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1 Introduction and overview

Waves are ubiquitous in nature. They have been studied in the last couple of
decades in such diverse forms and varied fields that they may now be said to
constitute a new discipline — the science of waves (Lighthill, 1978). This
wide and varied interest in waves has been particularly helped by the
appearance of that strange entity, the soliton. The wave adopts such diverse
forms that it is difficult to present a precise unifying definition. However, we
may agree that waves (or disturbances), in an otherwise quiet or uniformly
moving medium, have propagation properties and therefore involve the
variable time, and have distinct features such as crests and troughs which
themselves move with definite speeds. It should, however, be noted that not
all waves are oscillatory. Thus, shock waves and solitary waves are not
oscillatory. Nevertheless, these are regarded as (nonlinear) entities of great
physical importance.

Two major types of waves have been distinguished (Whitham, 1974). The
first is called hyperbolic and requires the system of n governing partial
differential equations to have n real characteristic directions and corre-
spondingly n linearly independent left eigenvectors of the relevant matrix
(Courant & Hilbert, 1962). The second type of waves, called dispersive, are
categorised by a real dispersion relation connecting the frequency and wave
number (Bhatnagar, 1979). These definitions are broadened suitably to
apply to partial differential equations with variable coefficients as well as
nonlinear ones.

There is another type of nonlinear wave which is diffusive and which is
epitomised by the equation

d

u,+uux=§uxx. (1.1)
This is the celebrated Burgers equation. Here ¢ is a (small) coefficient of
viscous diffusion. This is a nonlinear parabolic equation and describes in a
simple manner a balance between nonlinear convection and linear diffusion
or dissipation. This equation and its generalisations — scalar as well as
vector — describe phenomena in such a variety of situations that they
deserve a distinct categorisation, namely nonlinear diffusive wave equ-
ations. It must be recognised that, in the limit of § -0, eq. (1.1) goes into a
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2 Introduction and overview

scalar hyperbolic equation. Indeed, eq. (1.1) was suggested as a model to
describe the structure of shock waves in gas dynamics, which is missed by
the hyperbolic type of equations for which the shock appears as a sharp
discontinuity.

A considerable part of the present monograph is devoted to the
discussion of the Burgers equation and its generalisations (GBEs). However,
it must be emphasised that the Burgers equation by no means exhausts the
nonlinear diffusive phenomena. To stress this point and to bring out the
contrast between nonlinear convective diffusive equations and those
without convection, we discuss in detail several other nonlinear model
equations in chapter 4. These include Fisher’s equation, a nonlinear heat
equation etc. For most of this monograph, we consider scalar equations
only.

Chapter 2 begins with a heuristic derivation of the Burgers equation.
This is followed by an order-of-magnitude analysis of the Navier—Stokes
equations to derive a coupled system of two equations describing one-
dimensional waves of finite amplitude in a viscous and heat-conducting gas,
a generalised Burgers system. This system, under further approximation,
delivers the Burgers equation. After a brief historical account of this
equation, and the Hopf-Cole transformation which exactly linearises it to
the heat equation, a pure initial value problem is posed and solved in a
simple manner via the corresponding problem for the heat equation.
Special solutions describing important physical situations such as the
travelling shock wave, the single hump, the N wave and the periodic profile
are derived. Continuous or distribution functions as initial conditions are
assumed, and physical (or dimensional) arguments pointing to the similar-
ity form of the solutions for travelling shock and single hump are described.
These special solutions are carefully analysed in each of the several
temporal and spatial domains that arise from considerations of the
importance and balance of different terms. This is motivated by the desire to
find analytic solutions, at least in some of the domains, of GBEs in
subsequent chapters, for which no Hopf—Cole-like transformation exists.
Although most of the earlier investigations relate to initial value problems,
we also pose, in the semi-infinite domain, a boundary value problem for the
Burgers equation and use a certain equivalence theorem for the heat
equation, between initial value problem over the whole real line and a
boundary value problem over the positive real line, to recover earlier
solutions now arising from certain boundary conditions.

The Burgers equation is very important from the mathematical point of
view as a canonical form since it highlights clearly the nature of analytic



Introduction and overview 3

solutions in various temporal and spatial domains, which become available
due to the Hopf—Cole transformation. The equations that arise in physical
applications are more general than the Burgers equation and do not, in
general, admit exact analytic solutions. Chapter 3 treats GBEs. After a brief
review of the singular perturbation methods, we employ them to find a
uniformly valid solution to order é for the GBE, which, besides usual terms,
has a linear damping as an additional term. We then derive from the
Navier-Stokes equations a model which combines the effect of spherical or
cylindrical expansion besides nonlinearity, viscous diffusion and heat
conduction. This is achieved by using the method of multiple scaling. The
nonplanar GBEs are studied analytically, as far as possible, using matched
asymptotic expansions, in certain of the temporal domains for the sharp N
wave initial profile. Reference is made to the gaps which still remain
unbridged. A kindred discussion relates to the solution of the harmonic
boundary value problem arising from a piston motion. For this purpose, it
makes more sense to pose a boundary value problem in a semi-infinite
domain, altering in the process the basic equation so that the roles of
distance and (retarded) time are interchanged. Significant physical and
mathematical consequences of the solution of the harmonic problem are
carefully analysed. Here, even though we treat the standard Burgers
equation, we include it in the chapter on generalised Burgers equations
because of the complexity introduced by the boundary conditions.
Generalised Hopf—Cole transformations are used to find a whole class of
GBE:s which may be changed into linear parabolic equations with variable
coefficients. Some of the physically relevant equations are identified and
their special solutions are discussed. Prominent among these is an
inhomogeneous Burgers equation which occurs in several physical
contexts.

While a major part of this monograph is concerned with equations of
Burgers type which have a convective term as an important element
responsible for wave steepening and shock phenomena, chapter 4 deals
with a few representative nonlinear diffusion equations wherein the
convective term is absent. This has been done for two reasons: firstly, to
visualise how other nonlinear diffusion phenomena compare with that
simulated by the equations of Burgers type, and, secondly, to prepare the
ground for the discussion of stability (or intermediate asymptotic) analysis
for a variety of nonlinear diffusion equations. The equations in this chapter
include Fisher’s equation, a nonlinear heat equation and an equation from
plasma physics which has a (spatially) variable coefficient besides nonlinear-
ity. While for the former equations the special solutions we study belong to
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the usual similarity form, the latter have a product form. Indeed, the reader
will notice a strong undercurrent of the similarity approach in the entire
course of the present monograph. This is partly due to the author’s bias and
partly due to the conviction that the similarity analysis leads to some of the
most bona fide exact solutions of nonlinear problems. Historically, the
similarity/product solutions were viewed as special solutions of nonlinear
partial differential equations, their chief distinction being that they were
governed by nonlinear ordinary differential equations which could be
solved more conveniently either in a closed form or numerically. This
viewpoint has since undergone a change. These special solutions represent
what are referred to as intermediate asymptotics, ‘describing the behaviour
of the solutions to the original equations for a wide class of initial, boundary
and mixed problems, away from the boundaries of the region of independ-
ent variables or, alternatively, in a region where in a sense the solution is no
longer dependent on the details of the initial and/or boundary conditions
but is still far from being in a state of equilibrium’ (Barenblatt and
Zel'dovich, 1972). In chapter 4, we discuss the role of the similarity/product
type of solutions as intermediate asymptotics for a few representative
nonlinear diffusion equations, That is to say we study the solutions of a
class of initial and/or boundary value problems for these equations which
evolve into self-similar solutions, as well as the manner and mode of such
evolution. The equations that we treat here include a nonlinear heat
equation, a nonlinear diffusion equation of plasma physics with a variable
coefficient and the GBEs in spherical and cylindrical symmetry.

The analytical studies reported in chapter 3 clearly bring out the gaps in
the understanding of the solutions of the GBEs. For example, for the non-
planar GBE, there are several domains — the embryonic shock region and
the infinitely long (in time) one beyond the Taylor-shock region — for which
the analytical form of the solution seems difficult to obtain. Indeed, even the
final phase of the N wave propagation, which is essentially linear, remains
undetermined to the extent of an unknown multiplication factor for the
cylindrically symmetric case. Therefore, there is a need to have a thorough
understanding of ‘good’ numerical solutions of these equations which
might, in turn, suggest the analytic form of the solution. In the final chapter
of this monograph, we discuss two numerical techniques — implicit finite
difference and the pseudo-spectral (accurate space differencing) — for three
nonlinear diffusion equations, namely Fisher’s equation, the GBEs in
spherical and cylindrical symmetries and the GBE with a damping term.
The need for using the pseudo-spectral approach becomes imperative for
discontinuous initial data which the implicit scheme is not able to handle in
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an effective and accurate manner and which the pseudo-spectral scheme is.
However, once the discontinuous profile has smoothed out and has settled
down, say, to one with a Taylor shock, the implicit difference scheme can
take over and deliver accurate results with great economy, in comparison
with the pseudo-spectral approach which, though very accurate, is
expensive in terms of computer time. The numerical techniques help
understand the intermediate asymptotic nature of the travelling wave
solution of Fisher’s equation, the decay of spherical and cylindrical N waves
and of the single hump initial profile evolving under a GBE with a damping
term or under non-planar GBEs.

The present monograph is almost entirely devoted to scalar diffusive
equations. Reference may be made to Smoller (1983) for systems of
equations describing, in particular, reaction-diffusion processes. Moreover,
we have restricted ourselves mostly to the gas dynamic context of the
Burgers equation and its generalisations. For applications to turbulent
flows, we refer the reader to Burgers (1974), Gurbatov et al. (1983) and Qian
(1984). The review article of Gurbatov et al. contains a large bibliography.

While the major applications of the nonlinear diffusive equations have
been drawn from gas dynamics, it will become apparent from the references
that they occur frequently in many other areas such as plasma physics, heat
conduction, elasticity, biomathematics etc. Therefore, the material in this
monograph should be useful to scientists and engineers working in these
areas. The treatment of the problems in the monograph is mainly applied
mathematical in nature; however, the physical explanation is also briefly
provided.

The prerequisites for the present monograph are a basic course in gas
dynamics, and a fair knowledge of ordinary and partial differential
equations. In particular, familiarity with the theory of parabolic partial
differential equations will be found helpful.



2 The Burgers equation

2.1 Introduction

Wave phenomena are, in general, governed by nonlinear systems of partial
differential equations subject to certain physically motivated initial and/or
boundary conditions. The Navier—Stokes equations represent a typical
example of such a system. These systems, in most cases, cannot be solved by
exact analytic approaches. Indeed, even the numerical solution of these
systems poses severe difficulties. Thus, in recent years, there have been
attempts to derive simpler equations using perturbation methods, which
retain from the larger systems the essentials of the physical problems and
which hold over extensive spatial and temporal domains. The fact that these
model equations commonly appear in a variety of physical contexts attests
to their importance. Furthermore, recent investigations have shown that
various model equations governing similar physical phenomena enjoy
unifying mathematical properties. The best known examples are the
Burgers equation

é
u,+uu, = 2t (2.1)

and the Korteweg—deVries equation
u, +ouu,+ u,,,=0. (2.2)

While our main concern will be with eq. (2.1), we shall often compare and
contrast eqs. (2.1) and (2.2) and their solutions, since the study of these
apparently similar equations has provided mutual enrichment and led to
important results for kindred classes of equations.

