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Abstract

A general method for solving the Dirichlet problem for the Burgers equation with a moving boundary is introduced. The
method reduces the initial value problem to a linear integral equation of Volterra type with mildly singular kernel, which
admits a unique solution under rather general assumptions. Two explicit cases are considered: a boundary moving with constant
velocity and a rapidly oscillating boundary. 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

The Burgers equation

(1.1)ut =
(
νux − σu2)

x
, u≡ u(x, t),

is well-known for its theoretical and practical inter-
est (see, e.g., Refs. [1,2]). Boundary value problems
for Eq. (1.1) also have great relevance in physical ap-
plications, and they have motivated several studies in
the last few years (see, e.g., Refs. [3–9]). In particu-
lar, semiline solutions of Eq. (1.1) were obtained in
Ref. [3] for the Dirichlet problem with a time depen-
dent boundary condition (for the case of a constant
boundary condition, see also Ref. [4]). The equiva-
lence of such solutions to solutions of the forced Burg-
ers equation was established in Refs. [5,6] in the case
of an additive forcing term of distribution type. More-
over, the existence and uniqueness of semiline solu-
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tions of Eq. (1.1) was proven in Ref. [7] for a general
class of boundary conditions at the origin, and explicit
solutions were recently obtained in Refs. [8,9] in the
case of flux-type boundary conditions.

All the above mentioned studies refer to the case
of a static boundary. It is also the case that moving
boundary problems have great interest both in mathe-
matical and physical contexts (see, e.g., Refs. [10–13]).
It is therefore natural to consider this kind of problems
for the Burgers equation. In this Letter we introduce
a general procedure to solve the Dirichlet problem for
the Burgers equation in the case of a prescribed mo-
tion of the boundary. Namely, we consider Eq. (1.1)
with initial–boundary conditions

(1.2a)u(x,0)= f (x),
(1.2b)u

(
s(t), t

)= g(t),
wheres(t)6 x <∞, t > 0 andf (x), s(t) andg(t) are
given functions of their arguments; in particular,s(t)
describes the motion of the boundary. Initial–boundary
conditions such as (1.2) arise naturally in physical
applications, and assume a special importance when
considering the problem of a moving boundary be-
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tween two phases (see, e.g., Refs. [10,12]). It is im-
portant to note that, if the motion of the boundary is
not known, one obtains a Stefan problem [14], whose
solution demands the presence of an additional con-
straint, and requires the solution of a nonlinear integral
equation [15,16].

The outline of this Letter is the following: In
Section 2 we introduce an appropriate transformation
of variables to linearize the problem given by (1.1)
with (1.2). We reduce the problem to a linear integral
equation of Volterra type int , which admits a unique
solution under the assumption thats(t) is a smooth
function of time andg(t) is continuous and bounded.
In Section 3 we consider the special case of a linear
motion of the boundary,s(t) = vt , with g(t) = c
(v, c constants), and a step-like initial datumf (x) =
c θ(x0−x), whereθ(x) is the Heaviside step function.
For moderate boundary velocities, the explicit solution
behaves like a shock traveling to the right. This
result is in agreement with the asymptotic behavior
obtained when a Galileian transformation is made
on the solution of the static boundary problem of
Ref. [3]. In Section 4 we consider the case whens(t)
is a rapidly oscillating function of small amplitude,
s(t) = ε sin(t/ε), with ε a small parameter. In this
case we obtain the solution with a combination of
analytical and numerical methods, and we compare
the results to the unperturbed caseε = 0. Some
technical details of the solution method are confined
in the appendices. Finally, we mention that the same
problem has been recently solved using a different but
equivalent approach [17].

Since the values of the two constantsν andσ can
be modified by trivial rescalings and in this Letter we
are not interested in the limiting cases in which they
vanish or diverge, we hereafter setν = 1 andσ =±1,
without loss of generality.

2. The linearizing transformation

In order to linearize (1.1) with initial–boundary
conditions specified by (1.2) it proves convenient to
perform the change of variables

(2.1a)u(x, t)= q(y, t),
(2.1b)x = y + s(t).

This transformation maps Eq. (1.1) into the following
forced Burgers equation:

(2.2)qt − (qyy + 2σqqy)= ṡ(t)qy,
with initial and boundary conditions

(2.3a)q(y,0)= f (y),
(2.3b)q(0, t)= g(t).

The moving boundary problem (1.1)–(1.2) for the
Burgers equation is then transformed into a fixed
boundary problem for the parametrically forced non-
linear equation (2.2) in the quarter planey > 0, t > 0
with boundary conditions (2.3).

