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A convection-diffusion equation arises from the conservation equations in miscible and 
immiscible flooding, thermal recovery, and water movement through desiccated soil. When the 
convection term dominates the diffusion term, the equations are very difficult to solve numerically. 
Owing to the hyperbolic character assumed for dominating convection, inaccurate, oscillating 
solutions result. A new solution technique minimizes the oscillations. The differential equation is 
transformed into a moving coordinate system which eliminates the convection term but makes the 
boundary location change in time. We illustrate the new method on two one-dimensional 
problems: the linear convection-diffusion equation and a non-linear diffusion type equation 
governing water movement through desiccated soil. Transforming the linear convection diffusion 
equation into a moving coordinate system gives a diffusion equation with time dependent 
boundary conditions. We apply orthogonal collocation on finite elements with a Crank- 
Nicholson time discretization. Comparisons are made to schemes using fixed coordinate systems. 
The equation describing movement of water in dry soil is a highly non-linear diffusion-type 
equation with coefficients varying over six orders of magnitude. We solve the equation in a 
coordinate system moving with a time-dependent velocity, which is determined by the location of 
the largest gradient of the solution. The finite difference technique with a variable grid size is 
applied, and a modified Crank-Nicholson technique is used for the temporal discretization. 
Comparisons are made to an exact solution obtained by similarity transformation, and with an 
ordinary finite difference scheme on a fixed coordinate system. 

INTRODUCTION 

The numerical solution of convection-diffusion problems 
is notoriously difficult when convection dominates be- 
cause the equation then assumes a hyperbolic character. 
The convection-diffusion equation is: 

CC ?C 72C 
= + P e = - =  (1) 
Ct ¢x ~x 2 

We study solutions with the following boundary 
conditions. 

c = l  x = 0  

?c 
?x =0 x 1 

t>0  

c=0  x/>0 t=0  

Clearly at high values of the Peclet number Pe the 
transient equation (l) is hyperbolic in character. 

Price et al. 2° were the first to recognize that the 
difficulties are due mainly to the spatial discretization. 
They proved that a finite difference solution with a central 
difference approximation will not oscillate provided: 

PeAx  <~2 (2) 

They also showed that when a first order difference 

expression is used for the convective term, the finite 
difference solution will not oscillate at all. Similar criteria 
as equation (2) can be obtained for weighted residual 
methods 6.12. The limits get slightly larger for higher order 
methods. 

Other methods have been used for examining the 
oscillations. Stone et al. 24 analysed the transient equation 
with a Fourier-series method. They compared a single 
component of the Fourier series to the same component in 
the exact solution of the difference equation. Gray and 
Pinder ~8, Gresho et al. ~° and Runchal z2 made similar 
comparisons of finite difference formulations with weigh- 
ted residual methods. The general conclusion is that 
weighted residual methods are better based on equal 
number of nodes. Lantz TM and Chaudhari 4 examined the 
truncation error of the finite difference method applied to 
the transient equations. They found that backward 
schemes introduced artificial dispersion and thereby 
smoothed the front, and that this effect could be reduced 
by a judicious choice of spatial and temporal step sizes. 

Oscillations will be introduced into the transient so- 
lution if the temporal integration is not appropriate. Price 
et al. 2° showed that an explicit, Euler scheme will not 
oscillate provided: 

At~l/2, .  (3) 

where 2., is the maximum eigenvalue of the matrix 
resulting from the discretized equations. An implicit, 
backward Euler temporal integration method does not 
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oscillate at all, whereas a Crank-Nicholson method 
(equal weighting at the old and new times) does not 
oscillate when: 

At <~2/2,. (4) 

Similar guidelines are provided by Smith et al. 23 for other 
temporal integration schemes. We assume in further 
discussion that the temporal integration scheme used is 
sufficient to avoid oscillations due to the time 
discretization. 

Lantz ~'~ combined the spatial and temporal truncation 
errors in equation (1) by using Ax = PeAt  in an explicit 
formulation using backward differences for the convective 
derivative. Van Genuchten 25 and Laumbach ~ 5 have both 
made equivalent combinations (using higher order tem- 
poral integrations) to improve the accuracy of the calcu- 
lations. As yet these manipulations have not been exten- 
ded to non-linear problems, although Lantz ~4 achieves 
some success in special non-linear problems. 

Summarizing, we know how to eliminate oscillations in 
the solution due to the temporal integration, and for some 
methods we know the spatial increment needed to 
eliminate oscillations due to the convective term. 
Unfortunately, the spatial increment (Ax) needed is 
frequently much too small and we are forced to degrade 
the quality of the solution by introducing artificial 
dispersion in the numerical scheme. We propose an 
alternative method, the moving coordinate system, that 
permits larger spatial increments (Ax) over part of the 
domain without degrading the solution from oscillations 
or artificial dispersion. 

We first present some alternative solution methods as 
applied to the convective diffusive problems and then 
describe the moving coordinate system as a numerical 
method. Two examples are given, the linear convection 
diffusion equation (1) and a non-linear diffusion type 
equation. For both examples exact solutions and approp- 
riate numerical schemes are discussed. The results using 
both a moving coordinate system and conventional 
methods are compared in accuracy and computation cost. 
For the non-linear diffusion equation an eigenvalue 
analysis is performed, which further clarifies the numeri- 
cal problems. 

ALTERNATIVE S OLUTION M E T H O D S  

A great variety of solution methods have been applied to 
the convection-diffusion equation: finite difference and 
weighted residual formulations (Galerkin, collocation, 
etc.). Techniques used to improve the efficiency include 
variable interpolation and the method of characteristics. 

