoo Po (26)
A Dyt W
p==2"p, en

Analytical solutions for the unsteady inviscid, non-conducting fluid conservation equations
By neglecting viscous, heat-conduction effects and field forces, the unsteady compressible conservation equations of mass,
momentum and energy, in one dimensional conservative form, which will be referred to as Euler equations, have the following

form:

Continuity equation:

3  dlpu)
a T (28)
Momentum equation:
M+ 8!éu2 +p!:0
ot ox 29)
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Energy equation:
8{p£e+lu2ﬂ B{Pu[e+%u2 +£)]
2 A, Pl g 30)

The above system is closed by the constitutive equation, in the form of Gibbs relation, namely:

Tds =de+ pd(—l—) 31
p

Which leads to the entropy relation:

oes), opus) _
ot ox

(32)
In the space - time plane the transformation of independent (x,t)to the new variables (&, n) (Figure 8) is introduced:
t
]
n=const
&=const
X
Figure 8: Sketch of the two families of characteristics in the (x,t) plane.
£=E(x thn=n(x¢) (33)
so that:
§—const'g—u—c —const'g—u+c
T TS nER T (34)
where c is the isentropic velocity of sound:
2 _[op
¢ ==
( op ) s 33
Then it can be shown that the system of governing equations in terms of (&) takes the form:
dx
n=const: —=u+¢, u+o=const
& (36)
&=const: —=u-c, u—o=_const
dt
where:
_ <),
0= [="dp 37
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The & = const.,n = const. are the two families of characteristics which are wave fronts of the kinematic discontinuities. The

kinematic discontinuities in the considered one-dimensional case correspond to lines across which the first derivative of the flow
quantities are discontinuous , while the flow quantities are continuous.

The last equation for ideal gas of constant coefficients of specific heat of ratio Y reduces to the form:

(38)

2
wo=—-c, c
v-1

i
-
helt-}

The reduced system of equations can be solved analytically in certain problems such as moving piston case (two sub-cases:
expansion and compression) and the so called Riemann or shock tube problem which includes a shock wave, a contact

discontinuity and an expansion wave [1], {3].
(a) Expansion flow behind a moving piston (case MP-1)

A piston is considered to move towards the negative x-direction, figure 9. This results to an expansion of the gas behind the
piston.

ot
[ =const
Cc 2 2

— U-——Cc=-———¢,

g /y -1 v-1

_,,01/‘/
: 2 | €=
piston path 6 5 43
c=c, u=0 X u
Co

Figure 9: Expansion flow on the right of a left moving piston

The flow is studied in the plane x-t where the path of the piston U=-)jis shown. As an initial value of the problem a gas with

zero velocity and a constant temperature (constant velocity of sound) will be considered.
u(x,0)=0, c(x,0)=c, x20 39

As a boundary condition the equality of the gas velocity to the velocity of the piston is taken into account:
u(xp ,t): up(t)= X, (40)

Starting from the initial values ¢ =c,,u=0 (for t=0) we could easily observe that in the open region between the positive x-
axis and the positively inclined characteristic (= const. ) originating from point 1 both families of characteristics are straight
lines since they originate from the positive part of the x-axis where the constant initial conditions are valid.

The movement of the piston affects the flow field left of the characteristic originating from point 1. Since all the
§ = const characteristics originate from the positive x-axis where the initial conditions are valid, across all the negatively

inclined characteristics the following relation is valid:

& = const, u—ic:—ic0 41
y-1 r-1 “1)

All the & = const characteristics end on the piston path, so that
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2
§=const u, ——2—c17 =———c¢, 42)
v-1 y-1

while for the m = const characteristics the following relation is valid:

2
T} = const 11+"YTIC—UP+T(T_TCP (43)

By substracting the previous two equations for the region between the piston path and the positively inclined characteristic
originating from point 1, the following relation along the positively inclined characteristics is valid :

= t u+ 2 =2 2
n=const u y—lc_ up+Y_1c0 (44)

From the relations (42) and (43) we conclude that:

n=const, u=u,c=c, (45)

Thus the values of u and c on each m=const keep constant and this family of characteristics are straight lines with the
following inclination :

_ dx y+1
1 = const, E=UP+CP=C°+—2—up (46)
Note: From equation results a limit maximum piston velocity.
2
(Up) e = T ST 0 47

With a piston velocity increasing further, a cavitation zone is developed behind the moving piston (where pressure vanishes).
The cavitation area is located in the region between the piston path and the positively inclined characteristic with inclination
w:

=T % (48)

This limit velocity w =~ —5¢,is quite higher than the maximum isentropic steady flow velocity in vacuum (u_, = cho ). This

shows the basic differences between the steady and unsteady flows. Of course, we should note that these regions are on the limit
of continuums mechanics validity.