We now introduce the generalized Cole–Hopf trans-
formation [3]

(2.4a)q(y, t)= φ(y, t)

C(t)+ σ ∫ y0 dy ′φ(y ′, t) ,
(2.4b)φ(y, t)= C(t)q(y, t) exp

[
σ

y∫
0

dy ′ q(y ′, t)
]
,

with C(0)= 1. It is easily seen that this transformation
implies that to the nonlinear (2.2) there corresponds
the linear equation

(2.5)φt − φyy = ṡ(t)φy,
with the compatibility condition

(2.6)Ċ(t)= σφy(0, t)+ σ ṡ(t)φ(0, t).
It is moreover clear that Eqs. (2.4) imply for the
forced heat equation (2.5) the initial and boundary
conditions

(2.7a)φ(y,0)= C(0)f (y) exp

[
σ

y∫
0

dy ′ f (y ′)
]
,

(2.7b)φ(0, t)= C(t)q(0, t)= C(t)g(t).
In order to solve the linear equation (2.5) with the

initial and boundary data (2.7) and the compatibility
condition (2.6) we introduce the following generalized
sine–Fourier transform:

(2.8a)

φ̂(k, t, γ )=
∞∫

0

dy sin
[
k
(
y + s(t)+ γ )]φ(y, t),
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which is inverted as

(2.8b)

φ(y, t)= 2

π

∞∫
0

dk sin
[
k
(
y + s(t)+ γ )]φ̂(k, t, γ ),

provided that

(2.9)s(t)+ γ > 0

(see Appendix A), where explicit conditions onf (x)
for the existence of the above transform pair are also
given). The parameterγ in the above formulae is
arbitrary except for restriction (2.9) which must hold
for all values oft . The solution of the linear problem
φ(y, t) is, of course, independent of the value ofγ
(see Appendix A).

It is easily seen that (2.8a), (2.6) and (2.7) imply

φ̂(k, t, γ )

= φ̂0(k, γ )e
−k2t

+ k
t∫

0

dt ′ cos
[
k
(
s(t ′)+ γ )]C(t ′)g(t ′)e−k2(t−t ′)

(2.10)

+
t∫

0

dt ′ sin
[
k
(
s(t ′)+ γ )]Ċ(t ′)e−k2(t−t ′),

where, of course,

φ̂0(k, γ )= φ̂(k,0, γ )

(2.11)

=
∞∫

0

dy sin
[
k
(
y + s(0)+ γ )]φ(y,0).

As in the case of a static boundary, the strategy of
solution is to assume temporarily that the function
C(t) is known (cf. Ref. [3]). The evaluation ofq(y, t)
is then explicitly performed through the following
three steps:

1. Givenf (y), computeφ(y,0) via (2.7a).
2. Computeφ(y, t) via (2.8b) and (2.10).
3. Recoverq(y, t) from φ(y, t) via (2.4a).

The explicit solution forφ(y, t), which is found by
substituting (2.10) into (2.8b), reads

φ(y, t)=
∞∫

0

dy ′φ(y ′,0) I1(y, y ′, t,0)

− σ
t∫

0

dt ′ Ċ(t ′) I1(y,0, t, t ′)

(2.12)+
t∫

0

dt ′C(t ′)g(t ′) I2(y,0, t, t ′),

with kernelsI1(y, y ′, t, t ′), I2(y, y ′, t, t ′) given by

I1(y, y
′, t, t ′)

= 1

2
√
π(t − t ′)1/2

× [e−(y−y ′+s(t)−s(t ′))2/4(t−t ′)
(2.13a)− e−(y+y ′+s(t)+s(t ′)+2γ )2/4(t−t ′)],

I2(y, y
′, t, t ′)

= 1

4
√
π(t − t ′)3/2

× [(y − y ′ + s(t)− s(t ′))
× e−(y−y ′+s(t)−s(t ′))2/4(t−t ′)
+ (y + y ′ + s(t)+ s(t ′)+ 2γ

)
(2.13b)× e−(y+y ′+s(t)+s(t ′)+2γ )2/4(t−t ′)].

It is easily seen that, in the special cases(t)= γ = 0,
Eq. (2.12) reduces to the formulae for the semiline
Burgers equation found in Ref. [3].

Let us emphasize that the final result forq(y, t)
is independent of the value of the parameterγ ,
which nevertheless enters in a non-trivial manner into
the above equations. In fact, for every value ofγ ,
Eqs. (2.12), (2.13) yield a different but equivalent
representation of the solutionφ(y, t) of the associated
linear problem. In the following we chooseγ to be
positive and very large. This choice enables us to
consider the asymptotic, largeγ , expansion ofφ(y, t)
(obtained via (2.12) with (2.13)) and neglect all the
exponentially smallγ -dependent contributions. The
functionsI1,2(y, y ′, t, t ′) in this case reduce to