We commence our discussion with the system describing plane com-
pressible flows in an ideal (polytropic) gas ignoring dissipative effects, viz.

ptop,. +pv.=0, (2.3)
pv,+vv)+p, =0, (2.9)
p=kp?, §=constant. (2.5)

Here p, v and p are the density, particle velocity and pressure, respectively,
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Introduction 7

depending on the spatial co-ordinate x and time t. S is entropy, assumed to
be constant, y = ¢,/c,, the ratio of specific heats, and k is a constant. If we
consider a small disturbance over a uniform quiescent medium (u =0,
P = pPo, P =Po), We may linearise the system (2.3)-(2.5) and obtain an
equation, by suitable elimination, describing the disturbances in any of the
variables

’

v'=v, pP=p—po, P =p—po (2.6)
P — GgPx =0, (2.7)
a3 = a*(pe, Sy), abeing the speed of sound

(see Courant and Friedrichs (1948, p. 19)). Eq. (2.7) is the ‘standard’ wave
equation which has the general solution

p' = ¢lx —aot) + Ylx + aot) (2.8)

where ¢ and  are arbitrary appropriately differentiable functions of their
arguments. The relation (2.8) describes the solution p of any initial value
problem for eq. (2.7), the functions ¢ and y being determined by the initial
conditions. These functions describe waves splitting from the initial
conditions and moving to the right and the left, respectively, with speed a,.
We shall subsequently refer to solutions depending on either x — got or
x + aqt only, as travelling or stationary waves. Now, if we restrict our-
selves to waves moving to the right so that y(x + aof) =0, the function
d(x — apt) satisfies a component of eq. (2.7), namely

pi+ aop, =0 (2.9)

(Of course, it satisfies eq. (2.7) too). Eq. (2.9) is the simplest linear wave
equation with solution ¢(x — ayt) assuming the initial value ¢(x) and giving
at later time the same profile translated as a whole to the right a distance
ayt, without any change in form.

Eq. (2.7) was derived on the assumption that the perturbations in
pressure etc. were infinitesimally small. This is not generally true if the
agency producing the wave releases large energy or momentum. This is the
case, for example, with an explosion, or a relatively fast piston motion. The
system (2.3)—(2.5) in essentially two variables (p and v, say) is nonlinear and
difficult to handle in complete generality. Nevertheless there has been
considerable analytic interest in this system. In particular, some progress
can be made by seeking simple wave solutions such that one of the
dependent variables is a function of the other. This procedure is due
originally to Earnshaw (1858). Rewriting egs.(2.3}+(2.4) in terms of v and p
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only, by introducing the square of the speed of sound, a* = (3p/dp)s-s, =
kyp?~ !, where k is a constant, we have

P+ Upx + pv, =0, (2.10)
2
v,+vvx+al()p)px=0. 2.11)

Now, we assume that v = V(p) so that (2.10)~(2.11) become

o+ (V +pV)p, =0, 2.12)

aZ
p,+(V+pV,)px=0. (2.13)

Here a prime denotes differentiation with respect to p. This system of linear
algebraic equations in p, and p, has a non-trivial solution provided the
determinant of the coeflicient matrix vanishes so that

(y—1)/2
=12= iao(ﬁ) L (2.14)
p Po p
The system (2.10)—(2.11) then reduces to one of the equations
p.+(V £ap,=0, (2.15)
where
? a(p) 2
Vip)= f Pap= {a(p) — ao}. (2.16)
Po p ‘y - 1

Restricting attention to waves moving to the right and choosing, therefore,
the plus sign in eq. (2.15), we now write the corresponding equation for v.
This follows easily from multiplying eq. (2.12) or eq. (2.13) by V’(p) and
writing the result in terms of v via eq. (2.14). Thus, we obtain

1
v,+(a0+y; v)vx=0. (2.17)

The ‘simplicity’ of the simple wave solution given by eqs. (2.15)—(2.16) or
eqs. (2.16)—(2.17) does not arise from any meddling with nonlinearity; these
equations are typically nonlinear. The mathematical problem has been
reduced to solving an initial value problem for the single first order
nonlinear partial differential equation (2.17) consistent with the intermedi-
ate integral (2.16) relating » and a(p), and hence v and p. We note in passing
that this argument has been extended to an nth order system of
homogeneous PDEs by Schindler (1970). (See also Levine (1972) and Rott
(1978).)
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If we compare eq. (2.9) with eq. (2.17), we observe that the propagation
speed is a,, a constant, for the former, while it is a, + 4(y + 1)v, a function of
the dependent variable v itself, for the latter. If an arbitrary profile, however
smooth, is chosen initially for v, it is well known and can be graphically
checked by drawing the characteristics in the x—¢ plane that the solution of
eq. (2.17), after a certain time, ceases to be single valued. The parts of the
initial profile with higher values of v travel faster than those with lower
values so that, in due course, in the compressive parts of the initial profile we
have three values of the solution, which is impossible. Physically, what
transpires is that a shock is formed at a point of the profile where the
gradients are large. In a thin neighbourhood of this point, due to the
prevalence of large gradients, irreversible thermodynamic processes such as
viscosity and heat conduction which were ignored in the derivation of eq.
(2.17) intervene. The steepening gradients are eased and a certain balance is
struck. The shock with a ‘small’ thickness then heads the smooth parts of
the profile. The details of the shock formation and its subsequent decay in
the framework of (the non-viscous and non-heat-conducting equation)
(2.17) may be found in Whitham (1974).

Thus, the model equation (2.17) is inadequate to describe flows with
shocks and therefore it must be improved upon to include the neglected
effects of viscosity and heat conduction. (This was indeed the way it was
done in the early stages of the evolution of the topic.) In a heuristic way, eq.
(2.17) was ‘embedded’ with viscosity, so that we obtain

y+1 0
v,+(a0+—2—v)vx=§vxx (2.18)

(see Cole (1951)). Here 6 is a small parameter. This equation can be
transformed into eq. (2.1) by a simple change of variables. Eq. (2.1)
represents a simple (1 + 1)-dimensional model, combining a nonlinear
convective term and a small linear viscous term.

2.2 Derivation of Burgers’ equation

The Burgers equation and its generalised forms relevant to various physical
circumstances have been derived by several investigators using perturb-
ation methods and multiple scales. Here we follow an order-of-magnitude
argument due to Lighthill (1956), which leads in the process also to a
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coupled system of two equations intermediate between the Navier—Stokes
equations and the Burgers equation. This system has some intrinsic interest,
since its left hand sides are exactly those of one-dimensional isentropic gas
dynamic equations (rather than the simple wave form as in the left side
of eq. (2.18)), and the right side in one of the equations contains linearised
viscous and heat-conduction terms. Thus, starting with the plane Navier-
Stokes equations and appropriately grouping various terms (in a certain
fashion) we have

op v dp
bt — T l= A
6t+p6x+(v¢3x) 0, (2.19)
a 2
P L (,00) Lo _ | 5ot 00
ot ox p ox Po Ox
186 4 aU %ﬂ0+ﬂ'vo 620
+{;_)6_x((§#+'u")6_x)_—po—ﬁ , (2.20)

+

I (N L 2T, [8 (kT _, &T
U3 \ax ox? | \ax\ox )T xS
D=_+0v.—. (221)

Here p is the viscosity coefficient equal to the ratio of shear stress to rate of
shear, u, is the bulk viscosity, and k is the thermal conductivity. T stands for
temperature. The suffix 0 denotes values in the undisturbed condition.
The constant coefficients ko, 1o and p,,, are known to be small. The above
grouping needs some explanation. The unbracketed terms are the largest
and lead to the linearised equation (2.7). If V,, and a, denote a characteristic
particle velocity in the wave and the undisturbed value of the speed of
sound respectively, then the terms in round brackets are of the order of
Vo/a, and those in square brackets are of the order vw/a3 as compared to
the unbracketed ones, respectively. The terms in curly brackets are
perturbations over the linearised form of viscosity and heat conduction and
therefore smaller than those without brackets by an order (va/a3) (Vo/ao).
To verify these statements, we may use the linear solution

1=£=P_=¢(w(;_i)), say, 222)
G Po Do o
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where o is a typical frequency of the wave, so that

vV
P20 (223)
P ao
4
3o T Hop Pux VO (2.24)

Po P ag '

The coeflicients of viscosity and heat conduction are of (small) order v=
Ho/Po, the kinematic viscosity. Lighthill has shown that, in the audible
sound range, that is, for frequencies between thresholds of hearing and pain,
the amplitudes of velocities V,/a, and vw/aj are of the same order so that
terms in both round and square brackets may be retained. The lowest terms
in eq. (2.21), namely p, ~ ayp, and yp, ~ ya,p,, combine to give entropy
changes of (small) order vw/a3 so that the term k,T,, is first replaced by
density change using the equation of isentropy and the equation of state.
The latter then is expressed in terms of velocity change via the linearised
form of the left side of (2.21) and the linearised (wave) equation for v. The
result is

kOTxx ~ Uy (225)

In the process, terms of order (V,/a,) (vwr/ad) are neglected. (See Rudenko
and Soluyan (1977) for a slightly different derivation.) The linear (time
derivative) parts of the convective term in the left side of eq.(2.21) can be
approximated by

a y-1
0 [px—@(ﬂ) p,]. (2.26)
y—1 Po \Po

Here we have used the fact that the assumption of isentropy in the
derivation will introduce an error no greater than (Vy/ao)(vw/ad) or
(vaw/a2)?. Finally, equating (2.25) and (2.26) and eliminating p, with the help
of eq.(2.20), we have, to the order of our approximation,

pY M1 [%uo+uuo (v — 1)ko]
v, + oo, + a3l — —px= + Vsex.
: O(Po) p Po poc, |

(2.27)

Egs.(2.19) and (2.27) in v and p can be written in a more familiar form in
terms of » and the speed of sound,

p \o- 72
a= ao(—) . (2.28)
Po
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The desired intermediate system is

2
v, + v, + —IataJc = dv,,, (2.29)
'y —
—1
a, +va, + yTavx =0, (2.30)
where
5=(%uo+um+v—1@) 231)
Po Po €p

may be called diffusivity of sound, ‘being that combination of different
diffusivities which affects acoustic attenuation’.

The system (2.29)-(2.30) may be referred to as a set constituting
generalised Burgers equations for which the left sides equated to zero give
the full reversible isentropic system (2.10)-(2.11) when it is expressed in
terms of v and a. The right side of eq.(2.29) represents the linearised
approximation to the effects of diffusion, to the order of approximation
such that the ratios of terms ignored to the largest terms retained are of
order (Vy/a,) (vw/a3) or (vwr/a3)?. This system has not received sufficient
attention possibly because of the analytic difficulties it poses (see Itaya
(1976)). Its stationary-shock-like solutions depending on x — Ut, say, may
be easily obtained by solving the ordinary nonlinear differential equation
(84) of Lighthill (1956), at least, numerically. The linearised form of this
system, assuming V,/a, « vw/ad, is

v+

y — laOax = 5vxxa

a, + %aov,, =0, (232)

which can be combined to give
Uy — agvxx = 5Uxxr- (233)

Eq.(2.33) has the elementary uni-directional plane wave solution v=
D,e'@ ¥ (with 7, a constant) if

2
2 _ w

aj + idw
or
C 2
®w i
k~——20—
a, 2 ap
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(by binomial expansion if once again terms of order (var/a3)? are neglected).
Thus, we have

D = Dye ~ eielt ~x/a0) (2.34)

where o = éw?/2a3. The coefficient « describes the rate at which the
amplitude of the monochromatic wave with frequency w attenuates due to
diffusive damping. If we consider waves generated at the boundary x =0
according to the condition

vy(t) = f e Flw)dw, (2.35)
in terms of a Fourier transform of a function F(w), then the solution can be
expressed by superposition as

-

[=.4)
p= f eioott = x/av)  ~(1/260” (x/a3) F(w)do

2n - —®

e (agt = x — agsy
_(27t5x/a0)”2_[ ”°(s)e"p[_ 25(x/ag) ]a"ds

— 0

1 {* . 2,3 © .
euo(t x/ag) e—(l/2)6w (x/ag) e~ lwsUO(S)dS dO)

(2.36)

by rearranging terms and using Fourier inversion. This form of the solution
brings out clearly the diffusive character of the wave which is now centred
on the line s = ¢t — x/a, and has diffusivity (6x/a,)*'* ~ (6t)!/*> — hence the
appropriateness of calling the coefficient J the diffusivity of sound.