The whole phenomenon can be considered as simple wave. This is the case of the wave when one family of the characteristics
are straight lines.

Special case I:

In the special case of a piston moving with constant velocity, so that the piston path is a straight line. The expansion region is
limited to an angle around the axis origin, so that all the gas particles hold the constant velocity of the piston. The wave is called
central simple expansion wave.
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piston path
xi(t)
1 c=cq u=0

Figure 10 : Central expansion wave behind a piston moving with constant velocity

Special case II:

For the special case of the constant accelerating piston, for which the velocity argument is linearly increasing with time (U and
t, are constants):

t
v, =-U (49)

0

leads to a fully analytical expression of the flow velocity and the isentropic velocity of sound in the expansion area, which are
given by the relations:

1

2 3
u(x,t)hl(%u_ﬂuiy e+ Ty t) 228 (50)
Y 2 L Y 2 to Y te
y-~1
c(x,t)=c0+—~2~— 51

The distribution of velocity as a function of the space variable x is shown in figure 11 for various time levels.
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Figure 11: Velocity distribution as function of x for various times for the case of gas expansion due
to the movement of a piston with a constant acceleration (U =100m/s,t, =1s,c, =400m/s,y =1.4).

(b) Compression flow in front of a piston moving in a non-moving gas (MP-2)

The theory of isentropic flow for the compression flow in front of a piston obeys the same analysis as the expansion one (eqs
(38)-(47)). One should remark in this case that the 1 =const characteristics converge and form an envelope (Figure 12). The

envelope can be in general shown that appears at earliest time at the point (x_,t_) , that is defined as:

x = 2¢i . 2¢,
TH0s,©@ T G+, 0) 2)
piston path
b ot x,(t)
2 2
u- c=- C,
Yy —1 y—1
< ¢
Co

Figure 12 : Compression flow in front of a piston moving in a non-moving gas
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After this point and for (t> t_) a moving shock wave appears, which propagates in the gas at rest in the same direction with the
piston and the flow is anisentropic. An analytic description of the flow field succeeds for the following two cases:

Special case I
In the case that the piston moves with constant velocity in a gas at rest:

u =U, U = const (53

P

so that the piston path is a straight line, figure 13, the n=const characteristics are parallel to each other and a shock forms,
which propagates with constant velocity u, higher than that of the piston:

(54)

o

Figure 13 : éompression flow of a gas in front of a moving piston with a constant velocity

Special case IV

For the case of the compression flow of a gas in front of a moving piston with a velocity linearly increasing with time (constant
accelerating piston):

up =U— (55)
(U, t, constants), we lead as in the case II to a fully analytic expression for the flow field velocity in the isentropic region, that is

before the appearance of the shock wave. The expression of the velocity in the isentropic compression region, can be shown to
be similar to the expression of the expansion flow:

2
1 y+1 .t 1 Y+t 2U
== oo LUl |+ |l e - LUl | -2 (x-cyt (36)
u(x) 'Y(CO ) toJ J,yz [co 5 toJ 7t (x-c,t)
c(x t)—c +y——1u
=G T (57)

and the point (x_,t,) is calculated as:

2
2¢,t, 2¢,t,

A TR Y oY

The distribution of velocity as function of the space variable x for various times t is shown in figure 14,
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Figure 14 : Distribution of the velocity as a function of x for various t in the isentropic compression area
of a gas in front of a constant accelerating piston (U =100m/s,t, =1s,c, =400m/s,y =1.4).

