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 QUARTERLY OF APPLIED MATHEMATICS

 Vol. IX October, 1951 No. 3

 ON A QUASI-LINEAR PARABOLIC EQUATION OCCURRING IN
 AERODYNAMICS*

 BY

 JULIAN D. COLE

 California Institute of Technology

 1. Introduction. The equation under discussion in this paper is the following:

 du . du d2u

 where u = u(x , t) in some domain and v is a parameter. The occurrence of the first
 derivative in t and the second in x clearly indicates the equation is parabolic, similar
 to the heat equation, while the interesting additional feature is the occurrence of the
 non-linear term u du/dx. The equation thus shows a structure roughly similar to that
 of the Navier-Stokes equations and has actually appeared in two separate problems in
 aerodynamics. An equation simply related to (1) appears in the approximate theory of
 a weak non-stationary shock wave in a real fluid. This is discussed in Ref. 1 (pp. 146-154)
 where a general solution of (1) is given. The equation is also given in J. Burgers' theory
 of a model of turbulence (Ref. 2) where he notes the relationship between the model
 theory and the shock wave. Historically, the equation (1) first appears in a paper by
 H. Bateman (Ref. 3) in 1915 when he mentioned it as worthy of study and gave a special
 solution. Eq. (1) is of some mathematical interest in itself and may have applications
 in the theory of stochastic processes. The aim of this paper is to study the general
 properties of (1) and relate the various applications. I wish to thank Professor P. A.
 Lagerstrom and F. K. Chuang for helpful collaboration.

 2. Relationship of (1) to Shock Wave Theory. The solutions to Eq. (1) can approxi-
 mately describe the flow through a shock wave in a viscous fluid. They can be related
 to the shock wave in several ways. In Ref. 1 an approximation based on the Navier-
 Stokes equations for one-dimensional non-stationary flow of a compressible viscous fluid
 gives

 dw , . dw 4 * d2w ,ON

 for w = excess of flow velocity over a sonic velocity where ß = (7 + l)/2, v* = kine-
 matic viscosity at sonic conditions. Eq. (2) is reduced to Eq. (1) by ßw = u; 4/3 v * = v .
 In this paper a different discussion, intended to illustrate the production and mainte-
 nance of a shock, will be given. In the cases in which we are interested we can say that

 ♦Received Apr. 17, 1950. This work is the result of research carried out under ONR contract N6-onr-
 244 Task Order VIII.
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 v is a small parameter, a statement which will be made more precise later. Thus, we
 study the case v = 0

 du , du A /0s
 5í + , "te-° A (3> /0s

 in order to see the underlying mechanism of propagation. Eq. (3) is similar to the non-
 linear equations for propagation of waves of finite amplitude in one dimension (Ref. 4,
 p. 482)

 + (u + c) ¿ļ(o> + u) = 0,

 r i (4)
 'h r + (w - c) Łr i - u) = °'

 where co = JpPo (dp/dp)1/z dp/ p', c = (dp/dp)1/2 = velocity of sound
 p = pressure, p = density.

 Eq. (4) reduces to (3) exactly if c = 0. Thus we have as a model a fluid in which u is
 transported by the fluid motion itself (i.e. with a velocity u). According to the theory
 of characteristics for first order equations, the projection of the characteristics of (3) on
 the (x, t) plane are straight lines whose slope is

 doc /«'
 m - "• ® /«'

 In addition Eq. (3) interpreted geometrically states that u is constant in the character-
 istic direction. Thus u corresponds to the Riemann invariants u ± w of (4). It follows
 that each characteristic is straight over its length and carries a definite value u. There-
 fore knowing the values of u at any particular instant the solution for the future may
 be found by following the characteristics. However this process may terminate after a
 finite time when two characteristics intersect. For example this must happen if for
 Xi < x2 , u(x i , t ) > u(x2 , t). This phenomenon is the steepening of the wave front for
 waves of finite amplitude known from the study of (4).

 We can now regard the viscosity as a mechanism for preventing the formation of
 discontinuities. The viscous stresses depend on changes of rates of strain so that the
 viscosity v appears in Eq. (1) multiplying a term of higher order d2u/dx2. This gives
 (1) the nature of a diffusion equation where velocity (actually momentum) is the quantity
 diffused. It is, of course, very much different from solid friction as expressed in first
 order damping terms. The characteristics of (1) are different from those of (3) for any
 v > 0 and they are given in the ( x , t) plane by the curves ^(x, t) = const, where

 v'¡/2x = 0 or t = const. (6)

 These characteristics occur as a double set which can be regarded as the limit of a pair
 of characteristics indicating a high signal speed. Thus here the speed of signals is infinite.