We now return to the system (2.29)—(2.30) and attempt further simplific-
ation. If we introduce the Riemann invariants r and s, this system becomes

7+ (@4 V) = 30(Fex — Sxx)s (2.37)
8 — (a - U)Sx = JZh(s(sawc - rxx)9 (238)
where
__ % 1 __9 1
r—y_1+zv, s - 50, (2.39)
so that

a+v=30@+Dr+iy—3)s
a—v=3(—=3r+30+1s.

Further approximation to arrive at the Burgers equation consists in
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assuming that the Riemann invariant s (even in this dissipative case) is a
constant equal to its value s, in the undisturbed state. With this
approximation eq.(2.37) becomes an equation for the single unknown r,
namely

é
ro+ [0+ Dr + 30 = IsoIre =57 (2:40)

To lowest order (that is, if terms of order V,/a, and vw/a3 are neglected)
both aand v satisfy the linear wave eq. (2.9) as do r and s. We have, therefore,

d(or o (or
If we now linearise eq.(2.38) by neglecting terms of order (V,/a,)* and use

eq.(2.41), we can easily verify that the quantity

s=s0_ 5 or
a, 4aiox

(2.42)

satisfies the resulting equation, with an error of still higher order. No terms
of order V,/a, have been neglected in dealing with r so that the (non-
dimensional) excess of r over its undisturbed value (r — ry)/a, is of order
Vo/ao, while eq.(2.42) shows that (s — s,)/a, is of order (va/a3)(Vy/a,) so
that 14s,, in eq.(2.37) can be neglected. We emphasise that the quadratic
terms in Vy/a, and vaw/ad have been neglected in deriving eq. (2.42).

Broer and Schuurmans (1970) posed the question of the accuracy of the
approximation s=s, in eqs.(2.37) and (2.38), with compatible initial
conditions r(x, 0) = F(x), s(x,0) = s,. In particular the ability of the (appro-
ximating) Burgers equation to give reasonably accurate solutions for a
finite time depending on the initial function f(x) was discussed. However,
no analysis of the system (2.37)—(2.38) was carried out. Instead, another
linear system close enough to this system was solved. The question
probably can only be answered by solving such a problem numerically and
comparing it with the exact solution of the Burgers equation subject to
(corresponding) compatible initial conditions. Now, to bring eq. (2.40) to
the familiar form (2.1), we introduce the variables

u=3(y+ Dr—ry)
=%y + Dr +4(y — 3)so — ap T a+v — a,, (2.43)
X=x_a0t,

where ry = sq = ao/(y — 1), and the approximation s = s, has been used in
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the definition of (a + v). Eq.(2.40) now becomes

0
u‘ + uux = iuxx. (2.44)

The quantity u is essentially the excess Riemann invariant or more
physically (approximate) excess wavelet speed which causes convective
steepening of the wave. The co-ordinate X = x — a,t is a spatial coordinate
moving with the undisturbed sound speed in the direction of the wave.
Henceforth, we let x denote the moving co-ordinate X in the Burgers eq.
(2.44).

It is of some interest to compare the above derivation with that of
Karpman (1975) and Rudenko and Soluyan (1977). The first part of their
reduction is similar to the derivation of the intermediate system (2.29)-
(2.30). In the second part, they express p and p as

plx, 1) = plv) + ¥ (x,1),
p(x,1) = p(v) + ¢(x, 1),

where the functions p(v) and p(v) are precisely those arising from the simple
wave assumption for the non-dissipative system (cf. Eq.(2.16)) and y(x, {)
and ¢(x, t) are perturbations of second order such that the corresponding
solutions remain as ‘close’ to simple waves as possible. It turns out that iy is
proportional to the spatial derivative of v, and ¢ is equal to zero, to the
required approximation leading to the Burgers equation. The resulting
solution is referred to as a quasi-simple wave. This term was first introudced
by Courant and Friedrichs (1948) to describe spherical and cylindrical
shock wave solutions depending on r/t only, and take into account the lower
order (undifferentiated) terms 2u/r or u/r in the equation of continuity (see
also Seshadri and Sachdev (1977) for quasi-simple waves for multi-
dimensional systems). Such quasi-simple waves, though enjoying some
properties of the simple waves, differ quite significantly. In the present
context, solutions are sought which are functions of one of the dependent
variables as well as its derivative to account for terms involving derivatives
higher than first. Moreover, the treatment here is approximate.

2.3 Mistorical background and transformations
Eq.(2.44), in its present one-dimensional form, was first mooted by

Bateman (1915), who found its steady solutions descriptive of certain
viscous flows. It was later proposed by Burgers (1940) as one of a class of
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equations to describe mathematical models of turbulence. In the context of
gas dynamics, it was discussed by Hopf (1950) and Cole (1951).

The pre-eminence of this equation rests on its exact linearisability,
through the nonlinear transformation

u= — (log ¢),, (2.45)

to the standard heat equation. Moreover, the initial condition for eq. (2.44)
transforms in a direct simple manner into the initial condition for the heat
equation. It appears that the relationship of the Burgers equation with the
heat equation was first noted in the book by Forsyth (1906), without any
allusion to a physical problem. Hopf remarks in a footnote to his paper that
‘the reduction of (1) [Burgers’ equation] to the heat equation was known to
me since the end of 1946. However, it was not until 1949 that I became
sufficiently acquainted with the recent developments of fluid dynamics to be
convinced that a theory of (1) [Burgers’ equation] could serve as an
instructive introduction into some of the mathematical problems involved.’
The transformation in a fluid dynamic context appeared first in a technical
report by Lagerstrom, Cole and Trilling (1949). It was later published by
Cole (1951) in his treatment of some ‘aerodynamic problems’ through
Burgers equation.

This transformation which is of Biacklund type (Rogers and Shadwick,
1982) has had far-reaching influence in inducing researchers to extend it to
generalised Burgers equations or to nonlinear dispersive equations of
Korteweg—de Vries type — we shall have occasion to refer to these matters
subsequently. Apparently, the inspiration for this transformation came
from a similar transformation for the nonlinear ordinary differential
equation of first order

u = f(x) + glx)u + h(x)u?, (2.46)
known as the generalised Riccati equation. Thus,
1 d
= At (2.47)

changes eq. (2.46), with a further simple transformation, into the canonical
linear second order equation

D" + p(x)® =0, (2.48)

where p(x) is a specified combination of the functions f, g and A. Indeed,
Burgers (1950) arrived at this transformation by seeking similarity so-
lutions u = ¢t~ 1/28(z), z = (26¢)~ V/%x for his equation. The similarity form of
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the equation comes out to be of Riccati type. This equation also appears in
the similarity forms of more general equations of Burgers type.

The fortunate nature of Burgers’ equation is that, after the transform-
ation (2.45), the equation can be integrated with respect to x once, leading
again to a second order equation, the heat equation. It is convenient to
apply eq.(2.45) to eq.(2.44) in two steps. We first put

u=y, (2.49)

in eq. (2.44) and integrate with respect to x, ignoring the ‘function’ of
integration. We have

F)
v, +3¥i= V- (2.50)

Next the transformation

Y =—4&In¢) (2.51)
changes eq.(2.50) into

o
¢l = iqsxx' (252)

It is interesting to compare this reduction to an analogous one for the K-
dV equation (2.2). Whitham (1974) introduced the ‘natural’ generalisation
of egs.(2.49) and (2.51),

ou = 12(In ¢),,, (2.53)

(numerical factors in egs. (2.51) and (2.53) are important and specific), and
arrived at the equation

B(Dr + Prxxds = Bl Dr + Prxx) + 3(B7: — b2brx) =0, (2.54)

which is a further ‘non-linearisation’ of the original equation! But, in the
process, the transformation introduces a certain ‘order’ so that all terms are
uniformly of second degree. Hirota (1971) has extended this kind of
transformations to other nonlinear dispersive equations. The initial value
problem for the K—dV equation has been ‘linearised’ via the linear integral
equation of Gelfand—-Levitan type by the method of inverse scattering (see
Whitham (1974)). Whether, conversely, the inverse scattering techniques
can be extended to generalised Burgers equations remains to be inves-
tigated. Attempts to extend Hopf-Cole like transformations to these

equations will be discussed in chapter 3.
Burgers’ equation (as well as the Hopf—Cole transformation and the heat
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equation) enjoys several properties which make it a popular model for the
discussion of modern techniques of the transformation theory of nonlinear
partial differential equations. The transformations

(1) the shift of origin

X—Xo—X, t—ty—t; u—-u, ¢—9¢, (2.55)

where x, and t, are arbitrary, independent constants,
(2) the change of scale

t
qu’ Ez_z_')t; au —u, l3¢—'¢, (256)

where « and S are arbitrary independent scale factors, and
(3) the Galilean transformation

x—Ut-x, t-t u—U-u (2.57)

with real U leave eq.(2.44) invariant. Eqgs.(2.45) and (2.52) are invariant
under (2.55) and (2.56). These transformations help in generating new
solutions; however, since, for real values of the constants in (2.55)—(2.57), the
solutions obtained by these transformations will have the same form as the
original ones, these solutions may be referred to as equivalent or
isomorphic, and hence physically not distinct.

In recent years, the Lie—Backlund transformation theory of nonlinear
partial differential equations has been developed extensively to reduce the
number of independent variables by one. For equations with two independ-
ent variables, it amounts to reducing the given system of partial differential
equations to ordinary differential equations through the so-called similar-
ity variables, introducing considerable simplification in their solution. This
theory, first developed by Lie (1891), and later by Ovsiannikov (1962, 1982),
was made popular by the work of Bluman and Cole (1969), who applied it to
the heat equation to identify the similarity variables and hence find all the
similarity solutions. Until recently most (physically) important similarity
solutions were found by intuitive and dimensional arguments. One might,
for example, refer to the well-known blast wave solution (Sedov, 1946,
Taylor, 1950), and the converging shock wave solution (Guderley, 1942).
However, there are some special situations for which only the theory of
finite and infinitesimal transformations can identify the similarity variables.
This happens when the so-called characteristic equations in the latter
method determining the similarity variables assume special values for some
of the parameters occurring in them, and their integrals lead to similarity
variables involving the logarithm of one of the independent variables. Such
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similarity solutions would be hard to discover by intuitive arguments alone
(see, for example, Sachdev and Reddy 1982).

In fact, this topic has been discussed quite thoroughly by Ames (1972),
who covers in detail aspects relevant to Burgers’ equation. We, therefore,
content ourselves with a brief mention of some of the results. The invariance
of the solution surface u = §(x, t) and the Burgers equation (2.44) under the
infinitesimal transformations

X = x + &X(x,t,u) + O(e?),
t' =t+eT(x,t,u)+ O(e?), (2.58)
u'=u+eU(x,t,u) + 0(e?),

leads to the characteristic equations of a certain Lagrange equation,

dx dt EQ

< 7 (2.59)

whose integrals determine the similarity form of the solution. The functions
X, T, and U are governed by a coupled system of determining partial
differential equations in these variables, arising out of the invariance of the
Burgers equation. On most occasions, it is not possible to find a general
solutton of these equations. However, each special solution, when sub-
stituted in eq.(2.59), leads to a similarity form of the original equation
(which, here, is the Burgers equation). The similarity form of the solution
can be obtained without reference to the boundary conditions, though the
method as a whole requires the invariance of the boundary conditions
under eqs. (2.58) as well. The whole procedure, particularly if one has to deal
with a simultaneous system of nonlinear partial differential equations, is
quite cumbersome.

The special cases deduced by Ames (1972) for the Burgers equation (2.44)
with 6 = 2 lead to the following similarity solutions (the factor /2 can, in
fact, be scaled out of the equation).