I1(y, y
′, t, t ′)= 1

2
√
π(t − t ′)1/2

(2.14a)
× e−(y−y ′+s(t)−s(t ′))2/4(t−t ′),
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I2(y, y
′, t, t ′)= y − y

′ + s(t)− s(t ′)
4
√
π(t − t ′)3/2

(2.14b)
× e−(y−y ′+s(t)−s(t ′))2/4(t−t ′),

with a great simplification of all subsequent calcula-
tions. However, it is essential to note that, since the
value ofφ(y, t) (as computed by (2.12)) is indepen-
dent from the explicit value ofγ , the first term (i.e., the
γ -independent) in the large-γ asymptotic expansion
yields an exact analytical result. Or, in other words,
the use of Eqs. (2.14) instead of (2.13) does not con-
stitute an approximation forφ(y, t).

Our last task is to computeC(t). To this aim we
evaluate (2.12) aty = 0, t = τ and integrate indτ/(t−
τ )1/2 from 0 to t . In this way, using (2.7b) together
with (2.14), and after some appropriate integration by
parts, we get the following linear integral equation
for C(t):

(2.15)C(t)= 1+H(t)+
t∫

0

dt ′K(t, t ′)C(t ′),

where

(2.16a)

H(t)= 2√
π

[
A1(t,0)+ σ

∞∫
0

dy φ(y,0)A0(y, t)

]
− 1,

(2.16b)

K(t, t ′)= 2√
π

[
∂A1(t, t

′)
∂t ′

+ σA2(t, t
′)g(t ′)

− σ g(t ′)
2(t − t ′)1/2

]
,

(2.16c)

A0(y, t)= 1

2
√
π

t∫
0

dτ
1

(t − τ )1/2τ1/2

× e−(y−s(τ ))2/4τ ,

(2.16d)

A1(t, t
′)= 1

2
√
π

t∫
t ′
dτ

1

(t − τ )1/2(τ − t ′)1/2
× e−(s(τ )−s(t ′))2/4(τ−t ′),

(2.16e)

A2(t, t
′)= 1

4
√
π

t∫
t ′
dτ

s(τ )− s(t ′)
(t − τ )1/2(τ − t ′)3/2

× e−(s(τ )−s(t ′))2/4(τ−t ′).
Eq. (2.15) is a linear integral equation of Volterra
type with mildly singular kernel; it admits a unique

continuous solution under the assumptions thats(t)

is a smooth function andg(t) is continuous and
bounded [18]. Formally differentiating Eq. (2.15), an
integral equation forĊ(t) can be obtained, and, once
the existence ofC(t) is established, it is straightfor-
ward to show that a unique continuous solution for
Ċ(t) (which is required to ensure the validity of the
compatibility condition (2.6)) exists under the same
hypotheses. The problem is thereby solved.

We should point out that in Ref. [17] the moving
boundary problem for the Burgers equation was solved
by transforming it into amoving boundary problem for
the unforced heat equationthrough a different gen-
eralization of the Cole–Hopf transformation, and the
solution of the linear problem was then obtained by
employing Green’s functions. Here, we transform the
moving boundary problem for the Burgers equation
into a forced problem for the Burgers equation on the
half-line, and we then use a “standard” generaliza-
tion of the Cole–Hopf transformation (as employed in
Refs. [3,5–7,9]) to reduce the latter to aforced prob-
lem for the heat equation on the half-line. The heat
equation is then solved by introducing a generalized
sine transform. While the two solution methods ob-
viously have a certain similarity, they are nonethe-
less clearly different, and they represent two differ-
ent approaches to the problem. It is also immedi-
ate to see that in the cases(t) = 0 Eq. (2.15) repro-
duces the static boundary result forC(t) obtained in
Ref. [3].

In the remaining part of this Letter we apply the
formulae derived above in a few explicit examples. We
will consider the case of a linear motion and of a rapid
vibration of the boundary.

3. Linearly moving boundary

As a special case of the general formulae derived
in the previous section we consider the situation of
a linearly moving boundary, i.e., we take

(3.1)s(t)= νt,
with σ = −1 and initial–boundary conditions given
by

(3.2a)g(t)= c,
(3.2b)f (x)= c θ(x0− x),
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wherec andx0 are constant andθ(x) is the Heaviside
step function.

The solution of the linear problemφ(y, t) can be
decomposed as

(3.3)φ(y, t)= φ1(y, t)+ φ2(y, t),

where φ1(y, t) and φ2(y, t) represent the parts of
φ(y, t) which depend on the initial datum and on the
boundary condition, respectively (cf. Eq. (2.12)). Ex-
plicitly, when Eqs. (3.1), (3.2) are used, Eqs. (2.12)–
(2.14) yield

(3.4a)

φ1(y, t)= c

2(πt)1/2

x0∫
0

dy ′ e−cy ′−(y−y ′+vt)2/4t ,

(3.4b)

φ2(y, t)= 1

4π1/2

t∫
0

dt ′ e−(y+v(t−t ′))2/4(t−t ′)

× 1

(t − t ′)1/2
[
2Ċ(t ′)+

(
cv + y

t − t ′
)

×C(t ′)
]
.