 Hence Eq. (1) shows the typical features of shock wave theory: (i) A non-linear
 term tending to steepen the wave fronts and produce complete dissipation, (ii) A viscous
 term of higher order which prevents formation of actual discontinuities and which
 tends to diffuse any differences in velocity.

 3. Relationship of (1) to Turbulence Theory. Eq. (1) is related to turbulence theory
 as a mathematical model. The similarity of the Navier-Stokes equation to Eq. (1) is
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 responsible. Both contain non-linear terms of the type: unknown function times a first
 derivative; and both contain higher order terms multiplied by a small parameter. The
 problems in turbulence are not very well defined but in most theories one is interested
 in some kind of spectrum, the feeding of energy through the spectrum and dissipation
 of energy. The model equation contains the non-linear terms and viscous terms vital
 to a study of those topics. Following Burgers, we regard Eq. (1) as a model for decaying
 free turbulence; he discusses other cases in much detail.

 The mathematical (rather than physical) aspect of the model can be emphasized as
 follows. We study as before the underlying wave propagation for v = 0. For the usual
 turbulence theory we are dealing with flows in two or three dimensions so that in addi-
 tion to equations like (1) a kinematical or continuity restriction must be added. For
 an incompressible fluid in two dimensions we have

 ut + uux + vuy = - ~px , (7a)
 P

 vt + uvx + wv = - i py , (7b)

 UX + Vy = 0. (7c)

 The continuity equation (7c) is a statement that only transversal waves are present in
 the flow field. However as discussed in Sec. 2 a typical feature of (1) is the longitudinal
 steepening effect (i.e. steepening in the flow direction). It does not seem possible to have
 waves of that type for a system like (7) but the steepening must be transverse to the
 local flow direction. The underlying structure of (7) is given by the characteristic sur-
 faces Ý( Xj y , t) = const, which now satisfy the equation

 - (*; + *»)(*< + w*. + «*») = o. (8)

 The vanishing of the first factor gives a double set of surfaces t = const, corresponding
 to the characteristic cones which have degenerated into planes, and propagation of
 pressure signals with infinite speed. The vanishing of the second factor gives stream
 surfaces. If any steepening effect occurs it will have to be related to these surfaces. In
 this case an invariant on these stream surfaces is the vorticity £(z, y, t) which satisfies
 the equation

 fi + + v£y = 0. (9)

 Thus, as pointed out by Burgers, the situation in the actual case is complicated very
 much by the kinematical restrictions.

 The quantity u in the above model is, of course, a measure of the turbulence. The
 model is completed by some kind of statistical analysis based on Eq. (1) or else Eq. (1)
 is considered as a stochastic differential equation subject to random boundary values.

 4. General Properties of Eq. (1). It may be expected that Eq. (1) is similar to the heat
 equation

 M d2#
 Tt=vĪŠ (10a>
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 and to the heat equation in a moving medium

 de . TT de d2 e nnK.

 with respect to the type of boundary value problems which are sensible. In this section
 some comparisons will be made and other general properties of (1) will be studied.

 An energy equation for (1) can be found by multiplying (1) by u and integrating
 over a spatial domain, for example (xx < x < x2). This gives

 I Ix at ^ dx + 1 ^ ~ ^
 (U)

 = v'u(x2 , t) fx (x2 , t) - u(Xl , t) fx (Xl , Í)} - " £ (I) dx.

 The various terms in Eq. (11) have the following meaning:

 1 rXt

 - / - dx = total rate of change of kinetic energy in system,
 2 JXI ot

 è {w3(#2 ft) - uz(xx , t) } = net flux of kinetic energy out of system across boundaries,
 Ü

 {(W fz) ~~ (W fx) } = ra^e wor^ d°ne on system at boundaries,

 /Xģ (dv'2 J J dx = total dissipation of energy by viscosity in system.