(¢) Moving shock in a shock tube or Riemann-problem (case ST-1)

The shock tube problem, often called Riemann problem, is the flow owing to the abrupt removal of the valve which
separates a high pressure gas from a low pressure gas in the shock tube [1], [6]. The resulting wave effect of the propagation of
the discontinuity and the relating nomenclature are shown in figure 15. The diaphragm located in position x =0 at time t=0
separates the space of high pressure py =p, from the space of lowpressure p, =p,. Thus, the basic parameter of the flow

effect is the pressure ratio:

P (59)

The two parts of the tube may have also different temperatures (T,, T, ) and different gases (R,,R ).

At initial time the pressure distribution is a step distribution, figure 15a. This causes the separation of the problem in
two problems, the propagation of a shock wave in the low pressure gas p, and the propagation of an expansion wave in the

high pressure gas p,, . The state behind the moving shock wave is indicated by the index 2 and the state behind the expansion

wave with the index 3. The interface between the states 2 and 3 is a contact discontinuity. This is the contact point of the two
gases, initially separated by the diaphragm, and have different temperatures and densities. On the other hand they should have
the same velocities and pressures. The basic problem is how the flow quantities can be calculated with a given initial pressure
ratio.
Introducing the following expressions:
p=P2 T+l

p.’ " (60)

we have firstly the relations connecting the quantities on both sides of the moving shock wave:

Moving shock wave relations:

Py 1+ a}l: ( Hugoniot relation) 61)

Py o+t

1
Uy Ly 2 ]2 P-1 (62)

o _(7 -1 (+op)




woo, =(u)5 1+ P
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The pressure and velocity on both sides of the contact discontinuity are equal.

diaphragm

e e e e et s
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gﬁé’{ﬂ S A AT
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. \\\ \\ Contact
AN \\\ \\‘ discontinuity
4
@
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Figure 15 : Flow effects in a shock tube

Equations of the contact discontinuity:

P; =P,
v, =V, =V

v is the velocity of the contact discontinuity.

23

(63)

64

(65)
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Pressure and velocity in the regions 3 and H=4 are related with Riemann conditions on positive inclined characteristics
(n =const).

Riemann equations across positive inclined characteristics:

y-1

&]7 (66)

2 [
V; -V =cy,—|1-
Y Pu

-1

After eliminating unknowns from equations (61) , (64), (65) the following equation, which has as unknown the pressure relation
P, is obtained:

L P
( : J = L-["—LPJZ’ soumoy ©7)
vly-1) (+aPf S 7—1[ Py cL

The solution of the implicit algebraic equation (66) is accomplished by numerical integration.

Example:

For the following values of the variables:
py =10°,p, =1, vy =0, p, =10%, p_=0125 v, =0,y=14
the solution of equation (66) gives the following values of the unknown parameters:

P =3.0313, p, = 30313, v, =v =203, w =544

In figure 16 the variation of flow quantities are shown for the time instant t = 6,110~ .

200640
1.00E+5 —} i g
S.00E+4 —1 " 41.00E+0 —}

= )

£ i £ ]

o .00E+4 2

3 &

n - =

g W o.00E+0

& 4.00E+4 —

200644 —
. A.00E+0 T T T I ; T . T T
0.00E+0 T T T T T T T T r 0.00 200 4.00 .00 800 10.00
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Figure 16 : Distribution of flow quantities at t=6,1 ms for p,, =10°,p, =1, v, =0, p_=10*p =0125 v _=0,y=14

ANALYTICAL SOLUTIONS FOR THE UNSTEADY COMPRESSIBLE LAMINAR
FLOW FOR HEAT CONDUCTING FLUID

The existing analytical solutions for the unsteady, compressible laminar flow for a heat conducting fluid concern only the
Lighthill’s approximation of finite amplitude sound waves, for the case of one-dimension. For the derivation of this theory we
refer to the review of M.J.Lighthill [S]. This theory leads to the following equation for the velocity u derived from the equations
of continuity, momentum and energy after simplifications coming from the assumption of sound waves of finite amplitude for a
perfect gas of constant 7y :

Ex__ P (68)
& is the Lighthill’s diffusion coefficient for the sound waves of finite amplitudes propagating to the positive - x direction:

st (=10 "
Po PoCy (69)