1 X

u= Wf (m), n= m (2.60)

(@)

where f is governed by the nonlinear equation
f"+fm—f)+f=0. (2.61)

We shall see later on that this corresponds to the so-called single hump
solution (see sec. 2.6). Its solution can be explicitly written.
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t+d
x+ R’

|
(b) u=a+(t+d)'1f(n), n= (2.62)

where f satisfies the nonlinear equation

" +20f' +f" =0. (2.63)

The solution of the latter equation is

f =a,tanh [%(a3 " 1)} (2.64)

In (a) and (b) above, m, d, R, a, and a, are arbitrary constants. Ames (1972)
also determined the one-parameter group of finite transformations under
which the Burgers equation remains invariant, and arrived at the similarity
solution

© ==l n=t, 265
where f satisfies the equation

[ = +inf +3f =0.
Its first integral

f'—3%f*+1inf =constant (2.66)

is a special form of the Riccati equation.

Finally, we also refer to the work of Chester (1977) who has discussed
continuous transformations from a somewhat different viewpoint. He has
also found the similarity form of the solution for Burgers’ equation, which is
a slight generalisation of (2.60).

We insert some remarks concerning the physical similitude of solutions
of eq.(2.44). If | denotes the typical length of the wave, u, its typical
amplitude and & the coefficient of viscous diffusion, then (by dimensional
considerations) we have the non-dimensional variables

ul ot X Ul

U=—, 1‘=l—2, é:— R0= 5

5 i (2.67)

where R, is a non-dimensional parameter, called the Reynolds number, so
that the solution

U=" = F(Ry1,0 (2.68)
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depends on R, as well as on t and £. R, is a measure of the (initial)
nonlinearity as opposed to viscosity. To compare two solutions, say, with
the same [ but different viscosities, we would have the same value of Ry, U
andtift,6, =t,0, and u,; /6, = u,/é,. In the linearised form of the Burgers
equation, the nonlinearity parameter R, drops out.

2.4 The pure initial value problem

The connection (2.45) of the solution u of Burgers’ equation (2.44) with that
of the heat equation makes the pure initial value problem for the former a
relatively simple matter. Suppose we atre given

u(x,0)=f(x), — oo <x<o0; (2.69)

then, writing the transformation (2.45) in an integrated form (ignoring the
function of integration), we have

¢(x,t) = exp[ — % jxu(f, tydé :I, (2.70)

so that the appropriate initial condition for the heat equation (2.52) is

@(x,0) = exp —%f u(f,O)dﬁ]

o

=exp| — % J:f(f)df] = O(x), (2.71)

say, choosing the lower limit zero for x in the definition of ®(x).

Thus we have the following precise statement of the existence and
uniqueness theorem for eqs. (2.44) and (2.69) due to Hopf (1950). Suppose
Jf(x) is integrable in every finite x interval and

f :f(é)dé — o(x?) @72)

for | x| large. Then

r X : ¢ exp[ —%F(x,f, t)]dg

-

f ) exp'[ — %F(x, £, :)}dc

(2.73)

u(x,t)=
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where

- 6)2

F(x,¢ 0= f fnydn, (2.74)
is a regular solution of eq.(2.44) in the half plane t > 0 that satisfies the
initial condition

f xu(é,t)dé—» f fede asx—a =0 (2.75)
0 (]

for every a. If, in addition, f({) is continuous at x = a, then
u(x,t}— f(a) asx—a, t—0. (2.76)

A solution of eq. (2.44) which is regular in the strip 0 <t < T and which
satisfies (2.75) for each value of the number a necessarily coincides with
(2.73) in the strip.

In fact, the solution of the heat equation (2.52) subject to (2.71) exists
and is unique only if the asymptotic condition (2.72) on its initial behaviour
is satisfied; indeed, there is the counter-example of Tychnov (see Copson
(1975)) to show that the uniqueness is violated if (2.72) does not hold. The
explicit solution of (2.52) and (2.71), through the principle of linear
superposition via the source or fundamental solution, is given by

(x — &)?
¢=Gx 5:)1/21 (D(é)ep[ 26t ]dé

1 © 1] ( —f)z
~ Cnon'? J-wexp{_5[ - f / ('”d"]}dé

The solution (2.77) is the same as the denominator of (2.73) except for the
factor (2rét)~ /2. This factor disappears when the transformation (2.45) is
used to get u(x, t). Hopf has established the existence theorem by proving
the corresponding theorem for the heat equation. It is necessary to have the
denominator of (2.73) positive to avoid singularities in u. The solution
(2.73) of the Burgers equation satisfies the initial condition (2.75) at every
point x =a in the integral sense; this is satisfied pointwise if the initial
function f(x) is continuous everywhere in the interval.
If the condition (2.72) is weakened so that we have

rf(f)dé = 0(:%) 278)
0

(2.77)

for large | x|, then the solution of the initial value problem exists and is
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regular only in a finite time interval. This is illustrated by the solution
u = x/(t — T), for which eq.(2.78) holds. This solution blows up at a finite ¢
equal to T.

It is clear that the integrals in the solution (2.73) of the initial value
problem cannot, in general, be expressed in a closed form for an arbitrary
initial function f(x). Lighthill (1956) used the method of steepest descent
and graphical construction of characteristics etc. to find the approximate
solutions of several physical problems involving shocks. Many important
results regarding the decay of shocks, the displacement of shocks due to
diffusion, and interiors of shocks and their confluence etc. were deduced.
Some of this work has been succinctly described by Whitham (1974), and
followed later by Rudenko and Soluyan (1977). Since one of the purposes of
this chapter is to understand clearly the analytic structure of the physically
important problems to aid the construction of approximate analytic or
numerical solutions of more general Burgers equations, we discuss those
solutions which can be explicitly obtained. Benton and Platzman (1972)
have compiled an exhaustive list of solutions of the Burgers equation and
have illustrated the physically interesting ones by means of isochronal
graphs. Their tables incorporate explicit solutions of the heat equation and
the corresponding solutions of the Burgers equation, together with some
explanation. We shall show later how most of these solutions may be
interpreted as arising out of boundary conditions imposed at x = 0. First we
consider some important special solutions and their physical significance.

2.5 Stationary solutions and shock structure

The Burgers equation is quasi-linear; it is linear in u,,. Besides, the
coefficients of the derivative terms depend only on the dependent variable.
Therefore, it admits travelling wave solutions depending on x — Ut only,
where U is the (constant) speed of the wave. Obviously, such solutions, if
they exist, have the same form for all time. Substituting ¢ =x — Ut in
€q.(2.44) and looking for shock-like solutions with u—u,,u, as € - + oo,
where u, > u,, we have

0
— Uug + uu, = Use: (2.79)

Since the solutions of this equation assume constant values u,,u, at £ =
+ oo, the derivative of u vanishes as £ — + o0, so that integration of
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eq.(2.79) gives

)
L2 —Uu+C= e (2.80)

where C is a constant. Further, imposition of end conditions at £ = + o
leads to

1ui—Uu, =3u3— Uu,= - C. (2.81)
Egs. (2.81) give the values of the constants as

U=3%u, +u,), C=3uu,. (2.82)
Substituting (2.82) in eq. (2.80), we have

(u—uy)(uy — u)= — ou, (2.83)
which integrates to give

§= 1 lnuz—u

2
0 u,—u;, u-—u

or, more explicitly,
U —i,
u= ul + s U

1+expu2;u1(x— U

_ul +u2

(2.84)

The solution (2.84) describes the structure of a uniformly propagating
shock with end conditions u; and u,. The velocity of the shock U is the
mean of the end velocities and is independent of the shock structure. This, in
the terminology of Barenblatt and Zel'dovich (1972), is called a self-similar
solution of the first kind, for which the velocity of propagation of the wave is
obtained explicitly in terms of the known end conditions. It is also an
intermediate asymptotic (see chapter 4) to which a class of solutions arising
out of different initial conditions with asymptotically the same end
conditions converge as t — c0. To see this we consider the following initial
step conditions which may be thought of as arising from a fast piston motion
such that ‘the wave form gets away from the piston in a time negligible
compared with the time scale of the process of shockwave formation in
which we are interested’ (Lighthill, 1956):

u(x,0)=f(x)={“" ">°’} (2.85)

u,, x<0,
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where u, > u,;. The initial conditions in terms of ¢ become

e~ ¥ x>,

&(x,0) = {e"‘z""’, < 0_} (2.86)
Substituting (2.85) in eq. (2.73) and rearranging suitably, we have
ux,)=u, + 2 P

J. e—y2/26: dy
1+ {exp[“z —uy (x i+ “zt):l} —Gouy
5 2 \J‘ e_yzlz';, dy
X —ua
(2.87

In the limit as ¢ — oo such that u, < x/t < u,, the lower limits of the integrals
in the denominator of eq. (2.87) are both large and negative so that the ratio
of the integrals tends to 1. The solution (2.87) tends to the travelling wave
solution (2.84). The latter is also referred to as Taylor shock structure
(Taylor, 1910). Here, we have given only one special initial condition such
that the solution of the Burgers equation subject to this condition tends in
the limit t— oo to the travelling wave solution. There can be an infinity of
initial conditions with the same end states but ‘reasonable’ behaviour in the
middle which evolve, in the limit t = co, to the steady shock structure or the
travelling wave solution (2.84), (Barenblatt & Zel'dovich, 1972).

2.6 Single hump solution

The travelling wave solution discussed earlier is a similarity solution of the
first kind in the terminology of Barenblatt and Zel'dovich (1972); it can be
transformed to appear like a familiar similarity solution. There is also a
similarity solution of the second kind whose form can be written by
dimensional argument. It appears like an (unsymmetric) single hump with
zero values at x = + co. If we produce a compression pulse by moving a
piston very rapidly into gas, say, for a distance h and then stopping it, we
can define a non-dimensional number, the Reynolds number

1[” A
R= 3 f udx = g(say), (2.88)

=

which has a nice interpretation as the area under the profile of the pulse (a
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good representation of the product of velocity amplitude and length scale
for such a pulse) divided by the coefficient of viscous diffusion. It is a good
measure of the ratio of nonlinear convective to (linear) diffusive effects. If we
integrate eq.(2.44) with respect to x from — oo to + co and impose the
conditions that u =0 at both ends, then it immediately follows that R is
constant. The existence of such ‘stationary’ solutions with a fixed ‘momen-
tum’ R was mentioned by Hopf (1950) who also described the fact that all
solutions of the Burgers equation with vanishing conditions at + co and
with a given R will tend asymptotically to the ‘stationary’ or similarity
solution. Eq.(2.88) represents an integral of the Burgers equation.

There are only two dimensional parameters appearing in the problem,
namely 4 and J, each having the dimensions L2/T; there are no other
dimensional parameters to render length and time separately non-
dimensional. Hence the solution takes the similarity form

o |2 x A

This corresponds to the similarity solution of the heat equation

0

¢=C1+C2J‘ e-yZ/Zdy=c1 +Ezerfc

X
o2 (251“)”2 s (290)

which depends on the similarity variable x/(dt)'/? only. The constants c,
and ¢, are chosen such that u — 0 as x = + 00, according to the transform-
ation (2.70) slightly modified as

1 [v 8]
P(x, t)=exp(3J udx). (2.91)
The constants ¢, and ¢,, therefore, are given by
eR—1
= 1, Cy = 7(2—15 (292)

The Hopf-Cole transformation (2.45) then gives

(5) 1/2 e—x2/2-§t

u=|-

t (27[) ® —y2
N

X612

(5)1/2 e-xz/zaz (29
=[- . 93)
t (2

;{Q—_i?+\/(n/2)erfc(2;:)1/2
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This solution has different forms depending on the magnitude of the
Reynolds number R of the initial profile. R, for a given profile, remains
constant for all time (see fig. 2.1). When R =0, the first term in the
denominator of eq. (2.93) dominates the integral term and we have merely
the source solution of the diffusion equation, the nonlinear term in the
Burgers equation taking no part in the solution. When R is very large, the
first term in the denominator is small, but its relative size in comparison to
the second term depends on the sign of x. For x <0,x/(26t)!* =& « — 1,
erfc £ ~ 2, and the solution therefore is essentially Gaussian, implying that
mainly diffusive effects prevail. Besides, for x » 1, & > 1, erfc £ ~ 0, and the
region is again diffusive. For £ 2,/2, a good approximation to erfc ¢ is
Y€ 'e ¢ so that, for large R,

(2.94)

X
U~
t
This is also an exact solution of the Burgers equation in which the diffusive
term is trivially computed. This ‘inviscid’ region is followed by a thin ‘shock’
layer on the right when the terms e™® and erfc[x/(26t)?] in the
denominator of eq.(2.93) are comparable. The shock layer has a diffusive
forerunner where ¢ » \/ 2 as noted above, and the solution is close to zero
there.