 The non-linear term in (1) provides a means of feeding energy into the system across
 the the boundaries. We can have a steady-state solution to (1) in an infinite
 domain ( - » < # < ») with an energy balance.

 liul~ul)=vL (!) dx> (l2)
 where ux = u(- », t), u2 = w(+ », t) and ux > u2 . A linear equation like (10a) or
 (10b) can have no such (bounded, non-zero) solution in an infinite domain. For such a
 steady state the total dissipation, as given by (12), is independent of the value of v.
 The steady solution is actually

 u = -Ui tanh ^ 9
 where ux and xx are constants. Thus u2 = -ux . This gives the steady flow through a
 shock wave and shows how the non-linear terms are responsible for a change from u > 0
 (supersonic) to u < 0 (subsonic). As v - > 0 the steep front of (13) at x = xx approaches
 a discontinuity which corresponds to the shock wave in a fluid where v = 0. This shows one
 reason why the conditions on continuity of solutions for v = 0 have to be relaxed if
 the solutions are to correspond to reality. Using (13) it is also possible to give steady
 state solutions for finite domains (0 < x < I) which have regions of rapid transition
 either in the interior or adjacent to the boundary.
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 1951] A QUASI-LINEAR PARABOLIC EQUATION IN AERODYNAMICS 229

 A translation property of (1) is also of interest. If we consider (1) in a coordinate
 system moving in the positive ^-direction with a constant velocity U , defined by

 X = X - Ut /1ylv ī . i X (i4> /1ylv
 we obtain

 ^ I / TT' ^ ÒZI /1 ij'
 -Tļ+(u- ot I / U) TT' - = y-, (15) /1 ij' ot ox ox

 so that w = u - U satisfies the same equation in (x, t) as u in (x, t):

 dw . dw d2w
 - + . w- = v - •

 da; ¿te

 In this sense (1) is invariant under a Galilean transformation. Bateman used the steady-
 state solution (13) as w(x, t ) in order to show a shock u(x, t) progressing with a velocity U

 TT J. 1 - XX - Ut) L
 u = TT U - Ui tanh J. 1 -

 2v

 Laws of similarity are also of importance in understanding the joint effects of non-
 linearity and viscosity in (1). For clarity, consider a solution u of (1) depending on the
 following parameters:

 I = significant length; e.g. size of domain,

 u0 = significant initial amplitude,

 v = viscosity.

 Then it is possible to express any solution of (1) in terms of these non-dimensional
 variables:

 P

 Ä P

 as

 R = F(R0 , t, f) . (16)

 This relationship is, of course, general. However it should be compared with the corre-
 sponding linear case where it is possible to express the solution as

 ? Uq = Ht, 8- (17) Uq

 These results are easily derived by introducing the dimensionless variables r and £ in
 the corresponding equations and seeing what is required of u to make the equations
 dimensionless. As one example, compare two solutions with the same I but different
 values of viscosity vx , v2 . In the linear case we can say that the ratio [u2/u0a = Ui/u0i]ķ
 when t2 = t'v'lv2 . In the non-linear case however we can only say that u0a must be
 adjusted so that u0a = u0lv2/vi if the F is to have the same value, and in that case u2 =
 U'V'/v2 . As might be expacted the non-linear equation cannot give much information
 under linear transformations.

 Various writers (Refs. 5 and 6) have studied the existence and uniqueness of solution
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 230 JULIAN D. COLE [Vol. IX, No. 3

 of different types of problems for quasi-linear parabolic equations. For initial value
 problems it is clear that only one condition is needed at t = 0, u(x , 0) = u0(x). Using
 this and treating Eq. (1) as an inhomogeneous heat equation, they reduce the problem
 to an integral equation. Picard iteration procedures can be used to prove existence
 and uniqueness of solution in the neighborhood of the initial line. The boundary condi-
 tions always involve constant values of u(or ux) on lines x = const. The problem of
 radiation where conditions like u{x , t) = f(t) have to be considered, has not been treated.
 It is much harder to prove existence and uniqueness, or to discover necessary and
 sufficient conditions for this, in the radiation case. Some further remarks about unique-
 ness will be made in Sec. 5.

 5. General Solution of Initial Value Problem. The general solution developed here
 applies directly to the case when the initial values are known in some domain

 u(x, 0) = Uo(x), (18)

 and the boundary conditions are of a simple type. For example, we may have

 u(x i ,0=0, u(x2 , t) = 0. (19)

 The solution is supposed to be bounded function having the necessary derivatives.
 The general result is: If Q{x , t) is any solution to the heat equation

 de d*e (20) (9(i' Tt=vtâ' (20) (9(i'
 then

 u(x,t) = - 2Ą (21)
 is a solution to

 du . du d2u /1N
 Tt+"Tx-'ī?- . (1) /1N

 The result can be checked directly by differentiation. However it was derived as follows.
 Let

 U = fx > * = l) (22)
 and substitute in (1). Integrating with respect to x we obtain