The finite difference formulation initiated by Peaceman 
and Rachford ~7 was followed by schemes of increasing 
complexity. Stone and Brian 24 introduced higher order 
spatial schemes while Laumbach ~5 used high order in 
both space and time. Unfortunately, the complex schemes 
cannot always be adopted to more difficult non-linear 
problems in two dimensions. 

The Galerkin finite element method was applied by 
Price et al.~9 and provided better results than the simple 
finite difference schemes, especially for large Pe, 103-106. 
Young 27 examined a class of weighted residual methods 
including orthogonal collocation and moment methods. 
Huyakorn tz used an upstream Galerkin method; Chien 5 

used an upstream finite difference scheme. Both add 
artificial dispersion to dampen the oscillations. 

While capable of solving the convection-diffusion 
equation, the conventional schemes require a large num- 
ber of elements, nodes and timesteps when convection 
dominates. Extensive storage space and computer time 
are necessary for two-dimensional cases. Therefore alter- 
nate techniques are desirable. 

Price et aL 19 introduced a variable interpolation tech- 
nique by adding points before the front when it advances 
and removing those behind the front after it passes. This 
technique greatly improves the efficiency but is not easily 
adopted to more difficult problems. The results do, 
however, show that the small elements dictated by 
equation (2) are needed only in the vicinity of the front: 
large elements can be used elsewhere. Garder et al. ~ used a 
method of characteristics. The differential equations are 
solved on a fixed grid and with a set of moving points. The 
velocity of these points are determined by the characteris- 
tics. Diffusion is modelled by a marker-and-cell technique, 
which limits the accuracy. Errors smaller than 2°o were 
not achieved and computer storage is a limiting factor in 
two dimensions. 

MOVING COORDINATE SYSTEM 

The moving coordinate system is based on the obser- 
vation that only near the sharp change in the solution 
(front) are small elements needed and elsewhere only a few 
large elements are necessary. The moving coordinate 
system (abbreviated MCS) involves a transformation of 
the differential equation from one coordinate system fixed 
in time to a coordinate system which moves with the 
velocity of the front. Starting from a general parabolic 
equation: 

&, ? &. 
?c +.qlc, x, t ) ~  = ~ ( d t c ,  x, t l ~ )  (5) 
¢ l  t 'X ( 'X  

the following transformation is performed: 

l 

6 = x -  12(t')dt' 

0 

~l = t 16) 

2(0 is the velocity of the front, so the integral m equation 
(6) represents the distance the front has travelled. This 
velocity can be specified by the user or determined 
numerically from the solution, as shown below. We now 
have: 

¢4 (¢ st cr I ( t  ?g ?q 

?c ?c76  &'i 'q  dc 

?x c ¢ c x  ~r l~.x- ~'¢ 

~ 2  C ~2¢, 

~ ,  = - - ,  (7) 
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t=O 

0 

x - t  ~-~7 and the boundary conditions are then: 

c = l  at ~ = - P e ~ l  

, .  x o ~ c = 0  ~.t ~= 1 - P e t /  
q > 0  (11) 

t=~ r 

0 

c[ 
t=t2 Xt 2 

F 
0 

Figure 1. 

x 
0 i "-WC 

REGION OF ~ALCULATION 

~_ >'t2 Xt 2 

0 
REGION OF CALCULATION 

Fixed and moving coordinate system. 

f 

and equation (5) can be rewritten as: 

~n=Eg(c, ¢, q)--z(r/)]~=~ d(c, ¢, q ?~) (8) 

The boundary conditions must also be transformed. 
For  example, the boundary condition from equation (1) 
becomes: 

?c ¢= i ~-~ = 0 at 1 2(r/')dr/' 

r />0 (9) 

c = 0  at ~ > 0  t7=0 

c=O 2 > 0  ~/=0 

With the MCS an LU decomposition must be performed 
every time the boundary node changes, whereas in a fixed 
coordinate system only one LU decomposition is done 
per problem. This disadvantage of MCS is unimportant 
for non-linear problems and less important for temporal 
integration methods with a variable step size. 

For a non-linear problem the frontal velocity is not 
known a priori and we must measure it by either following 
a specific concentration level or the largest gradient. This 
later choice is illustrated in the second example. 

The boundary conditions can be applied in two ways. If 
the solution at the boundary is known to have a zero 
gradient (or nearly so) we can just apply the boundary 
condition at the closest node. The location of the boun- 
dary in the numerical calculations then proceeds in jumps 
during the integration. If the solution at the boundary has 
a non-zero gradient, then the above procedure would 
introduce significant error. In that case we move the 
location of the last element so that there is always a node 
at the actual boundary location. Both procedures are used 
below. 

The distribution of nodes is closely related to the 
broadening of the initial profile throughout the in- 
tegration. An estimate of the diffusion length can be found 
from the solution of the diffusion equation in an infinite 
medium with an initial step change. The solution is3: 

c =erfc (x/~/4Dt) 

For a change in c of 99% (c=0.01) we get: 

X 
- -  ~ 1 . 8  v/TD~ 

The location of the boundary now changes with time. The 
revised problem, equations (8, 9) is exact and merely 
another version of equations (5, 1). 

The improvement in MCS comes from an optimum 
location of nodes. Since the front remains fixed in the 
moving coordinate system, small elements or more grid 
points can be concentrated there (where they are needed 
to eliminate oscillations) but larger elements or fewer grid 
points can be used elsewhere (where they are not needed). 
It is the use of large elements away from the front that 
gives rise to the economy. In a fixed coordinate system the 
front eventually appears everywhere, so that small ele- 
ments are needed throughout the domain, leading to 
excessive computation cost. The key to economy is to pick 
the right frontal velocity, 2(r/j, and use a proper distri- 
bution of elements. The difference between calculating in a 
fixed or moving coordinate system is illustrated in Fig. 1. 