Calculation ofφ1(y, t) is straightforward and yields

φ1(y, t)= 1

2
c e(c

2−vc)t−cy

×
{

erfc

[
y − x0

2t1/2
−
(
c− 1

2
v

)
t1/2

]

(3.5a)

− erfc

[
y

2t1/2
−
(
c− 1

2
v

)
t1/2

]}
.

However,φ2(y, t) depends onC(t) and requires some
attention. In Appendix B we solve the corresponding
integral equation forC(t). We will deal explicitly with
two limiting cases:v� c andv� c.

If v � c the behavior ofC(t) for large t can be
approximated byC(t) ∼ e(c2−vc)t (cf. Eq. (B.17a)).
We substitute this asymptotic behavior inφ(y, t)
(Eq. (3.4b)) and compute the resulting integrals using
Laplace transforms and the same procedure used in
Appendix B to invert the Laplace transform ofC(t).
In this way we find

φ2(y, t) ∼
t→∞

1

2
c e(c

2−vc)t−cy

(3.5b)

× erfc

[
y

2t1/2
−
(
c− 1

2
v

)
t1/2

]
.

Note thatφ2(y, t) exactly cancels the second part
of φ1(y, t). Calculating the integral ofφ(y, t) is
immediate, and allows us to obtain, via Eq. (2.4a), an
asymptotic expansion for the solution of the forced
Burgers equation,q(y, t), in the comoving frame of
reference. Fromq(y, t) we go back tou(y, t) via
Eqs. (2.1). The corresponding expression is

u(x, t) ∼
t→∞ c e

c2t−c(x−x0) erfc

[
x − x0

2t1/2
− ct1/2

]
/{

ec
2t−c(x−x0) erfc

[
x − x0

2t1/2
− ct1/2

]

(3.7)

+erf
x − x0

2t1/2
− erf

vt − x0

2t1/2

}
.

As the corresponding formula in the static case (to
which it reduces ifv → 0), this solution represents
a shock of amplitudec that moves to the right with ve-
locity c. More precisely, in the regionx < x0+ ct the
argument of the exponentials is positive, and the first
term on the denominator dominates, so that the value
of u(x, t) is approximately equal toc. Vice versa, if
x < x0+ ct the exponential term in the denominator is
negligible, andu(x, t) becomes exponentially small.
The transition point between the two regions of the so-
lution is found by setting to zero the argument of the
exponentials, and isx = x0+ ct . We observe that, for
the specific case considered here, the propagation of
the shock is unaffected by the presence of the moving
boundary in the fixed frame of reference. That is, if
v < c the solution foru(x, t) coincides asymptotically
with that of the Burgers equation with static boundary.

A different result is found ifv > c. In fact, in the
appendix we show that, ifv � c, C(t) ' 1 asymp-
totically in time (cf. Eq. (B.17b)). Then, by computing
φ2(y, t) with the same procedure used above, we find

(3.8)φ2(y, t) ∼
t→∞

1

2
c e−vy erfc

(
y

2t1/2
− 1

2
vt1/2

)
,

whileφ1(y, t) is still given by (3.4a). Sincec− v� 0,
now φ1(y, t) is exponentially smaller thanφ2(y, t).
Hence, neglecting small terms, we can express the
behavior ofq(x, y) as

(3.9)q(y, t) ∼
t→∞c e

−vy.
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Fig. 1. The solutionq(y, t) of the forced Burgers equation in the moving frame of reference for a linearly moving boundarys(t) = vt , with
c = 1 andv = 1.5. Since the velocity of the boundary is greater that that of the shock, in the moving frame the solution is seen to move
backwards, towards the boundaryy = 0.

Sincev � c, the boundary moves much faster than
the shock. Thus, after a sufficiently large time, it
will eventually “hit” the shock, producing a boundary
layer — in our particular case, a solution which
decays exponentially fast away from the boundary,
as shown by Eq. (3.9). To check this prediction, we
integrated numerically the forced Burgers equation in
the moving frame of reference (2.2), using a finite
difference scheme in space and an adaptive variable-
order backward differentiation time integrator. The
resulting solutionq(y, t) in the moving frame of
reference is shown in Fig. 1 forc= 1 andv = 1.5.