Whitham (1974) has discussed the structure of this solution in great detail
for large R. There are two transition layers — one the shock layer which in
the limit of R — co goes into a discontinuity in u, and the other a transition
near x = 0, which becomes a discontinuity in the derivative of u at x =0 in

N_mwamc\\n

[ I | i 1 1 1 L [
ST 37001 23 45 6 7 8 9 g Txent

0.3

Fig. 2.1. Asymptotic form of the single hump solutions of Burgers
equation, with Reynolds numbers 30,10,3,1,0.3 (from Lighthill
(1956)).



28 The Burgers equation

the same limit. The shock is located at x = (24¢)'/? with the structure given
by eq. (2.84).

The similarity solutions, per se, arise out of very special, usually singular,
initial conditions, but assume importance by virtue of being intermediate
asymptotics. For example, Whitham has identified the initial conditions for
the single hump solution as a delta function superposed on the undisturbed
(constant) value of u. Indeed, there can be many representations of the
initial conditions which go into the delta function in some limit, and have a
solution evolving into the single hump in the same limit (see, for example,
Benton and Platzman (1972), eq.(4.4)).

We conclude the discussion of the single hump solution by noting that
the transformation

o 1/2
u=(;) [H()]™! (2.95)

changes the Burgers equation into the nonlinear ordinary differential
equation in the similarity variable ¢ = x/(26r)'/2,

HH" —-2H* + 2(HH' — 2,/2H' — 2H?* =0, (2.96)

where the prime denotes differentiation with respect to & This equation has
the exact solution

Jen

H=eR—1

¥ + ./ (m/2) €% erfct. (2.97)

We shall see in chapter 5 that a class of generalised Burgers equations
admit similarity solutions governed by equations which differ from
eq. (2.96) either in the numerical values of coefficients or in the addition to
eq. (2.96) of a constant. Of course, these seemingly trivial changes make a
drastic difference in the context of nonlinear differential equations so that
most of these generalised forms of eq.(2.96) do not admit closed form
solutions such as (2.97). They form a class which is much more general
than the Painlevé—FEuler equations (Kamke, 1943, p. 574) which can be
exactly linearised by a nonlinear transformation.

2.7 Planar N wave

A solution of the Burgers equation which is physically more important than
the single hump solution is the so-called N wave. In fact, the N form of the
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waves which actually arise in nature, say from a spherical explosion or an
aircraft, with idealised spherical or cylindrical symmetry, far from the
source, carries important geometrical expansion effects due to the shape of
the source. These N waves will be referred to as spherical and cylindrical,
respectively, and are governed by a generalised Burgers equation to be
discussed in the next chapter. The corresponding solution for the plane N
waves throws much light on the structure of the solution for the real N
waves, which, unfortunately, do not seem to be exactly expressible in a
simple analytic form,

The N waves with discontinuous shocks at [x| =1 on the front and the
tail, which would emerge from a planar source far away, have the balanced
form

x for|x| < 1,} (2.99)

0 for|x|>1.

u=(x,t,-)={

Evolution of the solution from this initial stage t = ¢; to the one when the
Taylor shock is well-formed may be obtained analytically (see Crighton and
Scott (1979)). Of course, it may also be found numerically. However, after
this embryonic stage, there is a solution of the Burgers equation which
describes the wave over an infinitely long time during which it decays. We
look for a solution of the heat equation, which is even about the node of the
wave, x =0, so that the corresponding solution of the Burgers equation,
because of the Hopf—Cole transformation (2.45), is odd about x =0, and
vanishes at x = + 0. Such a solution of the heat equation is

to z 2123
o=1+ - g X2 (2.99)

where t, is a constant. The corresponding solution of the Burgers equation
is

. x/t

- 1/2 :
b (L) o
to

We define the Reynolds number in the present case as the area under one of
the two (equal) lobes divided by 4,

© 1/2
R=%=%f udx=lnq5(0,t)=ln|:1+(t70) / ], (2.101)

0

u=-—29

(2.100)

so that, unlike the case for the single hump, R is not constant and decays to



30 The Burgers equation

zero with time according to eq.(2.101). Eq.(2.100) may now be written as

x/t

P (2.102)

The solution (2.100) is obviously not self-similar. For R « 1, the exponential
term (e® — 1)1 in the denominator of eq.(2.102) is much greater than 1 so
that u is simply a differentiated Gaussian. This is the stage of the solution
where R has decayed sufficiently from its initial large value, the convection
has died out, and the flow is essentially diffusive. In the early stages of
propagation of the N wave when R > 1, we may write eq.(2.102) as

uz§{1 +e2-RY -1 (2.103)

ul

u(1/8)t 30

Fig. 2.2. Scaled N wave solutions of Burgers equation for Reynolds
numbers 30,10,3,1,0.3 (from Lighthill (1956)); see sec. 5.6 for evo-
lutionary details.
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{% |x|<(2aRt)”2,}
u~
0, |x|>(26Re)\2. (2.104)

so that

This is the inviscid solution of the Burgers equation. The shock centre x,
itself may be found by locating the point such that u is midway between the
maximum of the discontinuous profile and zero, that is, when

14+ 28R~ 1)x2.
We thus have

ta \1/27)1/2
xs=[25tln(eR—1)]”2=[25t1n(—tg) } (2.105)
1 5 1/2
=(51 1/2,1/2 _ Y2 1n¢.
(0Inty)“t Z(Into) t"“Int

Between the early nearly inviscid phase and the final diffusive phase, there
are several other stages, when the shock structure is not given by the Taylor
solution and shock wave displacement due to diffusion (see the following
paragraph) is not small, and further, when the shock ceases to be thin and
becomes of the order of the length of the wave profile itself. The solution is
described by the complete form (2.100) (see fig. 2.2). Indeed, much of
(singular) perturbation analysis, as we shall see in chapter 3, fails to describe
the intermediate stages, beyond the thin shock regime.

The first term in eq. (2.105) is the shock law according to inviscid (weak)
shock theory, while the second term is the effect of diffusion and is referred
to as shock wave displacement due to diffusion. This is caused in the present
case by the mass diffusion across the node of the N wave bringing about its
decay (see Lighthill (1956)).

2.8 Periodic initial conditions

Another important solution of the Burgers equation arises from periodic
initial conditions. This was first considered by Cole (1951). Subsequently, its
counterpart for boundary value problems was obtained by Blackstock
(1964) and Parker (1980). If we start with the initial and boundary
conditions

u(x, 0) = g sin ? 0<x<l, (2.106a)
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w0,)=ul,)=0, t>0, (2.106b)

the Hopf—Cole transformation (2.45) gives

d(x,0)=exp| — 22| sin“Edx
é Jo |
uol X
=exp|: 51:(1 —Cos T)], (2.107

so that (2.106b) is satisfied. The corresponding solution of the heat equation
is

) 5 2.2
dixt)=Ag+ 3 A,,exp(-iil’,_f_’)cos$ (2.108)
n=1

et o] o)
ool -55)(35)
4= Jexp[ (1 c0s™) oos "

Uyl uyl

(see Abramowitz and Stegun (1964)). The solution u of the Burgers equation
(2.44) therefore is given by

- _ s.22./9)2 “_Ol o L
25 Zexp( on’ntt/21 )nln(né)sm( l )

| ugl é%nn?t Uyl nux\’
I (n5)+22exp( = )l s Jeost

(2.110)

where

U=

The value of the denominator at t =0 is

lo(@) +2 3. 1(z)cos ? = exp(z cos ?) 2.111)

(see Abramowitz and Stegun (1964)), z = u,l/nd, so that u obviously satisfies
the initial condition (2.106a) via eq. (2.45). The Reynolds number R, = u,l/d
based on the initial amplitude u,, the length of the initial (periodic) profile /
and the viscosity coefficient é, naturally appears in eq. (2.110). The solution
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of the heat equation (2.52) subject to the conditions (2.106) is

2
d(x, ) = ug exp( —g%t)sinn—lx. 2.112)
A comparison of egs.(2.110) and (2.112) immediately brings out two aspects
of nonlinearity: (1) the generation of an infinity of higher harmonics with
diminishing amplitudes, in contrast to the linear solution (2.112) with only
the fundamental harmonic, (2) the dependence on the Reynolds number R
rather than only on u,, the initial amplitude of the wave. For R, — 0, the
functions I,,(R,/m) may be expanded to show that u tends to ¢ with an error
of O(R,). In the limit of large R,, we may use the asymptotic form of I,

Ro/=n 2_12 2_ 12 2_ 12 1
(Ro) o 8 [ 4212 @n 1)(4n23)+0_§_ |
n ]7 (2R, 1|(8R0) 2'(8R0) R3

n T

(2.113)

Curiously enough, if only the first term in the expansion (2.113) is used and
cancelled throughout in eq.(2.110), the resulting ‘approximate’ solution

nmx
[
on’n’t ) nax

1+2"Zlexp(—2T 5=

turns out to be an exact solution, with its own domain of validity. The
exactness of the solution was discovered later by several investigators. A
more curious result emerges from expressing (2.114) in yet another form
obtained by using theta functions (see Abramowitz and Stegun (1964)). If
we use the following results for 6,,

S exp(— dn*n?t/2P)nsi
25 n;exp( n’n2t/21%)n sin

u(x,t) &

(2.114)

04X, T)=1+2 Y e T cos2nX, 2.115)

n=1
X on

X = E'I-, T = ﬁt,

0 © ,sin2nX

a—Xln 0,(X, T)=2n;(— 1) prr— (2.116)

in eq.(2.114), we have
. _on i (=D sm(mrx/l). 2.117)

n=1

sinh g(nnzt/lz)
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Eq.(2.117) gives yet another exact solution! Cole, in his remarkable work,
also mentioned that eq. (2.117) approximates to

i{tanh(l;t ) (1 —§)} (2.118)

We shall give later a more rigorous derivation of some of these results for
the sinusoidal piston motion treated as a boundary value problem in the
light of some recent work, part of which was implicit in Cole’s paper.
Physically, the sinusoidal initial profile for large R, steepens near x =1
because of the nonlinear effects manifested in the generation of higher
harmonics. This steepening is resisted by the diffusive effects, resulting first
in a ‘structured’ shock near x = l. At subsequent times, this effect spreads in
the entire profile, leading to exponential decay of the harmonics according
to eq. (2.117). There is no ‘steep’ front at this stage of evolution of the profile.
Finally, only the first harmonic survives but with a reduced amplitude as
compared to that for a linear wave as given by eq. (2.112). It is interesting to
note that the form (2.117) displays no dependence on the initial amplitude.

Reference may be made to Walsh (1969) for the solution of the spatially
periodic initial value problem with general initial conditions.

29 An equivalent boundary value problem

So far we have been concerned with initial value problems for the Burgers
equation and consequently for the heat equation. There is an alternative
way of recovering aimost all the solutions of Burgers’ equation, as listed, for
example, by Benton and Platzman (1972), and many more, by suitably
posing a boundary value problem, as was shown by Rodin (1970} and
Sachdev (1976a). Here we pose such a problem and illustrate it with a few
interesting solutions. It is well known (see, for example, Copson (1975)) that
the Cauchy-Kowalewsky theorem for the heat equation (2.52), subject to
the boundary conditions

0,0 =F(t), ¢0,0=G(), ¢t>0, —w<x<oo, (2119

gives the following solution provided F(t) and G(t) are analytic in the
relevant interval of &

n 2n © n x2n+1
0= 3P )( ) i 20 )( ) @+ r

(2.120)
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Here the superscript (n) denotes differentiation with respect to ¢. It turns out
that this boundary value problem is equivalent to a pure initial value
problem for the heat equation over the same domain as in (2.119). Walsh
(1969) has formally proved this equivalence, essentially following Widder
(1956).