Considering the linear equation (1), the front moves 
with a constant velocity Pe(2(t)= Pe), so we get simply the 
diffusion equation: 

~([' ~2  c 
~r/ ~ 2  (101 

so that the diffusion length is: 

L = 3.6\~Dr (12) 

Here D = I and since max t ~ 1/Pe, the maximum L will be: 

L ~ 3.6/~/Pe (! 3) 

Equation (13) can therefore be used to estimate the 
element location. Sufficiently small elements must be 
included in a region of length L about the front if the 
accuracy is not to be degraded. For a non-linear problem 
the Peclet number must be estimated in order to obtain 
the diffusion length. 

Application of MCS to two-dimensional problems has 
been done 13 and will be reported separately. If we 
compare the MCS to the technique of moving small 
elements with the front, the MCS method involves less 
bookkeeping, and the interpolation and adjustment of the 
solution occurs at the boundary, where the solution is well 
behaved, rather than at the front, where it is not. The MCS 
is closely related to the method of characteristics. If there 
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Table 1. Comparison O/MCS with conventional ,scheme Ihoth u,~in,q OCFE) 

Error  at Er ror  at M a x i m u m  osci l la t ions  
Entry  Scheme N E  N C O L  At x 10 ° C P U *  Pe' t  =0.088 Pe' t  =0.444 at Pe-t =0.444 

Pe = 877.9 I MCS 4 2 2,5 3.3 0.03 0.04 
2 6 2 2,5 5.1 0.033 0.005 
3 6 2 10 1.0 0.04 0.01 
4 8 2 2,5 6.7 0.008 0.008 
5 14 2 125 15.1 0 0 0 4  0.001 
6 O C F E  5 2 2 3.2 ~0.1 -0 .1  0.1 
7 15 2 2.5 8.1 O. 11 0.05 0.04 
8 20 3 2,5 17.0 0.03 0.004 0.0022 

At x 10 s 7: 

Pe = 87790 9 MCS 12 2 5 4.5 0.5 0.02 
lO 14 2 2.5 8.1 0.5 0.01 
11 16 2 1.25 17.0 0.5 0.004 
12 O C F E  50 3 1 70.5 0.0 0.003 
13 50 3 0.5 152.0 0.5 ~ 0.1 
14 50 5 1 140.0 0.0 0.003 

0.005 
0.004 

0.004 
~0.1 

* C P U  on C D C  6400 

were no second order terms MCS would be a method of 
characteristics. With second order terms, though, the 
method of characteristics is not valid. We model the 
dispersion caused by the second order terms by solving 
the second order equation (which, in the moving coor- 
dinate system, represents diffusion about the front). In 
contrast Garder  et al. 9 use a marker-and-cell technique to 
model the dispersion. Finally, any method of spatial 
discretization can be used: we employ both orthogonal 
collocation on finite elements and finite difference me- 
thods in the MCS. 

E X A M P L E  I: C O N V E C T I O N - D I F F U S I O N  
EQ U A T I ON 

The first example is MCS applied to equation (1). The 
exact solution in an infinite domain ist6: 

c(x, t )= l/2[erfc(x - Pet)/2x/t)+ eeCXerfc(x + Pet)/2xflt) ] 

which can be used as an approximation for a finite domain 
provided c(l, t )~ lO -~6. The numerical scheme and 
results are discussed. 

Numerical method 
We can apply any numerical method to solve equations 

(10, 11). As we are only interested in rt<l/Pe the 
discretization only covers [ - 1 ,  1]. We choose to apply 
orthogonal collocation on finite elements (OCFE) 2, giv- 
ing a set of ordinary differential equations and algebraic 
equations. We use the notation j =  1 . . . . .  N T  to identify 
the jth node at different ~. Within each element the 
notation J = l  . . . . .  NP denotes the local numbering 
systems within the element, which has NP nodes. In the 
kth element j = ( N P -  1){k - 1)+ J, since the NPth node of 
the ( k -  1)th element is the same as the 1st node of the kth 
element. We let c~ k~ be the concentration of the Ith node in 
the kth element. The equations are: 

dc 2 1 NP 
interior collocation: ~ =-~2k2 ~ B jtC~t k' 

/= l  

1 NP l NP 
i~= A,.icl k+l' continuity: ~ k  /=12 ANP, ICIk'=A~k+ 1 =1 

Using a Crank-Nicholson time discretization gives: 

,n + 1 n l NP ~,i -- cj  _ 
Art 2A~ Z nJl{c~kLn +1 "l- ~.~kLn) 

I=l  

where c~ = cj(rt = nat/). The set of equations can be written 
a s :  

Cc.+ i =De"  (14) 

A similar set of equations could be developed using finite 
difference or Galerkin finite element methods. 