It is worth noticing that, in the special case of a lin-
early moving boundary, the solution of the Burgers
equation can be found directly from Eq. (2.2), via
a change of dependent variable. In fact, ifs(t) = vt ,
Eq. (2.2) becomes

(3.10)qt = qyy − 2
(
q − 1

2v
)
qy,

which, with the change of variable

(3.11)w(y, t)= q(y, t)− 1
2v,

is reduced to the standard semiline Burgers equation
for w:

(3.12)wt =wyy − 2wwy,

together with

(3.13a)w(y,0)= f (y)− 1
2v,

(3.13b)w(0, t)= g(t)− 1
2v.

The problem specified by Eqs. (3.12), (3.12) can now
be solved using the technique developed in Ref. [3].
If g(t) = c and f (y) = c θ(x0 − y) the solution for
q(y, t) represents a shock propagating to the right
with velocity c − v. The corresponding expressions,
when translated back into the original variablesq(y, t)

andu(x, t), are in perfect agreement with the results
obtained with the general method outlined before. This
explicit test provides a further check about the validity
of the solution technique presented in the previous
section.

4. Rapidly oscillating boundary

As a second example we discuss the case of a pe-
riodic, high-frequency and small-amplitude motion of
the boundary. That is, we let

(4.1)s(t)= ε sin(t/ε),
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with σ = −1 and ε � 1. Also, we take a constant
boundary condition and a quasi-null initial datum:

(4.2a)f (x)= c θ−(x),
(4.2b)g(t)= c,

whereθ−(x) is defined as

(4.3)θ−(x) := θ(−x + 0),

so thatθ−(0) = c andθ−(x) = 0 for all x > 0. This
particular choice of initial condition is required in
order to satisfy the compatibility conditionf (0) =
g(0). It should be emphasized that the singularity at
the origin att = 0 does not represent a problem, since
the parabolic nature of the Burgers equation implies
that the discontinuity is smoothed out at anyt 6= 0, just
like in the case of a linearly moving boundary (see also
Appendix B).

We observe that, unlike the case of a linear motion
of the boundary, this problem cannot be solved with
any simple change of variable like (3.11). At the
same time, the motion of the boundary is confined to
a region which is very close to the origin. Therefore
we treats(t) as a perturbation to the static problem.
That is, we expand

u(x, t)= εn0u(n0)(x, t)+ εn1u(n1)(x, t)

(4.4)+ εn2u(n2)(x, t)+ · · · ,
where the exponentsnj and the corresponding terms
u(nj )(x, t) are to be determined in the expansion.

The first contribution to (4.4) is obtained when
n0 = 0, and it yields the unperturbed solution,
u(0)(x, t). It represents a shock moving to the right
with velocity c, and is obtained by Eq. (3.7) taking
v = x0 = 0. To compute the corrections tou(0)(x, t)
we substitute (4.2) into (2.15), and write a cor-
responding small-ε asymptotic expansion forC(t).
Again, the unperturbed solution is given by the case
of a static boundary:C(0)(t) = ec2t (1 + erf(ct1/2))
(cf. Eq. (B.10)). In Appendix B we study the integral
equation forC(t) and we show that: (i) the asymptotic
expansion contains semi-integer powers ofε; (ii) the
first correction to the unperturbed solution isO(ε3/2).
As a result, the expansion ofu(x, t) will also contain
semi-integer powers ofε. Moreover, to compute cor-
rections tou(x, t) up toO(ε) we can use the unper-
turbed solution ofC(t). Therefore we substitute the
asymptotic behavior of the static case,C(t) ∼ 2ec

2t ,

in Eq. (2.12). This allows us to writeφ(y, t) as

(4.5)φ(y, t) ∼
t→∞J

(
y + ε sin(t/ε), t

)+O(ε3/2),
where we have defined

J (ζ, t) := c√
π

(
c− ∂

∂ζ

) t∫
0

dt ′
1

(t − t ′)1/2

(4.6)× ec2t ′−(ζ−ε sin(t ′/ε))2/4(t−t ′).

If we let ε = 0 in (4.6) we can computeJ (ζ, t) exactly,
and we recover the static result foru(x, t), which is
a special case of the shock solution found in previous
section:

u(0)(x, t)

(4.7)

∼
t→∞

c ec
2t−cx erfc[(x − 2ct)/2t1/2]

ec
2t−cx erfc[(x − 2ct)/2t1/2] − erf[x/2t1/2] .

To obtain the correction to this value we need to
compute the integral in Eq. (4.6) for values ofε 6= 0.
We do this numerically, using an adaptive numeri-
cal quadrature routine from the NAG library (code
D01APF). To check our model, we integrate numer-
ically the Burgers equation with periodic boundary
(Eq. (2.2)), using a finite difference scheme in space
and an adaptive variable-order backward differentia-
tion time integrator (code D01EJF from the NAG li-
brary). The results of these simulations confirm the
theoretical predictions based on the asymptotic expan-
sion of the solution (Eq. (4.5)). The resulting solution
q(y, t) in the moving frame of reference is shown in
Fig. 2 forε = 1/π .