A corresponding equivalence for the Burgers equation was obtained by
way of Hopf-Cole transformation, subject to the condition ¢(x,0) > 0, by
Rodin (1970). From eq.(2.120),

( 0) Z F(")O x2n (n) n x2n+1
oL ”()(2)"“Z ()()(2 Y

= H(x) (2.121)

for — co < x < o0 and eq. (2.120) itself may, in fact, be re-written in the form
o] t"

dlx,t)y=H(x)+ ) JH(Z")(x). (2.122)
n=17":

Now, by way of the Hopf—Cole transformation, the solution of the Burgers
equation corresponding to (2.120) is

1 2 n+1 x2n+1 ) ” nx2n
»Zo F )“)( ) ot 50 o
0 : 2\" xZn . n x2n+1 4
£, m0(3 )+ B0 of; ) n+ 1)
satisfying the boundary conditions

__ 550 _ [ G 2F(
u0,t)= — 6 O’ u,(0, z)—é[ 70~ F (t)]. (2.124)

u(x, )= — (2.123)

No initial conditions are prescribed. However, this is a well-defined
problem and as we have stated earlier is equivalent to an initial value
problem over — o0 < x < 0.

Now, we imagine a subsonic piston motion (see Lagerstrom et al. (1949))
say, from x = 0 with displacement H(¢) and velocity H'(t). We assume that
H(t)is small so that only terms of order H(t) are retained in the Taylor series
for u(H(t),t). The boundary condition at the piston is

u(H(), ) = H'(t)
or
u(0, t) + H(t)u,(0, ) = H'(¢). (2.125)

Assuming that u(0, t) is small in comparison with u,(0, t) and H'(t), we arrive
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at the following boundary conditions for the Burgers equation:

u0,t)=0,
H()
= ) 2.126
wl0,0 =15 (2126)
Egs. (2.124) and (2.126) together imply that
Ho _ PO (2.127)
H() F()
so that, by integration,
F(&)=[H({)] V2 (2.128)
Moreover, G(t) = 0. The solution (2.123) now takes the form
© 2 n+1 x2n+1
) [(H(t))_”z]‘"“’(—)
n= 0 2n+ 1)
U, ) = — 8 =2 @+l (2129

X

= -1 n 2\"
nZO LH(E™ T )(5) (2n)!

It is evident from egs. (2.123) and (2.129) that only positive solutions of the
heat equation, with precise information about the radius of convergence of
their series representations, should be chosen so that the solutions of the
Burgers equation remain non-singular. The book by Widder (1975) may be
referred to for further information regarding the heat equation.

If we choose the piston displacement as

t

it is easily verified that (with 6 =2 in eq.(2.44) for convenience)
x/t

gives an N wave. The piston motion (2.130) starting from x =0 reaches
x =1 asymptotically as t— 0.

We now show that the solution (2.117) arising out of a periodic initial
condition may, in fact, also be simulated by the ‘gentle’ piston motion

© -2
H@)= (1 +23 e—"") . (2.132)
k=1

This function is a strictly increasing function of ¢ such that, like eq. (2.130),



An equivalent boundary value problem 37

H(0)=0 and H(o0) = 1. The solution 1s

. [ & [2\
u(x,t)= “5a—xln_nzo (5)

LG
——5%ln 1+§2(
{

{

0 2
=—6—In|1+2 Y
56 n 2

2
5 ol
(g)[z R _H'](;;;' }]

- — jz S —k2t o _ Aféffi
- 5axln 1423 <e ["Z( 1) @n) ]}]

| k=1 =0
o T °
=—0—In| 1+2 ) e *cos(kAx)
0x | k=1
o A
——5&111 93(5.}6,3 )]

,Sin (nAx)

. 2.133
sinh nt ( )

= -9 3 (- 1)

In eq.(2.133), A denotes (6/2)”'/* and the last two steps follow from
€Qs.(2.115) and (2.116). The rearrangement of terms, term-by-term dif-
ferentiation, and interchange of the order of summations can be easily
justified since the double series and its derivative are absolutely and
uniformly convergent.

Our final example is related to (2.118). If we choose

BZ
w0,8)=0, u 0,t)= ( &) (2.134)

the conditions for the associated heat equation (2.52) become
G0, )=t~ 12efI2%, 4,00, =0,
H(t)=te F (2.135)
Here f is a constant. Substitution of (2.135) into eq. (2.129) leads to

u(x,t)=%(x+ﬁtanl;—f). (2.136)

The solution for 82 >0 has the form (2.136), while that for 8% <0 with
simple scaling and translation of the variables etc. (see eqs. (2.55)—(2.57))
gives (2.118).
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An interesting work on boundary value problems for the Burgers
equation (2.44) is due to Kochina (1961), who posed the boundary value
problem over a semi-infinite domain,

u(0, £) = Y(r),
lim u(x,t)=u, <0, (2.137)

0<x<g<w, t>0,

requiring the solution to tend to a non-positive value at infinity. The initial
function ¥(¢) was assumed to have a Fourier series expansion with
coefficients of the order of 1/k", r > 2. A periodic solution of the Burgers
equation subject to (2.137) was found using the Hopf-Cole transform-
ation, necessitating however the solution of an infinite system of linear
algebraic equations. The conditions for the existence of the solution of this
system were also analysed.

2.10 Viscosity method and Burgers’ equation

The Burgers equation (2.44) may be viewed as a model providing a proper
viscous embedding for the inviscid hyperbolic law

u, +uu, =0. (2.138)

More specifically, if u is an ‘admissible’ solution of eq.(2.138) and u; the
solution of eq. (2.44) with the same initial conditions, then u; »uas 4 -0, in
an appropriate sense. It should be noted that eq.(2.138) can be written as a
conservation law in more than one way, say,

ou o (u? o2y o (ud

and there can be many (in fact an infinity of) possible Rankine—Hugoniot
conditions arising from these (infinite) conservation laws (see Courant and
Hilbert (1962)). The embedding of eq.(2.139) with viscosity facilitates
selection of just the correct conservation law, satisfying the so-called
entropy condition (see Gelfand (1959), Lax (1957) and Dafermos (1974)).
Hopf (1950) discussed the limiting behaviour of eq.(2.44) as 6 —» 0.

In our context, however, we regard the Burgers equation and its
generalisations as models arising out of actual physical conditions and not
merely serving to sift a unique solution for a given hyperbolic equation.
However, the relation between the viscous and inviscid solutions is very
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important. Indeed the inviscid solution always forms an important
component of the solution, holding in some domain. For example, for both
the single hump and the N wave, the solution u = x/t holds in the essentially
inviscid domain to the fore of the shock layer when high Reynolds number
conditions prevail. As we have mentioned before, Whitham (1974), using
the method of steepest descent for the integrals in eq. (2.73), verified that, in
the limit of & — 0, the solutions of the Burgers equation approach those of
eq.(2.138) satisfying the Rankine—Hugoniot relation across the shock
discontinuity, namely

U =4, +up), (2.140)

where U is the velocity of the shock and u,, u, are values of u immediately
ahead of and behind the shock, respectively. In subsequent chapters,
particularly when perturbation methods are discussed to solve generalised
Burgers equations, the inviscid solution will again form the outer solution
and will be matched to the inner solution in the shock layer.



3 Generalised Burgers
equations

3.1 Introduction

The Burgers equation (2.44) is an idealised equation which combines a
simple nonlinearity with a small linear viscous term. In actual physical
situations there are other complicating physical factors which alter this
equation, resulting, in general, in the loss of a Hopf—Cole type transform-
ation for exact linearisation. These contributing terms may be lower order
source or sink terms or geometrical expansion terms so that we may have
equations, for example, of the type

o
U, +uu, + Au= 2tx0 (3.1
ju_s
u, + uu, + T 2u,‘,c, j=1,2. (3.2)

In eq.(3.1) if the coefficient 4 is positive, we have a sink term which, in the
absence of viscosity in the early stages of the wave (6 = 0), will dampen the
wave so much that no shock is formed. On the other hand, a negative 4 will
accelerate the formation of the shock. Eq. (3.2) combines the effect of spheri-
cal or cylindrical expansion (j=2,1, respectively) with nonlinearity
and diffusion, and arises from the corresponding geometrical shape of the
source. This, too, has the effect of dampening the amplitude of the wave. The
amplitude reduction due to these lower order ‘friction’ terms may be
contrasted with that due to the diffusive damping represented by the higher
order viscous term 1du,,.. Here the wave is caused to spread or diffuse, and
dampen. There may be other higher order effects, say, due to dispersion,
leading to an equation of the type

o
U, + uu, = 7 tex ~ Mk u>0, (3.3a)

the so-called Korteweg—de Vries—Burgers equation. This would admit a
predominantly shock-like structure with small oscillations in the tail of the

40
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shock if u« 4. Conversely, it may describe essentially dispersive pheno-
mena such as in tidal waves, where account is taken of the small ‘eddy
viscosity’ which may be present. This would happen if u>é6. A nice
discussion of the solutions resulting from different sizes of these terms may
be found in Johnson (1970). We shall have occasion to refer again to this
equation and its stationary propagating solutions later when we discuss
Fisher’s equation which, in a strange way, has some connection with
eq.(3.3a).

These (model) generalised Burgers equations (see Crighton (1979) for
further examples) can be derived from the basic system of equations using,
for example, the method of multiple scales. We shall illustrate this by
deriving eq.(3.2) in sec. 3.3.

In fact, as we remarked earlier, the following sequence of events takes
place when a forcing agency, a fast piston, for example, pushes the gas and
stops. A pulse is created which due to nonlinearity may steepen at its front.
It may be aided or retarded by a lower order term in acquiring a
discontinuity, a shock, at its head; in the absence of such a term, the case
A =0, an initial profile however smooth will necessarily steepen into a
shock. Until the formation of the shock, the wave is governed by eq.(3.1)
with é = 0. Viscous diffusion comes into play to ‘loosen’ the front. It takes
some time for the nonlinear and viscous effects to come to a certain
‘stationary’ balance, when we have a thin Taylor shock. This phase of the
evolution of the wave persists for some time until the shock has thickened to
become a sizeable fraction of its total length. Then, in general, the
stationary Taylor structure is no longer valid. The pulse continues to
broaden and dampen under the influence of diffusive effects until its
amplitude has diminished so much that the nonlinear term becomes
negligible and the wave evolves under pure diffusion (and lower order
damping), dying out after a very long time.

Mathematically, before the formation of the shock, the flow is governed
by the inviscid form of eq.(3.1),

U, + uu, + Au=20. (3.3b)

Indeed the solution given by this equation holds for a long time if one
ignores the thickness of the shock so that it may be treated as a sharp
discontinuity. We may thereafter switch to eq.(3.1) as representing a
singular perturbation problem with a small coefficient é multiplying the
highest order derivative. We obtain the solution as a matched asymptotic
expansion. This solution holds for some time after which, in general, it
becomes invalid in some domains. The exception to this is the Burgers
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equation itself, for which, in the case of a sinusoidal piston motion, a first
order (matched) composite solution turns out to be an exact solution
valid for all time. (This particular solution, however, has its own
domain of validity). Actually, the periodicity here is imposed in the
boundary condition, and space and time co-ordinates interchange their
roles (Parker, 1980). Generally, however, the first order matched asympto-
tic solution ceases to be valid because (i) the shock is no longer thin
compared to the overall pulse length, (ii) the shock displacement due to
diffusion takes the shock too far from its location according to inviscid or
weak shock theory, (iii) the solution acquires a form different from the
Taylor shock (see Crighton and Scott (1979)).