The boundary conditions are applied by modifying the 
matrices C, D and c n. For points to the left of the location 
of the boundary, j < IL, ~j < Perl, we replace C and D by 
the identity matrix ! and c" by 1. Similarly for right 
boundary points we do the same thing i f . j>lR,  ~ > 1  
-Pert. The modified matrices arc: 

C.* = 

lji for j < IL or ~.i < - Pert 

Cii for I L < j < I R 

12~ for .j> IR or ~i> 1 - Pert 

with a similar definition for Dii 

e ~¢n 

1 . j<IL 

c" IL <.j<IR 

0 .j> IR 

The problem is then: 

C , c , n  + 1 = D,c,°  

C* is decomposed using an LU decomposition approp- 
riate to its structure and e *"+ ~ is calculated. Since the 
location of the boundary changes in time, the LU 
decomposition must be performed every time the boun- 
dary location, -Pert or l - P e r t  passes another col- 
location point. 
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Comparison of,standard OCFE versus moving 
coordinate system. Pe = 877.9, NE = 4, N C O L  = 2, At = 2.5 
x 10-6. Element nodes at ~ = - 1 ,  -0 .05,  0.0, 0.05, 1. 
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Figure 3. Comparison of standard OCFE versus movm.q 
coordinate system, Gaussian initial distribution P e =  10 6. 
N E = 1 3 ,  N C O L = 2 ,  A t = 2 .5×  10 -'). 

Another comparison is made in Fig. 3 with a Gaussian 
initial distribution and Pe= 106. Both schemes use the 
same number of elements and the same time-step. Severe 
oscillations appear in the conventional scheme whereas 
MCS gives none. The moving coordinate system works 
best for large Pe and oscillations are not introduced 
provided the initial conditions can be fit without oscil- 
lations. As time proceeds the profiles become less steep 
due to the dispersion indicated by equation (13), and 
oscillations are less likely. 

MCS is compared to the method of variable in- 
terpolation, Price et al. 19, in Fig. 4. The measure of 
accuracy is given by the maximum deviation from the 
exact solution 

E(t) = Max.{ Idx. t ) -  (.'exact(X/, t ) l  } 

i 

Both cases have negligible error caused by the time 
integration. The error decreases with time for the same 
number of elements and the MCS is more accurate at 
small times (when the front is steepest). In contrast to the 
method of characteristics by Garder  et al. 9, which showed 
a minimum error of about 2%, the MCS will converge for 
increasing number of elements and with smaller timesteps, 
giving errors of 0.1 ° / f o r  the case shown in Fig. 4. 

The elements are not all the same size in M C S - O C F E  
When small elements are used near the front the solution 
will be good at small times (when all changes occur near 
the front). At larger times, changes also occur further away 
from the front so that elements are needed there, too. Thus 
schemes which have slightly bigger elements may be 
preferred at later times. Figure 5 illustrates the error as a 
function of time for solutions obtained using different 
grids. 

In Table 1 are shown results, errors, computat ion time, 
number of elements and At for Pe = 877.9 and 87790. It is 
clear that MCS is superior to the conventional schemes. 
By having the same number of elements (entries 5 and 7 
for 15 elements) the error is decreased by a factor 20-40, 
but the computat ion time is only two times longer. For  the 
same computat ion time (entries 1 and 6 for ~ 3  s) the, 
conventional scheme is unreliable (10%) while MCS gives 
fairly accurate results o/ (3/o). For the same computat ion 
time (entries 5 and 8 for 16 s) the error is decreased by a 
factor of 4-8 and MCS gives no oscillations while the 
conventional scheme does. 

Results 
The advantage of using MCS for problems with 

dominating convection is illustrated by comparisons 
using the same spatial discretization [here collocation) 
with both moving coordinate system and a fixed coor- 
dinate system. The convection~liffusion equation is sol- 
ved with Pe=877.9 and 87790.0, with results given in 
Table 1. 

Figure 2 compares a conventional scheme to the MCS- 
scheme using 4 elements, The scheme with a fixed 
coordinate system oscillates whereas the MCS solution 
does not. To eliminate the oscillations in the fixed 
coordinate scheme requires 20 elements, and an increase 
of computer  time by a factor of 5 (compare entries 1 and 8 
in Table 1). Conversely, for non-oscillating solutions, 
MCS uses only 20% of the computation time needed with 
a fixed coordinate system. 

I0- 

i 0  -?- 
n- 
O ~r 
r r  
w 

i0  -~ 

- I  
I0  

0 

Figure 4. 

1 i I 

- - l -  VARIABLE INTERPOLATION, NE:  14 
- - ~ -  MCS, NE = 14 

i I 0'.3 0.1 0 .2  0.4 
k l  

Comparison of moving coordinate system to 
method with variable interpolation 19, Pe=877.9,  MCS 
=entry 4 in Table 1. 
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t x l O  4 

Figure 5. Error as function of time. Effect of mesh 
location. Pe=877.9, N E = 5 ,  A t = 2 . 5 x  10 -6. 1, Element 
nodes at ¢ = -  1, -0 .2 ,  -0 .05,  0.05, 0.2, 1; 2, element 
nodes at ~ = - 1, -0 .12,  -0.04,  0.04, 0.12, 1. 

For Pe = 87790, the MCS is even better. Table 1 shows 
results for both MCS and conventional OCFE. 
Comparing entries 13 and 10 the standard OCFE gives 
excessive oscillation, but MCS gives only I~o error and 
used only 5~o of the computer time. 

We conclude that the moving coordinate system is very 
effective in improving the efficiency of numerical solutions 
to the convective~liffusion equation. The solutions do 
not suffer from severe oscillations or from excessive 
numerical dispersion, yet are still economical to calculate. 
Further improvement could be made if a variable time 
step algorithm is incorporated. Since the front is nearly 
stationary in r/, with only slight broadening, larger time 
steps are possible with MCS than with a fixed coordinate 
system. Several decompositions are made in MCS during 
the integration and the timestep can therefore easily be 
changed based on the local truncation error. Such an 
algorithm is used with success for two-dimensional 
cases ~ 3. 