The solutionq(y, t) is now represented by a shock
whose spatial location oscillates in time around the po-
sition of the unperturbed shock. That is, the correction
to the unperturbed solution appears as a modification
of the values in the transition region of the shock. This
result can be explained by noting that, in Eq. (2.2),
the only region in which the parametric forcing term
s(t)qy can have an effect on the solution is where the
spatial derivative ofu is different from zero. In our
case, this condition is verified only in the transition re-
gion of the shock solution. However, it is interesting to
note that, when the solution is translated into the fixed
frame of reference, the oscillations tend to disappear,
and the solutionu(x, t) is found to be extremely simi-
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Fig. 2. The solutionq(y, t) of the forced Burgers equation in the moving frame of reference for a periodic boundarys(t) = ε sin(t/ε), with
c= 1 andε = 1/π as computed numerically (see Section 4).

Fig. 3. The solutionu(x, t) of the Burgers equation in the fixed frame of reference corresponding toq(y, t), for the case shown in Fig. 2, i.e.,
a periodic boundarys(t)= ε sin(t/ε), with c= 1 andε = 1/π .

lar to the solution in the unperturbed case, as shown in
Fig. 3. In fact, the only visible effect of the oscillating
boundary is a constant time shift in the position of the
shock, as shown in Fig. 4.
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Fig. 4. A comparison between the solution of the Burgers equation for a periodic boundary in the fixed frame of reference,u(x, t), and the
corresponding solution in the unperturbed case, fort = 10. Solid line:ε = 1/π , dashed line:ε = 0.

Appendix A. The generalized sine transform

In this section we consider the generalized sine–
Fourier transform (2.8a) introduced in Section 2,

(A.1a)

φ̃(k, t, γ )=
∞∫

0

dx sin
[
k
(
x + s(t)+ γ )]φ(x, t),

and we show that, in the appropriate functional space,
it is inverted through

(A.1b)

φ(x, t)= 2

π

∞∫
0

dk sin
[
k
(
x + s(t)+ γ )]φ̃(k, t, γ ),

provided that

(A.2)s(t)+ γ > 0.

We consider an initial datumφ(x,0) ∈ L1 ∩
L2[0,∞). Using (2.10), it is easy to see that, ifφ(x,0)
is in this class,φ(x, t) remains in the same class, pro-
vided thatC(t), Ċ(t) andg(t) are continuous func-
tions of time. This condition also ensures the existence
of the usual sine and cosine Fourier transform, defined
as

(A.3a)φ̃s(k, t)=
∞∫

0

dx sinkx φ(x, t),

(A.3b)φ̃c(k, t)=
∞∫

0

dx coskx φ(x, t),

together with the inversion formulae:

φ(x, t)= 2

π

∞∫
0

dk sinkx φ̃s(k, t)

(A.4)= 2

π

∞∫
0

dk coskx φ̃c(k, t).

Therefore we can rewrite (A.1a) as

φ̃(k, t, γ )= cos
[
k
(
s(t)+ γ )]φ̃s(k, t, γ )

(A.5)+ sin
[
k
(
s(t)+ γ )]φ̃c(k, t, γ ),

which proves the existence ofφ̃(k, t, γ ). In the same
way we can prove the existence of the RHS of (A.1b).
Therefore all is left to prove is that, when Eq. (A.1a)
is substituted back into the right-hand side of (A.1b),
there results an identity. By virtue of Fubini’s theorem
we can interchange the order of integration. Then,
making use of dominated convergence and the integral
representation of the Dirac delta

(A.6)δ(z)= 1

2π

∞∫
−∞

dk eikz

(which is valid for the class of functions considered),
we get

φ(x, t)=
∞∫

0

dx ′ φ(x ′, t)δ(x − x ′)
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(A.7)

−
∞∫

0

dx ′ φ(x ′, t)δ
(
x + x ′ + 2

(
s(t)+ γ )).

Eq. (A.7) reduces to an identity provided that the
second integral is zero for allx ′ > 0. In turn this
requirement holds ifx + x ′ + γ + s(t) > 0 for all
x, x ′ > 0, which yields condition (A.2).