When any of the above conditions comes about, it is difficult to find the
solution analytically until the pulse has died out sufficiently so as to evolve
according to the linearised form of the equation. Even then the solution is
unknown to the extent of a constant multiple which is a remnant of and a
link with its earlier evolution. Another notable exception is a physically
relevant and correct similarity solution, when one exists, to which a certain
class of initial pulses evolves. Thus, the similarity solution takes over as an
intermediate asymptotic — a nonlinear solution persisting all the way to infi-
nity and coinciding with the linear solution in the appropriate final regime.

In this chapter, we shall discuss singular perturbation approaches as
applied to several different physical problems, modelled by Burgers’
equation and its generalised forms. We shall study both initial and
boundary value problems. We shall also derive the non-planar Burgers
equation for spherical and cylindrical geometries by the method of multiple
scales, and solve it by the method of matched asymptotic expansion and an
alternative analytic approach which uses an infinite sum of the products of
functions of similarity and time variables. We study GBEs and their
transformations; the inhomogeneous Burgers equation is considered in
some detail, applying it, in particular, to acoustic waves excited by the
absorption of laser radiation.

Remarks on singular perturbation techniques

A quick glance at the Burgers equation(2.44) reveals that the small
parameter &, the coefficient of viscous diffusion, multiplies the highest order
derivative in the equation, suggesting a treatment by what are referred to as
singular perturbation techniques. A power series solution of the problem in
o is called regular, if it can be expanded in the form

u(x, t) = tg(x, t) + oty (x, ) + 82uy(x, )+ -+,
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so that this series in & has a non-vanishing radius of convergence. The exact
solution for small but non-zero é smoothly approaches the unperturbed or
zeroth order solution uy(x, t) as 6— 0. In contrast, a singular perturbation
problem may not have a power series solution at all.

A hallmark of the singular nature of the equation is, as we noted earlier,
the multiplication of the highest order derivative term by a small parameter
so that the unperturbed form (the case with 6 = 0) of the equation has its
order depressed by 1, thereby affecting its ability to satisfy all the initial and
boundary conditions relevant to the problem. If this unperturbed equation
has a solution, its nature is fundamentally different from the exact solution,
particularly in some (thin) layers referred to as boundary layers or
shock layers, which are characterised by relatively sharp changes in the
solution.

Such nonlinear equations, in general, cannot be solved in a closed form.
The perturbation methods break the problem into several parts, for each of
which the solution has either a regular perturbation series or a singular
perturbation series holding in some sub-domain. Then, these separate
solutions are matched to yield a global approximation of the solution, the
so-called uniform approximation. The method is to find the outer solution
(of the *outer limit’ of the equation as é — 0) in the region outside the shock
layer as a regular perturbation series. Similarly, an inner solution (of the
‘inner limit’ of the equation as 4 — + 0) is found which holds in the shock
layer. This is accomplished by introducing an inner variable with respect to
which the variation of the dependent variable is not rapid. An order-by-
order matching over an overlapping region is carried out by introducing
the intermediate limit such that the outer independent variable tends to
zero, while the inner variable tends to infinity; the existence of an overlap
region is normally assumed. The extent of the overlap region, while finite in
terms of the outer variable, is infinite in terms of the inner variable. These
overall ideas will become clear as we take up singular perturbation analysis
of several generalised Burgers equations. There are now available several
books on perturbation methods, to which reference may be made for
further details (Nayfeh, 1973, Van Dyke, 1975, Kevorkian & Cole, 1981).

It is well to recall relevant features of the exact single hump and N wave
solutions of the standard Burgers equation (see secs. 2.6 and 2.7) to motivate
the perturbation approach to the solution for the generalised Burgers
equations, for which exact solutions cannot be found; these solutions
however have a qualitatively similar structure. For the single hump case, in
the limit of § — 0 (that is, Reynolds number tending to infinity) the solution
is given by a straight ramp (2.94)in 0 < x < (241)"? and 0 outside. Thisis an



44 Generalised Burgers equations

exact solution of the outer limit of eq. (2.44), namely u, + uu, = 0, which we
have earlier termed an inviscid Burgers equation. The shock in this case is
located at x = (24t)"/? and has a velocity U = (A4/2t)"/? (see (2.88) for the
definition of 4). The shock condition obtained from the conservation law
u, + (8/0x)(u*) =0, namely, U =3(24/1)'/* =(A/2t)"'?, is automatically
satisfied. This is also referred to as weak shock theory. When & is small but
finite, so that the Reynolds number is large and finite, the shock centred at
x = (2At)"/? has a small thickness, and a structure, which, to first order in 6,
agrees with that given by Taylor’s shock theory (see sec. 2.5). Similar
discussion applies to the profile of the N wave. In particular, the shock
displacement due to diffusion is given by the second term on the right of
eq.(2.105). We shall seek such a solution using singular perturbation
methods, at least to first order in d, for generalised Burgers equations; in
principle, even higher order solutions may be found but, in practice, they
turn out to be highly intricate (see Lardner (1986)).

3.2 Generalised Burgers equation with damping

We consider eq. (3.1) with a slight change so that it coincides with the form
considered by Lardner and Arya (1980). This equation arises from
considering the plane motion of a continuous medium for which the
constitutive relation for the stress contains a large linear term proportional
to the strain, a small term which is quadratic in the strain, and a small
dissipative term proportional to the strain-rate (Lardner, 1976). We make
the transformation

u—-h, x—-—0, (3.4)

so that eq.(3.1) changes into

h,— hhy + Ah = g—hea, 0«1, A>0, (3.5)
with the initial condition
h(6,0) = H(8)(say). (3.6)

The term Ah represents a small viscous damping, proportional to velocity.
We first obtain the outer (regular) perturbation solution

h=H® 4+ 50D + 620D + .- (3.7)

Substitution of (3.7) into eq. (3.5) shows that the lowest order term A®
satisfies the equation

O — KORD + Lh© =0, (3.8)
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whose characteristic form

de do dn®

1 —hO " "0 (39)
gives the explicit solution

h0,r)=e"*H(H,), (3.10)

6, =0+ cH(@#,), (3.11)

a=%(1 —e 4, (3.12)

At t=0(i.e,0=0),0 =0,, and h'? satisfies the initial condition (3.6). It is
obvious from eq. (3.6) that the higher order terms h'" etc. are to be found
subject to zero initial conditions. 8, is the characteristic variable so that, for
8, = constant, eq.(3.11) describes the characteristics in the 8—¢ plane, ¢
replacing ¢ as a convenient (modified) time variable. These characteristics
are straight lines carrying different initial values of H(6,) corresponding to
different values of 0,. It is interesting to note that the characteristics will
meet and form an envelope if

1 =cH(,), (3.13)

obtained by differentiating eq. (3.11) with respect to 8,. The earliest time this
happens is given by

o =[H'(6)]"", (3.14)

where 0 is the value of 6, at which H’(f,) is maximum. Until ¢ = o, the
solution is smooth and is given by eqs (3.10)—(3.12). Indeed, if 1! < oy, the
corresponding smooth solution will remain valid right up to t = o0, as
follows easily from eq.(3.12), and the viscous term does not come into play
at all. However, in general, characteristics will meet for ¢ > o; and form a
shock. Condition (3.14) requires a quite steep initial profile for an early
formation of the shock.

It is convenient to introduce the characteristic variable §,, and g, to
transform the first order equation

hY — e~ #H(O)h + Ah® — e~ *H'(0,)[1 — cH'(0,)] *h®
=4e “H"(0,)[1-cH'(6,)]° (3.15)

(which follows from eq. (3.5) and (3.7) by equating terms of order J) into
é
%‘{ [1—-0H'(6,)]9(0,, a)}

=1H"0,)[1 —cH(6,)] *(1 — o)~ !, (3.16)
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where
g(gla O-) = ellh(l)'

The right hand side of eq. (3.16) can easily be put into partial fractions,
and an integration with respect to ¢ together with the condition
hV(8,0) = 0 determines h'"). The outer solution of eq. (3.5), to first order
in é, can thus be written as

h=e *H(0,)

oH'(8,)
[H'(#,)—1[1 —cH',)]

+ %5H”(91)e"“{

. 1 —oH(0))
" TH®,) - AP0 - aH’(Bl)]ln[ 1— o :I} (3.17)

To get the inner solution, we introduce the stretched inner variable
a=08"1[0—64t)], where 8 = 8¢) is the trajectory of the shock wave to be
determined. Eq.(3.5), in terms of the variables « and ¢, becomes

10%h éh _ _oh
572+ [+ 0015 = 6=+ ih. (3.18)

The solution of this equation, the inner solution, may be sought in the form
h(e, t) = Ket, £) + SRV (o, ) + - (3.19)

The dependence on the arguments will distinguish this expansion from
(3.7). The equation for h'® becomes an ‘ordinary’ differential equation

1 82O oK
— (0) 4

=0 (3.20)

whose solution can easily be written as
h(a, £y = — 6(¢) + a(t)tanh {a(t) [ + b(r)]}, (3.21)

where a(t) and b(t) are ‘constants’ of integration, The equation for A*Xe, ),
from eq.(3.18) and (3.19), is

182h) oh) QRO
3o+ KO+ 00017 — + S—h = — 820

+ e"“%[e“atanh a(e + b)], (3.22)

0
* — o~ A [adty
6 =e™*— [e"0,0)),
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wherein eq. (3.21) has been used to bring about some simplification.
Eq. (3.22) is a linear nonhomogeneous ‘ordinary’ differential equation in

h™V satisfying zero initial conditions. A particular integral, after substitution
for 19, and some effort, leads to the inner solution to O(é):

h=—6(t)+aT — 60;‘[%012(1 - T? +ST_Z;_5(1 + TZ)]

+ 5c[a(1 - T+ g}

iy G TZ)]

aua 5
+5[2a2(1+T) 2a7 " 2a

+ %[ Tlincosha(o + b) + a(e + b)Y (1 — T?)

a(a+b)
1T +(1- TZ)J lncoshudu:', (3.23)

where T =tanha(x + b), and c(t) and d(t) are additional ‘constants’ of
integration. The prime denotes differentiation with respect to t. To match
eq.(3.23) with the outer solution (3.17), we find its intermediate limits as
o=[60—04t)]/é tends to + 0.

As a0 — + o0, T— 1, and eq.(3.23) becomes

h~—0()+a+de[l+a '(a—0%]
+ da"'[(ab) + c + (2a)” 1(6* — a)
+ Aab— A1 +1n2)]. (3:24)
The terms (6AT/a)Incosha(e + b) in eq. (3.23) contributes dad, 64b and
— d4a~11In2; other limits are easily obtained. Exponentially small terms
have been ignored.
Similarly, as a - — o0, T — — 1, and eq.(3.23) leads to
h~ ~8)—a+da[Ad+a Ya +6*%)]
+da"'[(ab) -~ c+(2a)"1(0* +a) + Aab + A3 +1n2)].  (3.25)
To obtain the shock locus, 8 = 0,(t), we find the characteristics meeting it at
each point ¢ from the right and from the left, according to weak shock

theory. These are denoted respectively by 8 =6{ and 6=0;. A first
approximation to these is obtained by using the lowest order outer solution

G.11),
0% = 0, + cH(63). (3.26)
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Substracting eq.(3.26) from eq.(3.11), we have
0, — 07 =0—0,+0[H@B,)— H©O7)]
~0—0,+cH(07)(0,—0}) (3.27)

in a close neighbourhood of the shock 8~8, Eq.(3.27) can be
rewritten as

(0, —07)~ (0~ 6)[1 —oH'(67)] 7", (3.28)

giving the approximate characteristics on the two sides of the shock.
In the vicinity of the shock locus, the term H(6,) in the outer solution
(3.17) can be written as

H(6,)~ H(67) + H'0F)[1 — oH'(67)] (6 - 0,), (3.29)
using €q. (3.28). Thus the inner approximation of the outer solution (3.17) is

ho,t)~e  *{HOT)+ H@O)[1—cH'OF)] (0 —0)} +5K*
as0—-6,+0, (3.30)
where
oH'(67)
[H'(67)— A1[1 — cH'(67)]?