EXAMPLE I!: NON-LINEAR DIFFUSION-FLOW 
THROUGH POROUS MEDIA 

Another problem whose numerical solution oscillates 
arises in moisture transport in desiccated soil. A simplified 
model for the transport was made by Finlayson 7. The 
one-dimensional mass balance for a single liquid phase 
flowing through a porous media is: 

? ? 
(¢ppS)=-~- (pq)  (15) 

(" l C ) '  

where ~o is the porosity, p is the liquid density, S is 
saturation (liquid volume/non-solid volume), and q is the 
volumetric flux. Time is t and distance is y, gravity is 
neglected. The neglect of gravity allows a similarity 
solution (see below), makes oscillations more evident, and 
does not appreciably affect the difficulty of the problem. 
Darcy's law is assumed: 

The equations are non-dimensionalized to give: 

dS dp ? k, (16) 
dP~ ?t  - ~ x  

where kr is the relative permeability, k/k o, and 

p=p'/(pgL) t=rkopg/lItLtp) x = y / L  

Both k, and S depend on the capillary pressure, which is 
the air pressure (taken as zero) minus the water pressure: 

p~ = - p  (17) 

The variations of S and kr with p,. are taken as: 

S - S  r 1 1 

l _ S r - l + ( p c L / A 1 ) ~ k ~ - l + ( p ~ L / B 1 ) ~  (18) 

For  a typical soil we use*: 

~,=0.32, L = 1 0 0  cm, A1=231 cm, B1=146 cm, 

~t=3.65, fl=6.65 

The boundary conditions are: 

p = BPO for x = 0 

CP=o for x = l  
?x 

t > 0  (19) 

p =BP 1  for x > 0  t = 0  

Finlayson 7 describes the mathematical difficulties 
which are associated with solving this equation. The drier 
the soil is (decreasing BP1), and the more water imposed 
at x = 0  (BPO=0,  soil saturated), the more difficult the 
problem is to solve. A similarity solution is derived to give 
the exact solution for small times. An eigenvalue analysis 
further quantifies the numerical difficulties m this pro- 
blem. The numerical techniques used for solving the non- 
linear equation in both fixed and moving coordinate 
systems are described, and comparisons are made be- 
tween them. 

Similarity solution 
Equation (16) can be transformed with the similarity 

variable ~ = x/xft .  

1 ~ds dp d [k dp'~ 
0 = - } ~ d-ppf ~ ,  + ~ ~ ", d--~, ) (20) 

and 

p = BPO for ~ ~ , ~  

pk ~p' p q -  
It ~3' 

where It is the liquid viscosity and p' is the liquid pressure. 

p =BP 1  for ~ 0  

* T h e  p a r a m e t e r s  c h o s e n  a re  for  a grave l ly  c o a r s e  soil, a n d  v a r y i n g  the 
ini t ial  p r e s su re  B P !  enab les  us to  m a k e  the  p r o b l e m  difficult  to  solve. A 
fine soil gives s imi la r  resul ts  w i t h o u t  so severe a cho ice  of  B P I .  
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Similarity solution of the non-linear equation at 

A numerical solution is obtained by setting a time 
derivative on the left hand side, assuming an initial 
condition and placing the right hand boundary at a large 
distance instead of infinity. This equation is integrated to 
steady-state, which then is the solution to equation (20). A 
finite difference technique together with the GEARB 
package was used and the right hand boundary was 
placed at ~=6 .  Integration to t ime=  10 was sufficient to 
reach steady-state. 

The solutions are shown in Fig. 6 at t=0.01 for four 
different initial soil dryness. As can be seen the steepest 
pressure profiles occur for the driest soils. 

Eigenvalue analysis 
Finlayson 7 investigated the effect of the initial dryness 

of the soil on the stiffness ratio of the eigenvalues. Here we 
look at the effect of various discretizations. Discretizing 
equation (16) using orthogonal collocation on finite 
elements gives a set of non-linear ordinary differential 
equations: 

dpi 
~i Cji(P) dt-= ~i Oji[P)Pi (21) 

The Jacobian for equation {21) can be expressed as: 

? 
J = = - ( C  1.D) (22) 

fPR 

and the eigenvalues of J can be found given a solution p 
and discretization at a certain time 26. 

The results obtained at t =0.005 and t =0.015 for BPI 
= - 3 0 0  cm and B P O = 5  cm are given in Table 2 for 
various discretizations. At t = 0.015 the front is between x 
= 0.20 and x = 0.30. For uniform discretization the pro- 
blem becomes stiffer as time proceeds, since the stiffness 
ratio SR becomes larger. If the system of equations is 
linear and uncoupled, the absolute value of the reciprocal 
of the ei~zenvalue is a time constant. For example 

d l '  
¢ : ~ -  = - - ) .  

dt 

has an eigenvalue of - 1/~, and a time constant of ~. If E is 
small the eigenvalue is large. If we view the eigenvalues of 
equation (22) as the reciprocal of the time constants for the 

nodes in the system, then if the time constant becomes 
small the eigenvalue becomes large. The time constant at a 
nodes is then (-dS/dpc)~. Since the boundary pressure is 
+ 5 cm for p ~ 0  the value of -dS/dpc approaches zero, 
giving rise to small time constants or large eigenvalues. As 
time proceeds more and more nodes are in this situation, 
and the largest eigenvalue increases. The lowest eigen- 
value is associated with nodes at other p where -dS/dp, .  
takes reasonable values, and it remains constant since 
there are always nodes having p between BPO and BPI.  
Thus the stiffness ratio increases with time. 