 (2S) (23) dt+2'dx) ~Vdx2' (2S) (23)
 where the function of integration is omitted. Like the heat equation (23) is invariant
 under the transformation x - » ax, t - > at (a = constant). This suggests finding solutions
 of the form

 <ķ(xft)=F{0(x,t)} (24)

 where 6 satisfies (20). Introducing (24) into (23) we have

 F'- 6, + i F'2- fx = v{F"6l + F'8„) . (25)
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 Hence we obtain the ordinary differential equation for F(d )

 1 (dF)2 - d2F jls) (dF)2 - 'W m
 which has the solution

 F (6) = - 2v log (0 - Ci) + c2 . (27)

 Therefore, F is the log of a solution to the heat equation and u(x, t) can be expressed
 as in (21).

 Integrating (21) with respect to x we obtain the equivalent relation

 0(x, t) = C(0 exp (- ģ, fb u(š> i) di)> (28)
 where b is an arbitrary constant and C = 0(6, t). Without loss of generality b may be
 normalized to the value zero. The initial values are simply related. If

 u(x, 0) = u0(x ), (29)

 then

 6(x, 0) = $0(x) = Co exp (- ^ J M0(Ö dçj. (30)
 Various representations of the solution to the heat equation may be used. A representa-
 tion suitable for an infinite domain (-00 < x <&) is given by

 « = 25^ L exp [- ÍLšiÍL] W{) (31)
 Thus given 0O from (30), 0 is found from (31) and u(x, t ) from (21). If an integration
 by parts is carried out in the expression for 0X (21) becomes

 , t) = ftZ exp [-(a; - Ö2/4 vt] exp [-(2y)~ł u„(y) dr,]u0(Ç) dļ
 exp [-(a: - 02/4f¿] exp [ - (2v)_1 jUoW dr¡] d£

 an expression for u(x, t) in terms of its initial values.
 The uniqueness of the solution to (1) in the domain (-00 <#<oo) under the

 initial conditions (29) can be discussed as follows. Any solution u(x, t ) of (1) defines
 a function 6(x , t) according to (28), where C(t) can be found such that 0(x, t) satisfies
 the heat equation (20). For each % C(t ) is uniquely determined within a multiplicative
 constant. The initial values of 6{x, t) depend only on the initial values of u(x, t) ac-
 cording to (30). Now assume there are two solutions u , v of (1) having the same initial
 values. If u0(x) is suitably restricted d(x, t) is uniquely determined by its initial values.
 But u, v as solutions of (1) are computed from their corresponding 0 according to (21).
 In this formula the factor C(t) cancels out. Since 0 is uniquely determined, u and v
 are identical for all ( x , t) and the solution to (1) is unique.

 6. Examples of Solutions. The first example is that of a shock wave approaching a
 steady state. We choose a step-function as the initial condition where the strength of
 jump is chosen so that the center of the jump will remain fixed. Then we see how vis-
 cosity smoothes even a sharp discontinuity.
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 232 JULIAN D. COLE [Vol. IX; No. 3

 The initial conditions are

 u0(x) = Ux X < 0,
 (33)

 = -ux X > 0.

 From (28), putting 6 = 0

 $o(x) = C0 exp (uix/2v) X > 0,
 (34)

 = C0 exp {-Uix/ 2v) X < 0.

 Upon substituting (34) in (31) we obtain

 iv Co (u2it')n 7 uxx , (uxx' cX + Uj
 6(x, t) iv = y exp (^Jļ2cA 7 uxx + , exp erf cX -^/T + Uj

 (35)

 _ exD/ exp w) erf ert g -
 exp V 2 J erf ert 2(vt)1/2 I

 Hence from (21) the solution is

 u(x} t)

 __ 2$h(u1x/2v)+ { exp[t¿ia;/2v]erf[(a;+^i0/2(y¿)1/2]+exp[- uxx/2v]gA [(a;- i¿1¿)/2(y¿)1/2J }
 Wl 2ch(uix/2v) + { exp ^^/2^] erf [(^ + i) /2 (v ¿) 1/2 ] - exp [-u1x/2v]erî[(x-u1t)/2(v t) 1/2] }

 (36)

 It is easily verified that as t - > 0 the initial conditions are satisfied if we use

 erf(oo) = 1, erf(- oo) = - 1. (37)

 For large values of t/v (and | x ' 9^ ut) we can substitute in (36) the asymptotic formulas
 for erf,

 erf z ^ 1 - n^exp (- z 2) + exp (~~22)o(ji)> z > 0. (38)

 This shows that the approach to the steady state given by Eq. (13) is very rapid. The
 deviations from the steady state die out like exp {-u't/4v).