Appendix B. The integral equation

In this section we consider the integral equation
(2.15) for the functionC(t) derived in Section 2, and
we show how it can be solved in a number of cases. For
convenience, we rewrite here the integral equation:

(B.1)C(t)= 1+H(t)+
t∫

0

dt ′K(t, t ′)C(t ′),

where, takingσ =−1,

(B.2a)

H(t)=− 2√
π

∞∫
0

dy φ(y,0)A0(y, t)

+ 2√
π
A1(t,0)− 1,

(B.2b)

K(t, t ′)= 2√
π

∂A1(t, t
′)

∂t ′
− 2√

π
A2(t, t

′)g(t ′)

+ g(t ′)√
π(t − t ′)1/2 ,

(B.2c)

A0(y, t)= 1

2
√
π

t∫
0

dτ
1

(t − τ )1/2τ1/2

× e−(y−s(τ ))2/4τ ,

(B.2d)

A1(t, t
′)= 1

2
√
π

t∫
t ′
dτ

1

(t − τ )1/2(τ − t ′)1/2
× e−(s(τ )−s(t ′))2/4(τ−t ′),

(B.2e)

A2(t, t
′)= 1

4
√
π

t∫
t ′
dτ

s(τ )− s(t ′)
(t − τ )1/2(τ − t ′)3/2

× e−(s(τ )−s(t ′))2/4(τ−t ′),

and

(B.3)φ(y,0)= f (y) exp

[
−

y∫
0

dy ′ f (y ′)
]
.

We will deal with three explicit cases. The first two are
relative a linearly moving boundary,s(t) = vt , with
g(t) = c. First we concentrate on the homogeneous
case, i.e.,f (x) = 0; then we deal with a step-like
initial datum,f (x) = c θ(x0 − x). In both cases we
obtain the static result in the limitv → 0. Finally,
we estimate the first correction to the unperturbed
solution for a rapidly oscillating boundary of the type
s(t)= ε sin(t/ε), with g(t)= c andf (x)= 0.

We start with the case of a linearly moving bound-
ary, constant boundary condition and quasi-zero ini-
tial datum, i.e., we takes(t) = vt andg(t) = c (with
v, c constant). Note that the compatibility condition
f (0) = g(0) does not allow us to takef (x) ≡ 0, and
requires us to usef (x)= c θ−(x), whereθ−(x) is de-
fined asθ−(x) := limε→0+ θ(−x + ε). Note also that,
even if the initial datum is discontinuous, at any time
t 6= 0 the discontinuity is smoothed out due to the par-
abolic nature of the partial differential equation, as in
the case of a step-like initial condition for the Burgers
equation on the infinite line (cf. Ref. [2]).

With the previous assumptions the integral Eq. (B.1)
is

(B.4)C(t)= 1+H(t)+
t∫

0

dt ′K(t − t ′)C(t ′),

where

(B.5a)H(t)= B(t)− 1,

(B.5b)K(t)= c

(πt)1/2
− Ḃ(t)− kcB(t),

(B.5c)B(t)= e−(1/2)k2t I0
( 1

2k
2t
)
,

the Iµ(x) being the Bessel functions of an imaginary
argument [19], andk ≡ 1

2v. We solve Eq. (B.4) using
Laplace transforms: if

(B.6)C̃(s) := Ls
[
C(t)

]= ∞∫
0

dt e−stC(t),

Eqs. (B.4)–(B.5c) imply

(B.7)C̃(s)= [s − c(s + k2)1/2+ kc]−1
.
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Thus the solution of the integral Eq. (B.4) is reduced to
the problem of finding the inverse transform ofC̃(s).
Explicitly,

C(t)= L−1
t

[
C̃(s)

]
= 1

2πi

Γ+i∞∫
Γ−i∞

ds
est

s − c(s + k2)1/2+ kc

(B.8)= 1

2πi
e−k2t

Γ+i∞∫
Γ−i∞

ds
est

ζ(s)
,

whereζ(s) = s − cs1/2 + kc − k2 andΓ is any real
number to the right of all the singularities of the
integrand. We use the principal branch of the square
root, with −π 6 arg(s) < π . The functionζ(s) is
analytic everywhere except on the negative real axis,
where it has a branch cut. Also,ζ(s) has two simple
zeros ats = κ2±, whereκ± = 1

2(c±|c−2k|). Hence we
can use the contour of integration illustrated in Fig. 5
(see, e.g., Ref. [21]). It is easy to see that the integrals
overC±R andCε go to zero asR→∞ andε→ 0.

Fig. 5. The contour of integration for the inversion of the Laplace
transform (B.7).

Then, by computing the integrals overC±π and the
pole contributions, we find

C(t)= e−k2t

|c− 2k|
{
κ+eκ

2+t
[
1+ erf

(
κ+t1/2

)]

(B.9)

− κ−eκ2−t
[
1+ erf

(
κ−t1/2

)]}
.

In particular, if v = 0, it is κ+ = c, κ− = 0, and we
obtain the value ofC(t) for a static boundary:

(B.10)C(t)= ec2t
[
1+ erf

(
ct1/2

)]
.

Note that, asymptotically in time,C(t)∼ 2ec
2t .