For the non-uniform discretizations we take the 
numerical solution at the appropriate t[ = 0.005 or 0.015) 
obtained using a uniform grid x=0.05.  This solution is 
interpolated onto a new, non-uniform grid, and the 
eigenvalues of the Jacobian, equation (22), are calculated. 
In discretization no. 1 we place two additional elements 
between x = 0.2 and 0.3, and remove elements beyond x 
=0.3 (where p = B P 1  is a constant): the eigenvalues are 
unaffected. If elements are removed near x =0,  discreti- 
zation no. 2, the maximum eigenvalue is reduced. 
Discretization no. 3 removes just one more of these 
elements and the stiffness ratio is reduced two orders of 
magnitude. 

The change in discretization from 1 to 3 where nodes 
near x = 0  are removed gives rise to a reduction of five 
orders of magnitude in the stiffness ratio. In discretization 
no. 4 elements in the front are removed, but the stiffness 
ratio does not change. 

In a moving coordinate system, we can concentrate 
nodes around the front and have few nodes elsewhere. 
Then the maximum absolute value of the eigenvalue will 
be lower and larger timesteps should then be possible. 

Solution methods -- f ixed coordinate system 
The standard finite difference technique to solve equa- 

tion (16) uses a central difference approximation: 

dS idpi 1 1  P i + l - P i  Pi--Pi-i 1 
- ki+l/2 -Ax ki , dpc dt Ax - 2 Ax 

t23) 

The permeabilities at the half nodes can be evaluated in 
different ways 8. Here we use the average permeability 
which corresponds to a second order method 0(h2),ki+ 1/2 
=l/2(ki+ki+l). A modified Crank Nicholson method 
was used to integrate the equations in the form: 

TaMe 2 .  Eigenvalues o/non-linear problem, BPI = - 300 cm. BPO= 5 

¢'m 

max. (EV) 
Time Discretization Max. (EV) Min. (EVI SR- 

min. ~EV) 

0.005 uniform N E = 2 0  6.9 x 107 0.16 4.3 × 108 

0.015 u n i f o r m N E = 2 0  4 . 9 x 1 0  j° 0.23 2 . 2 x l 0  zj 
non-un i form 

N E =  10, No. 1 4.9 x 10 I° 0.23 2.2×1011 
N E = 8 ,  No. 2 3 × 1 0 7  0.21 1.4×108 
NE= 7, No. 3 5 x 105 0.22 2.2 × 100 
NE=4, No. 4 5 × 105 0.22 2.2 x I0 ~' 

No. 1 disc 
No. 2 disc: 
No. 3 disc: 
No. 4 disc. 

0.00.05 0.1 0.15 0.20.225 0.25 0.275 0.30.65 1 
0.0 0.1 0.2 0.225 0.25 0.275 0.3 0.65 I 
0.0 0.2 0.225 0.25 0.275 0.3 0.65 1 
0.0 0.2 0.25 0.3 I 
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Table 3. Comparison of MCS with com'entional scheme Ihoth using FDI 
./or non-linear flow through porous media 

Symbol 
in Error CPU* 
Fig. 7 Entry Case Scheme NE oc At x 10 +5 (?i,~ Isect 

1 1 CDA 21 0.5 20 6 2 
2 CDA 81 I 5 1 28 
3 MCS CDA 23 1 20 6 2 
4 MCS-CDA 45 0.5 5 0.5 18 

At x 10 +~ 

~P Pi+l--Pi 1 

Blottneff shows these formulae are correct 
provided the mesh is graded such that: 

A 'forward difference can also be used 
derivative since dS/dpc<~O. 

7a O 5 II CDA 120 
7a n 6 CDA 600 
7a A 7 CDA 600 
7b [] 8 MCS FW 62 
7b O 9 MCS-FW 62 
7b A 10 MCS FW 42 

2.5 33 60 
2 26 402 
1 12 804 

2.5/1.25 ~ 0  57 
2.5 3 36 
2.5 22 24 

* C P U  on CDC 640(I 
CDA =central  difference approx,mat,on:  FW = CDA for second derivative, forward difference 
form for first derivative 

v~i C ji(p) dpiclt = ~i D ji(P)Pl 

If we let p~' = p~ (t = nat) we used: 

pn+ 1 - -  n 

~i CJi{pn) i ~ t  Pi _ ~Dji(p,)[{l _~t)p~ +ctpT+ a] 

All function evaluations are explicit and no iterations are 
performed, in contrast to a regular Crank-Nicholson 
method. 

Solution method --- rooting coordinate system 
We apply a moving coordinate system to equation (161 

as described previously and obtain: 

g (" @ \  as i~p ).(q) 1 i~S g,p g'~d 
dp,.?~l- 2 ~ , . ~ + ~  . )  (24) 

the boundary conditions are now 

tl 

p = B P 0  at ~= - ().(t')dt' 
b 

-d-P=0 at ~= 1 -  f),(t')dt' 
d~ - . 

0 

q > 0  

(25) 

p = B P I  for ¢ > 0  and r /=0 

We discretize equation (24) in a finite difference method by 
letting ~ be the location of the ith node, Pi the pressure at 
the ith node, and h i = ~+ 1 - ~ .  The derivatives are taken 
as :  

k, i - -  1 Eke+ '/2(pi+l -P') /h ' -ki ' -  

-P i -  1)~hi- 1] 

to 0(h/2) 

for the first 

~ i=(Pi+ I -Pi)/hi 

This formula is correct to 01hi). 
To determine the velocity of the front, the largest 

gradient at any time is calculated. When the position at 
which this occurs has moved from one node to another, 
the coordinate system is moved the same distance so as to 
keep the largest gradient fixed at the origin. From the 
discrete values of the velocity an integrated velocity can be 
calculated in order to set the boundary conditions. 