 The passage to the limit v - > 0 in the solution of (1) is important for determining
 the behavior of discontinuities in the solution to the equation (3) with v = 0 from the
 start. Putting v = 0 in (36) we have, if ux > 0

 ufa t ) = -(sign x)ux ,

 so that the initial conditions are preserved and we have a stationary shock wave. The
 invariant quantity across this shock wave is the kinetic energy u' . This is to be taken
 as the rule for treating discontinuities in the solution to (3), from the viewpoint of an
 observer at rest relative to the discontinuity. In addition the flow velocity must de-
 crease in passing through the shock. In the case the initial velocities are not chosen as
 in (33) the situation is the same in a moving coordinate system. The solution for a shock
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 1951] A QUASI-LINEAR PARABOLIC EQUATION IN AERODYNAMICS 233

 tends to a quasi-steady state progressing with a certain velocity U , as indicated in
 Sec. 4. For example if

 u(x, 0) = U0(x) = Us , X < 0
 (39)

 = uá , X > 0 where u3 > uá ,

 we may define a moving coordinate system so that the solution following (33) applies.
 Let

 Mi = fe - U) = ~(u4 - U) (40)
 or

 U = - (uz + u4) . (41)

 Then according to (15), the solution (36) applies to (39) if x is replaced by x - Ut ,
 and u by u - U . The speed of propagation of the shock U is the average of the velocities
 on both sides.

 The second example shows the decay of an arbitrary periodic initial disturbance.
 This corresponds in the turbulence model theory to the decay of free turbulence in a
 box. The initial and boundary conditions are:

 u(x, 0) = u0(x), 0 < x < I (41a)

 u( 0, t) = u(lj ť) = 0, t > Ö. (41b)

 From (21) and (30) these conditions induce the following conditions on 6(x , t )

 e{x, 0) = 0o 0) = C0 exp ^ f u0(0 (43a)

 6X(0, t ) = 6X1, 0 = 0 (43b)

 The problem for the heat equation specified by conditions (43) has a unique (bounded)
 solution. We can represent the solution to the heat equation in a standard way by a
 Fourier series in x whose coefficients are exponentials in t

 d(x , t) = A0 + ¿ exp t^An cos , (44)
 so that (43b) is satisfied. The coefficients A0 , An are determined at t - 0 as

 A0 = j 60(x) dx = y exp £ - ^ f Uo(Q dx (45a)

 An = ī I0 cos r^T = ~ 10 exp [ ~~ 'v I U° ®

 Hence from (21) the solution is

 ( a 2īnr exP [-vn2TT2t/l2]nAn sin (mrx/l)
 ' ^ A0 + X)n-i exp [- vn'2t/l2]An cos {mrx/l)
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 For large values of time t only the first term in the numerator remains so that

 / jn Aļ ir2 I . irx ,A> .v
 u(x, / Ö jn exp ivT J sm . T ^ ,A> .v

 This may be contrasted with the solution to corresponding linear problems at large
 times

 6{xy t) = Bx exp £ - v ļā sin , (48)
 where

 Bļ = j J Uo(x ) sin dx.

 The solutions (47) and (48), are seen to have the same form in dependence on (x, t),
 but different amplitudes. The similarity of the solutions is an expression of the fact that
 when the amplitudes are small the non-linear equation behaves like the linear one.
 However the decay process over intermediate ranges of time is considerably different.
 We can find out something about this process by considering special cases. For example,
 consider a simple sine wave

 u0(x) = Wo sin • (49)

 The coefficients are explicitly evaluated in this case as

 A° = etl exp - 003 x)] «to - C« eXp [- ^;]z„ ^), (50)

 A- = ?fí exp [- ŠÍ (x - cos x)] .to - eisp [- (^;), (51)
 so that (46) becomes

 ( a _ É2E

 ' l Io(uoI/2ttv) + 2 exp (-v2n2T2t/l2)In(n0l/2wv) cos irnrx/T)

 The conditions at t = 0 are satisfied by (52) for
 CO

 J0(z) + 2 2^ I*(z) 008 nx = exP (2 cos ®)* (53)
 »-1

 The significant parameter occurring in the solution is the Reynolds number R0 based
 on the size of the box

 Ro = ^' (54)
 The complexity of (52) is due to excitation of higher frequencies because of the non-
 linearity of (1). The same excitation of higher frequencies was noted by Burgers by
 directly splitting the solution of (1) into the form