Now we turn our attention to the inhomogeneous
case. In particular, we considerf (x) = c θ(x0 − x),
whereθ(x) is the Heaviside step function. The only
change in Eq. (B.4) is

H(t)=B(t)− 1− c

π

x0∫
0

dy e−cy

(B.11)×
t∫

0

dτ
e−(y−vt)2/4τ

(t − τ )1/2τ1/2 ,

which yields

(B.12)

C̃(s)= (s + k2)1/2+ c e−[c+(s+k2)1/2]x0

[c+ (s + k2)1/2][s − c(s + k2)1/2+ kc] .

If k = 0 (i.e., for a static boundary) Eq. (B.12) reduces
to

(B.13)C̃(s)= 1

s − c2

[
1− c

s1/2 e
−(c+s1/2)x0

]
.

Then, using the same procedure adopted to invert (B.7)
we find

C(t)= ec2t

[
1− coshcx0+ e−2cx0

+ 1

2
ecx0 erf

(
ct1/2+ x

2t1/2

)
(B.14)− 1

2
ecx0 erf

(
ct1/2− x

2t1/2

)]
.

The asymptotic behavior of the solution is

(B.15)C(t) ∼
t→∞2ec

2t−cx0 coshcx0.
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In general, we see that the behavior ofC(t) depends
on the value ofx0: if cx0� 1 we findC(t) ∼ ec2t ,
while if x0→ 0, we recover the result found in the
homogeneous case:C(t)∼ 2ec

2t .
The same analysis can be performed whenk 6= 0.

However, since in this case we are only interested in
the asymptotic behavior ofC(t), it is sufficient to look
at the poles of̃C(s) and compute the relevant residues.
In this way we find

C(t) ∼
t→∞

1

|c− 2k| e
−k2t

×
{

2κ+
c+ κ+ e

κ2+t
[
κ+ + c e−(c+κ+)x0

]

(B.16)

− 2κ−
c+ κ− e

κ2−t
[
κ− + c e−(c+κ−)x0

]}
.

In particular, we consider two limiting cases:c� v

and c � v (with cx0 � 1). In these two cases
Eq. (B.16) becomes, respectively,

(B.17a)C(t) ∼
t→∞ e

c(c−v)t if c� k,

(B.17b)C(t) ∼
t→∞1 if c� k.

Our final task is the estimate of the correction to
the unperturbed solution for a periodic boundary with
large frequency and small amplitude. That is, we con-
sider s(t) = ε sin(t/ε), g(t) = c and f (x) = θ−(x),
with ε� 1. The unperturbed solution is obtained by
taking ε = 0 and coincides with the solution of the
static problem (Eq. (B.10)):C(t)∼ 2ec

2t . To compute
the correction to this value we need to estimate the in-
tegralsA1,2(t, t

′) appearing in (B.1):

(B.18a)

A1(t, t
′)= 1

2
√
π

t∫
t ′
dτ

1

(t − τ )1/2(τ − t ′)1/2
× e−ε2(sin(τ/ε)−sin(t ′/ε))2/4(τ−t ′),

(B.18b)

A2(t, t
′)= ε

4
√
π

t∫
t ′
dτ

sin(τ/ε)− sin(t ′/ε)
(t − τ )1/2(τ − t ′)3/2

× e−ε2(sin(τ/ε)−sin(t ′/ε))2/4(τ−t ′).

By expanding the exponentials in powers ofε it is
immediate to see that the first correction toA1(t, t

′)

isO(ε2) and that, to leading order,

A2(t, t
′)

= ε

4
√
π(t − t ′)1/2

×
[

cos(t ′/ε)
1∫

0

du
sin[(t − t ′)u/ε]
(1− u)1/2u3/2

(B.19)

+ sin(t ′/ε)
1∫

0

du
1− cos[(t − t ′)u/ε]
(1− u)1/2u3/2

]
.

Both integrals in Eq. (B.19) are always finite for every
value of t , t ′ andε. However they have different be-
havior, since the second one contains a non-oscillatory
part which yields the dominant contribution. The os-
cillatory parts of both integrals are easily expanded in
asymptotic series in powers ofε (see, for example,
Ref. [20]) and yield contributions which contain all
half-integer powers ofε, thus producing corrections
that areO(ε3/2) and higher. The non-oscillatory part
of the second integral is computed by the same proce-
dure used to invert the Laplace transform ofC(t) in
the case of a linearly moving boundary. In this way we
find the following result:

A2(t, t
′)=−1

2
ε1/2e−ε/4(t−t ′) sin

t ′

ε

(B.20)+O(ε3/2).
When substituted back intoK(t, t ′), this result allows
us to obtain the first correction to the unperturbed
solutionC(t). Again, we expand the resulting integrals
in asymptotic series in powers ofε, and find the first
correction toC(t) as

(B.21)C(3/2)(t)= 2√
π
c ε3/2e−ε/4t .
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