W, =2p+u', where p p’ are the dynamic and volumetric viscosities of the gas , A, is the coefficient of heat conductivity,
¢, is the heat coefficient for constant pressure and p, is the undisturbed density.
u, =0, c=¢, (70)
Through the transformation:
+1

X=x-ct, U=co+io—u 1)
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the differential equation can be transformed to the following non-linear Burgers’ equation (1940), which is the simplest non
linear equation describing convective effects combined with diffusive one :

L 0u_ 80T
& X 28X (72)
The general solution of the Burgers’ equation is defined by the introduction of a new dependent variable, the function ¢
defined by the following relations, satisfying the Burgers’ equation:

S _ o 1 8

-u,

X a 2 28X (73)

The differential equation for ¢ leads by elimination of W from the previous equations:

26 _1(80) 5 0%
— = =] 4=
& 2(3}(] 2 9X? 9
By introducing again a new function v :
¢ =dlny (75)

the equation which satisfies y is the standard linear equation for heat transfer by conduction:

v _150%

a 2 ax? 76)
So, all the known solutions of the linear heat conduction equation are at the same time solution of the Burgers’ equation, of
course in the transformed variables.

The relations connecting \y and u are:
S oy

1=
[ o = udX
u » Y exp(5 )J;u J (77)

As a first example we refer to the initial value problem owing to Laplace. When the initial value of the wave form is given by
E(X,O) , then the solution is defined by the integral:

1 X-Y
w(X,1)= — _iw(Y,O)exp{ T }dY (78)
wj'X -Y expl dj‘ﬁ(y O)dY _M dy (79

t 5y 2t
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INDICATIONS FOR USE OF THE EXAMINED TEST CASES

The above test cases are frequently used for testing various properties of the examined numerical schemes. Specifically:

e The test case of linear advection equation (LADV-1) that results in oscillatory solution and contains discontinuity in the
derivative, can be used to test the diffusion and dispersion properties of schemes and to define the accuracy of the scheme on
smooth functions of the wave number k.

e  The linear advection equation of propagating discontinuity with the velocity o (LADV-2) is important with regard to
properties of the schemes at handling propagating discontinuities. If the discontinuity is an expansion shock, the numerical
scheme can propagate and dump the expansion through an introduced entropy condition or any other form of dissipative
mechanism.
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e  The behaviour of invisvid Burgers’ equation against non linearities is representative of the examination of Euler equations
behaviour due to the non linear term of Burgers® equation. Inviscid Burgers’ equation (IB-1) with initial shock discontinuity
gives information about the capability of the numerical scheme on shock capturing with the correct shock propagating speed
(time accurate scheme). The shock capturing without the presentation of non physical oscillations in the vicinity of the
discontinuity ensures the monotonicity of the numerical scheme or its property for total variations diminishing. . Inviscid
Burgers’ equation (IB-2) with initial linear discontinuity gives information about the diffusion and dispersion properties of the
numerical scheme. IB-2, also ensures, as IB-1 for the shock capturing capability of the scheme and its characteristics about
monotonicity. Inviscid Burgers’ equation (IB-3) for a rarefaction wave is used to test the additional entropy condition that is
imposed on the numerical schemes in order to capture expansion shocks for inviscid flow equation. Viscous Burgers’ equation
(VB-3) serves as a model equation for the boundary-layer equation or the “parabolized” Navier-Stokes equations and examines
the capturing of diffusing shock.

e  The problem of shock tube presents an exact solution to the full system of one-dimensional Euler equations containing
simultaneously a shock wave, a contact discontinuity and an expansion fan. Consequently, it can be used for the testing of all
the above properties of numerical schemes.

SOFTWARE

The analytical solutions for the above cases are also presented in the corresponding FORTRAN 90 programs that have been
attached to the present paper. These programs are:

FORTRAN program Input Data file Test case

advection.for advect.int Linear advection equation

inv_Burgers. for inv_burg.int Inviscid Burgers’ equation

vis_Burgers for

vis_burg.int

Viscous Burgers’ equation

expansion.for

expansion.int

Expansion flow behind a moving piston

compresion_for

compression.int

Compression flow in front of a moving
piston in a non-moving gas

shock_tube for

shock.int

Moving shock in a shock tube or Riemann

problem
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