 00

 u(x, t) = 53 -®»(0 sin nx
 n-1
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 1951] A QUASI-LINEAR PARABOLIC EQUATION IN AERODYNAMICS 235

 and observing the coupling between the En . This can be contrasted with solutions to
 the heat equation under the same initial conditions

 0(x, t) = u0 exp £ - v ļā t J sin (55)
 which, for all time, shows only the fundamental frequency. This is typical of linear
 equations as is the linear dependence on the amplitude of the initial disturbance. The
 solution (52) emphasizes the non-linear dependence on the initial conditions. The initial
 amplitude enters through Ä0 . As R0 0, u(x, t) = 6{x, t) + 0(Ā0). This estimate shows
 to what approximation the non-linear terms can be neglected and emphasizes that the
 dimensionless parameter R0 (not merely u0) should be small (R0 1). For large values
 of R0 all the In(R0/2w) are almost equal so that large changes in R0 (increases in u0)
 produce relatively little effect on the solution. Asymptotically we have

 As the first approximation for large R0 the In(R0/ 2t) may be cancelled in (52) to give

 urx 9 t) = - Xr-i exp (-vn'2t/l2)n sin (riTx/l) # _
 9 ' 1 + 2 Xn«i exp (- mVi/Z2 ) cos (riirx/l)

 Equation (57) is an approximation which should describe what happens for t greater
 than some h > 0. Equation (57) can be put in a simpler form by using an identity for
 theta functions (Ref. 7, p. 489)

 For large R0 , Eq. (58) gives the spectrum, involving all higher frequencies, explicitly.
 The solution is independent of the initial amplitude and the spectrum damps expo-
 nentially with the first power of the wave number for large n. For small n and vn2t/l2 <<C 1
 the coefficients depend on 1/n. The dissipation is proportional to u2x and is thus in-
 dependent of n for the first few n. The exponential cut off for large n assures a finite
 total dissipation. For 0 < x < I (58) can be written in another form,

 + (59,

 For x/vt large, the series can be approximately summed as

 u(x> 0 - ' {tanh {^f) 'i1- l)}> (6°)
 a form which shows a steep front near x = I. The general picture presented by the
 above considerations is the following. The initial sine wave (49) shows after the first
 instant a tendency to develop a steep front near x = Z, if R0 is sufficiently large. After
 a while this steep front broadens and dies out until at the end only a sine wave remains.
 This sine wave has an amplitude which is smaller than that of the corresponding linear
 problem because of the increased dissipation over the intermediate ranges of t. It is
 clear that similar considerations apply to any initial distribution of the same general
 form as a sine wave.
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 7. Concluding remarks. The simple examples which have been worked out are in-
 tended to illustrate some general features of the interaction of non-linearity and vis-
 cosity. The main effects are always the same, namely, steepening of the velocity profiles
 by non-linearity and prevention of discontinuities, diffusion of momentum and dissipa-
 tion of energy by viscosity. Under different interpretations these effects are considered
 responsible for the formation of steep but continuous shock wave fronts and for the
 finite dissipation and feeding of energy through the spectrum. As an example of different
 interpretations consider a velocity distribution with a steep front. The discontinuous
 front of non-viscous flow has infinite dissipation when considered in viscous flow and it
 contributes terms like 1/n to the spectrum. When viscosity is considered from the outset
 the front is steep but continuous, the dissipation is finite and independent of v; while
 the front is steep there are some terms like 1/n in the spectrum but the spectrum dies
 out like exp ( - n) for large n. Another important general feature is the non-linear de-
 pendence of the solution on a characteristic Reynolds number R0 = u0l/vt u0x/v. For
 low R0(Ro <ŚC 1) the non-linearity is not important and the solution behaves like the
 solution to the corresponding heat equation but as R0 increases the solution changes
 very much. For large R0 it is typical that there are ranges of (x, t ) for which the solution
 depends very little on the variations in R0 . Part of the problem for the future is a more
 precise determination of the ranges in which the various approximations are valid.

 The same type of result applies to some special solutions in higher dimensions. For
 the equation in two or three dimensions which is analogous to (1)

 q* + q-Vq = vV2q (61)

 it can be verified that the method of Sec. 5 applies. If 6(x , t) is any solution of

 et = „ V2 0, (62)
 then

 q = -2v V (log ff) (63)

 is a solution to (61). It should be noted that (63) gives an irrotational flow field.
 For future work it seems worthwhile to investigate simple solutions further and study

 the radiation problems. Then the three-dimensional cases may also be studied.
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