It was found important to set the boundary conditions 
exactly by changing the prefixed node location rather 
than simply using the nearest points as in the linear case. 
Thus the end elements are adjusted so that a node exists at 
the ~ given in equation (25). 

Results 
The two methods are compared in two cases: 

(I) BP0=  5 cm BPI = - 300 cm 

(I1) B P 0 = 0  cm BP1 = - 1000 cm 

For case (I) the front is not too steep and the efficiency 
of the two methods is almost the same [see Table 3). The 
error is defined as the maximum deviation from the 
similarity solution at any node in the domain. The regular 
finite difference scheme with 21 nodes {run 1) gives a 6~o 
error but to get a more accurate solution many more 
nodes are needed (81 for run 2} and this requires a smaller 
timestep. For the moving coordinate system (MCS) fewer 
nodes (run 4) achieve the same error. MCS is more 
efficient by a small factor. 

Figure 7 shows results for case (I1) (steeper front) using 
both schemes and the advantage of MCS becomes 
significant. Here the error is defined as percentage mis- 
placement of front (at p =  BPI/2). With the regular finite 
difference scheme and 120 nodes [run 5), the velocity of the 
front is too high, and taking smaller timesteps did not 
affect the solution. Run 6 with 600 nodes is closer to the 
exact solution and if At is decreased in run 7 the profile 
moves slowly towards the solution (see Fig. 7a). 

In contrast MCS with only 62 nodes (run 8) and a larger 
timestep gives almost the correct solution (see Fig. 7b). A 
similar solution was achieved using both fewer nodes and 
larger timestep (run 10) but then smoothing occurs. By 
only taking larger timesteps the front is placed incorrectly 
(run 9). The forward difference compared to the central 
difference approximation for the first derivative was 
found to place the front more correctly but at the cost of 
some smoothing, and the forward difference is therefore 
preferred. 

An example of the distribution of nodes for run 8 to 10 is 
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Comparison, standard versus  moving FD; non- 
linear f low through porous media at t = 1 x 10 -4.  Symbols 
defined in Table 3. (a), Fixed coordinate system, (b), MCS:  - 
- - ,  similarity solution (exact). 

s h o w n  in T a b l e  4. T h e  d i s t ance  be tween  nodes  var ies  by a 
fac to r  of  5 × 104. 

T h e  ga in  in eff iciency ach ieved  by us ing M C S  is h ighes t  
for the  very  s teep  front .  In case  i l l) ,  if we c o m p a r e  run  7 
and  run  10, we use a b o u t  15 t imes  fewer n o d e s  and  
t imes teps  a b o u t  3 t imes  g rea te r  to ach ieve  nea r ly  the  s a m e  
accuracy .  M C S  is thus  a b o u t  40 t imes  faster  t h a n  the  s a m e  
m e t h o d  on a fixed grid,  o r  uses on ly  2.5~, of the  
c o m p u t a t i o n  time. 

C O N C L U S I O N S  

S o l v i n g  c o n v e c t i o n - d i f f u s i o n  e q u a t i o n s  on  a m o v i n g  
c o o r d i n a t e  sys tem ( M C S )  r a the r  t han  a fixed c o o r d i n a t e  
sys tem can  give be t t e r  so lu t ions  at less cost  w h e n  the  
Pec le t  n u m b e r  is large.  Of t en  fac tors  of  10 o r  h ighe r  in 
i m p r o v e d  a c c u r a c y  o r  r educed  cost  a re  possible .  

T h e  so lu t ion  to a n o n - l i n e a r  di f fus ion type  e q u a t i o n  

Table 4. Distribution of nodes lor run 8 to 10 (MCS) 

No. of grid points between 

Node Run 8, 9 Run 10 

- 1  1 1 
-0.5 2 2 
-0.1 4 2 
- 0.02 6 3 
-0.001 5 5 
- 0.0001 10 5 

0 10 
0.00005 10 7 
0.0001 10 5 
0.01 2 2 
0.02 4 2 
0.1 2 2 
1 

(flow in p o r o u s  media )  d e v e l o p s  a very  s teep  front .  T h e  
m o v i n g  c o o r d i n a t e  sys tem can be app l i ed  to this case  wi th  
a t ime  d e p e n d e n t  veloci ty .  M C S  is m o r e  efficient for 
p r o b l e m s  wi th  s teep profiles.  C o m p u t e r  t ime  cou ld  be 
r educed  by a fac to r  of  for ty  in o n e  case. 

A C K N O W L E D G E M E N T  

A c k n o w l e d g e m e n t  is m a d e  to the  D o n o r s  of  the  
P e t r o l e u m  Resea rch  F u n d ,  a d m i n i s t e r e d  by the  A m e r i c a n  
C h e m i c a l  Soc ie ty  for pa r t i a l  suppo r t  of  this research.  

R E F E R E N C E S  

I Blottner, F. G. Variable grid scheme applied to turbulent 
boundary layers, Comp. Meth, Appl. Mech. En.q. 1974, 4, 179 

2 Carey, G. F. and Finlayson, B. A. Orthogonal collocation on 
finite elements, Chem. En#. Sei. 1975, 30. 587 

3 Carslaw. H. S. and Jaeger, J. C. Conduction O[ heat in solids, 
Oxford Univ. Press, London, 1959 

4 Chaudhari, N. M., An improved numerical technique for solving 
multidimensional miscible displacement, Soc. Pet. En$l. J. 1971, 
I l, 277 

5 Chien, T. C. A general finite difference formulation for Navier 
Stokes equation, Comp. Fluids 1977, 5, 15 

6 Christie, 1., Grifliths, D. F., M itchell. A. R. and Zienkiewicz, O. C. 
Finite element methods for second order differential equations 
with significant first derivatives, Int. J. Num. Meth. Emt. 1976, 10, 
1389 

7 Finlayson, B. A. Water movement in desiccated soils, Proc. Ist 
Int. Conf Finite Elements in Water Resources, Prim'eton 1976 
(Ed. W. G. Gray, G. F. Pinder and C. A. Brebbia), pp. 3.91 - 3.106. 

8 Finlayson, B. A. and Nelson. R. W. A preliminary investigation 
into the theory and techniques of modeling the natural moisture 
movement in unsaturated sediments, Report BCSR-40, Boeing 
Computer Services, Richland, WA, Sept. 1977 

9 Garder, A. O., Jr., Peaceman, D W. and Pozzi, A. L., Jr., 
Numerical calculation of multi-dimensional miscible displace- 
ment by method of characteristics, Soc. Pet. Eno. J. 1964, 4, 26 

10 Gresho, P. M., Lee, R, S. and Sani, R. S. Advection-dominated 
flows, with emphasis on the consequences of mass lumping, 
Prepr. Second Int. Syrup. Finite Element Methods in Flow 
Problems, haly June, 1976. pp. 743-756 

11 Huyakorn, P. S. An upwind finite element scheme for improved 
solution of the convection-diffusion equation, Report no. 76- 
WR-2, Water Resources Program, Princeton University, 1976 

12 Jensen, O. K. and Finlayson, B. A. Oscillation limits for weighted 
residual methods, Int. J. Num. Met& Eml. submitted 

13 Jensen, O. K. Numerical modelling with a moving coordinate 
system application to flow through porous media, Ph.D. Thesis, 
University of Washington, 1980 

14 Lantz, R. B., Quantitative evaluation of numerical dill usion, 5oc. 
Pet. Eng. d. 1971, I1,315 

15 Laumbach, D. D. A high accuracy finite-difference technique for 
treating the convection~diffusion equation, Soe. Pet. Emt. J. 1975, 
15, 517 

Advances in Water Resources, 1980, Volume 3, March 17 



Solution of the transport equations using a moving coordinate 

16 Marino, M. A. Numerical and analytical solutions of dispersion 
in finite, absorbing porous medium, Water Res. Bull. 1974, 10, 81 

17 Peaceman, D. W. and Rachford, H. H. Jr., Numerical calculation 
of multi-dimensional miscible displacement, Soc. Pet. En~l. J. 
1962, 2, 327 

18 Pinder, G. F. and Gray, W. G. Finite element simulation m surlace 
and sub-surJace hydrolo.qy, Academic Press, New York, 1977 

19 Price, H. S., Cavendish, J. C. and Varga, R. S. Numerical methods 
of higher-order accuracy for diffusion-convection equation, Soc. 
Pet. Eml. J. 1968, 8, 293 

20 Price, H S., Varga. R. S. and Warren, J. E. Application of 
oscillation matrices to diffusion-convection equations, J. Math. 
Phys. 1966, 45, 301 

21 Rachford, H. H. Numerical calculation of immiscible displace- 
ment by a moving reference point method, Soc. Pet. End1. J. 1966. 
6, 87 

22 Runchal, A. K. Comparative criteria for finite-difference for- 
mulations for problems of fluid flow, Int. J. Num. Meth. Eng. 
1977. 11, 1667 

23 Smith. 1. M. Integration in time of diffusion and diffusion- 
convection equations, Proc. 1st Int. Conf. Finite Elements in 
Water Resources, Princeton 1976, (eds. W. G. Gray, G. F. Pinder 
and C. A. Brebbia) pp. 1.3-1.20 

24 Stone, H. L. and Brian, P. L. T. Numerical solution of convective 
transport problems, AIChE J. 1963, 9, 681 

25 VanGenuchten, M. T. On the accuracy and efficiency of several 
numerical schemes for solving convective-dispersive equation, 
Proc. 1st Int. Cm!fi Finite Elements in Water Resources, Princeton 
1976, (eds. W. G. Gray, G. F. Pinder and C. A. Brebbia), 
pp. 1.71 1.90 

26 Wilkinson, J. H. The al,qehraic eiqenvalue problem. Clarendon 
Press, Oxford, 1965, 

27 Young, L. C. A preliminary comparison of finite element methods 
for reservoir simulation, Adr. Comp. Methods Partial Differential 
Equations 1977, pp. 307 320 

NOMENCLATURE 

A, B, C*, D* (modified) collocation matrices 
A1, B1 constants for description of S, kr 

system: O. K. 

BP0 
BP1 
¢ 

D 
E 
EV 

h 
I J; k, i, j 
J 
k, kr 
L 
41 

NP 

N T  

P, Pc 
Pe 
q 
S, Sr 
x , y , ~  
t, tl 
oc_ 

fl 

), 
2,, 
12 

P 

¢ 
A 

Jensen and B. A. Finlavson 

boundary pressure 
initial pressure 
dimensionless concentration 
diffusion coefficient 
error 
eigenvalue 
acceleration of gravity 
spatial increment 
index space discretization 
Jacobian 
[relative) permeability 
length of domain 
index 
number of interior collocation point plus 
t w o  

total number of points 
(capillary) pressure 
Peclet number 
flux 
(residual) saturation 
dimensionless spatial length 
dimensionless time 
Crank-Nicholson parameter 
functional parameter 
time constant 
frontal velocity 
maximum eigenvalue 
viscosity 
similarity variable 
density 
porosity 
difference equation function 
increment 
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