K =4H@He ]

. 1 —oH'(6})
+ [H'(0%) — A]*[1 — eH'(67)] ll'l|: 1= is :I} (3.31)

To match (3.30)-(3.31) to the inner (shock layer) solution (3.23) we
substitute o« = (0 — 6,)/6 in the outer limits (3.24)—(3.25) of the inner solution.
We get the following six matching conditions,

— 0. +a=e ¥H(OY), (3.32)

Adta Y aFo*)y=e *H(ODH[1 —oH'(OF)], (3.33)

a '[(aby +c+(Ra)y ' (*Fa)+AabF A3+In2)]=K*,
(3.34)

resulting from equating terms of order zero, (# — 6,), and é, respectively. The

first pair of conditions (3.32) gives expressions for the zero order jump in &
across the shock, 2a, and for the shock velocity, namely

2a=e"*[H(O{)— H(O)]. (3.35)

0t)= — e “[H(07 )+ H(O7)]. (3.36)

Eqs.(3.36) and (3.26) together give three relations among the three
unknowns 0F and 6¢), the functional form of H being known from the
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initial condition. Then eq.(3.35) gives the function a. For 1 =0, eq.(3.36)
simply expresses the well-known geometrical rule for the shock direction at
any point as the mean of the directions of the two characteristics meeting
the point from both sides of the shock. Egs. (3.33) do not give any new
information and can, in fact, be obtained by differentiating eqs. (3.32) with
respect to t and using eqs. (3.35)—(3.36). The pair of eqs. (3.34) provides the
first order effects due to viscosity. Adding these equations we get

daby+aahy= - & + (4Kt + k) 337
dr =" t\3 (3:37)
where K* and K~ are given by eq.(3.31) so that
d(ab) Cowdf T1—oH®;)
dt + Mab) =ze d¢ In 1—cH'6)
A 11— GH(0) ]
1
THO) -2 1=
A "1 — gH(07) ]
H,(Br)_lln_ e | (3.38)

This equation can be integrated for ab. Substituting for a(¢) from eq. (3.35),
we thus have

_ 1 1—cH'(6])
oo = 2[HB]) - H(BI)]{]n[l - oH’(Br)]

A 1 —oH'(0])]
YEG =" Ti—de |
A 1 —oH'(07) ]
—H,(Bf)_lln_ — } (3.39)

In the derivation of eq.(3.39), we have determined the constants of
integration by imposing the condition that 6, = 6, at the inception of the
shock at t = t;, and hence that a = 0 there. The zeroth order solution (3.21)
clearly shows that the centre of the (structured) tanh shock is at b(f) =
— afthat s, at @ = 0, — db(t)) so that b(t) provides the important quantity we
have earlier referred to as the shock displacement due to diffusion.
According to egs.(3.10) and (3.32), 2a is the zeroth order jump in h across
the shock, while (by subtracting the conditions in the pair (3.34))

sa~'(2c—4—2Aln2)=6(K* —K") (3.40)

gives the first order correction to this jump (cf. the zero order solution
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(3.21)). The formula (3.39) gives — db, the shock wave displacement due to
diffusion, in agreement with Lighthill’s (1956) expression (see eqs. (140) and
(159) of his paper) for the standard Burgers equation, if we put 4 =0 and
H'@)=0.

Lardner and Arya (1980) have also given a similar perturbation analysis
for the more general equation

2
% = [uh+ vh? + vc(t)]Z—Z + %5%}2 (3.41)

which arises in the consideration of the motions of a continuous medium
when the stress—strain relation contains a term cubic in the strain in
addition to the terms included in eq.(3.5).

A related study is due to Murray (1970a), who considered the model
equation

u+u+au,+Au=0, a>0, i>0, (3.42)

and an initial profile of a finite length 0 < x < X with a shock at its front,
x = X. Eq. (3.42) differs from eq. (3.3) due to the presence of the cons-
tant a in the convective term which makes a non-trivial change in the
nature of the solution. In fact, the behaviour of the solution also depends on
whether 24X > 1 or 24X < 1. For large time, the solution always decays
exponentially like u(x, ) = O(e”*) in a finite distance if a=0, and in an
infinite distance if a # 0. Murray has also considered the more general
equation

u, + g, + Ah(w)=0, 1>0, g,w>0, hu)>0

for u>0,

where

h(uy)=0w*), «>0, and O<u«l. (3.43)
The asymptotic form of propagation and decay of a single hump pulse with
a shock at its head depends crucially on the exponent a. Under the
assumptions in eq. (3.43), the disturbance decays (i) within a finite time and
finite distance for 0 <« <1 and is described by a unique solution under
certain conditions, (i) within an infinite time, like O(e~*), and in a finite
distance for « = 1, (iii) within an infinite time and distance like O(¢~ /=~ 1))
for 1 <o <3,and(iv)like O(t~'/*)fora = 3. Thus,« = 1 and & = 3 appear to
have special significance as points of bifurcation. Eq.(3.42) arises from
the consideration of stress wave propagation in a mildly nonlinear
Maxwell rod with a finite nonlinear viscous damping. Murray has also
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given the first order correction to the asymptotic solution when (small)
viscous diffusion is included, and A = 0 (see also Murray (1970b)).

In sec. 5.7, we shall give a similarity analysis of the viscous analogue of
eq.(3.43), that is, the generalised Burgers equation

o
u, + ulu, + A = 2t (3.44)
where « and f are positive parameters, and bring out the relation with
Murray’s asymptotic study, in particular the dependence of the solution on
the parameter a. These results will also be verified by comparison with the
numerical solution.

3.3  Derivation of the non-planar Burgers equation

When waves are produced by strong impulses or large explosions, they are
mainly governed by these forcing agencies for a relatively short period.
Thereafter, they propagate to infinite distance and for infinite time under
the influence of effects such as small nonlinearity, small dissipation and
small geometrical damping. Thus, although the wave propagation is not far
from linear, these small effects, individually or in some combination,
accumulate and any regular perturbation scheme gives a description of the
wave which is valid to a finite distance and time. This necessitates a
perturbation scheme which enlarges these domains of validity and which
may deliver in the process a simpler (model) equation as a descriptor of the
wave for, possibly, an infinite distance and time. This is what is accom-
plished by the so-called method of multiple scales. It takes into account the
presence of several time (or distance) scales over which small effects gather
up to produce a cumulative effect. These times, referred to as slow times, are
formally introduced as new independent variables, in addition to the
standard time, namely the fast time. Thus, the number of independent
variables in the differential equation increases, and the generality so
provided is exploited so that the non-uniformity, produced by the small
nonlinear effects, say, in the form of ‘secular’ terms proportional to time in a
regular perturbation scheme, is eliminated and the domain of validity of the
perturbation scheme enlarged. Although these ideas are best illustrated by
way of application to ordinary differential equations (see Kevorkian and
Cole (1981)), we here refer to an example from gas dynamics, explaining the
difficulty that arises from a single small effect, namely nonlinearity, when
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the motion is produced by a slow piston. We shall later on deal with the
three effects simultaneously, namely nonlinearity, geometrical spreading
and viscous diffusion.

We consider an ambient medium at rest with uniform density p, and
pressure p,, and envisage a piston motion with a characteristic time T,
such that the distance traversed by the piston is small as compared to 4,T,
where A, is equal to the ambient sound speed (ypo/p,)'/?>. The piston
motion therefore may be written as

X (T)=¢4, Tof(,;;), e, Xp(T)=eA0f’(T1), (3.45)
(1)

We denote the dimensional quantities by capital letters and corresponding
non-dimensional ones by small letters; we thus have

UX,T) AX ,T) X T
u(x’ l:) = “y ( ’ ) X = y ==,
Ao Ao AoT, T,
(3.46)
where u(x,t) and a(x,t) are the particle velocity and sound speed,

respectively.

Since the piston motion is small, the shocks produced will be weak so that
we may assume isentropic conditions. The mathematical problem may thus
be stated as follows (see eqs.(2.10)—(2.11)):

da 6ay16

— tUu—+—a— 3.47

a7 (3.47)

du ou 2 6a

— +u—+——a— 48

o T T 1% (348)
with initial conditions

t=0, x>0, u=0, a=1. (3.49)

The boundary condition on the piston x, = ¢ f(t) gives the particle velocity
there as

uef(r),H = x =¢f'(t), t>0. (3.50)
A straightforward perturbation scheme has

ulx, t) = euy (%, 0) + 2uy(x, ) + -, } (3.51)

alx,t)=1+¢ea,(x,1) + e2a,(x, ) + -,
u(0,1) + e f(Hu,(0,8) + O(e?) = ef'(¢), (3.52)
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eq. (3.52) following from eq. (3.50). Substitution of (3.51) into eqs. (3.47)-
(3.49) and (3.52) gives the following system of equations for first and second
order approximations:

aal 'y_laul_

o + T 7 =0, (3.53)

ou, 2 da,

TR e 339

uy (0, ) =f'(t),t 20, (3-55)

u,(x,0)=0,a,(x,0)=0,

da, y—10u;, da, y—1 Ou,

o T2 ax . Mk 2 M (3-56)

auz 2 aaz _ 5u1 2 aal

ot +y—16x—_u16x_y—lalax’ (3.57)

(0, 8) = (—u,):(0,0) f(2), 2 0,

uz(x, O) = az(x, 0) = 0. (3.58)
a,(or u,) may be eliminated from egs.(3.53)-(3.54) to obtain the wave
equation

0%*u, 0%u,

2 a0 (3.59)

The (piston) boundary condition (3.55) dictates that only the forward wave
solution of eq.(3.59) is relevant so that we have

u,(x,ty=F(t—x) (3.60)
= f'(t — x). (3.61)
The solution of the initial boundary value problem, to first order, is
) fle—x), t>x, (3.62)
““*”‘{Q f<x. (3.63)
The integration of eq. (3.53) or eq. (3.54), after substitution of eq. (3.61), gives
y—1
—f't—Xx), t>Xx,
m={ 7 S0, 1> (3.64)
0, t<x. (3.65)

Eqgs. (3.62)-(3.65) confirm that, to this order, we have a simple wave with a
constant value of the Riemann invariant along t— x =constant (cf.
eqs. (2.9) and (2.17)). Substituting the first order solution into the right sides



54 Generalised Burgers equations

of egs. (3.56)—(3.57), we have

1
fe=—x)f"t=x), t—=x>0, (3.66)

[ E=x)f"t=x), t=x>0,  (367)

u(0,0=f(O)f"(1), t>0, uy(x,0)=a,(x,0)=0. (3.68)

The combination a,(x,t) — 3(y — Du,(x,t), as governed by egs. (3.66)3.67),
is easily verified to be constant along the positive characteristics t — x =
constant showing that the solution is a simple wave to even second order
in ¢. If we eliminate a, from egs.(3.66)—(3.67), we can find a particular
solution satisfying the inhomogeneous second order equation in u, and the
boundary conditions in (3.68),

uy(x,t)= y;—le’(r)f”(t) +f(1)f"(x), t=t—x>0, (3.69)

so that
2_

1 —
X @@+ f0f )

T=t—x>0, (3.70)

aZ(xs t) = Y

using the constancy of the Riemann invariant along t = constant or by
direct substitution of a, —4(y — Du,(x, t) = constant in eq. (3.66) and
integration. We can now combine the first and second order solutions to
write

ulx, t;€) = ef () + & {f (1) f"(z)

mxf '(x) f”(t)} + 0@, 3.71)
alx, t;e)=1 + ef (1:)+ {f(‘t)f”(’r)
+ E—x £(x) f”(r)} +0(e?). (3.72)

We see from egs.(3.71) and (3.72) that the terms of order ¢ become
comparable to those of order ¢ when

ex = 0(1) (3.73)
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which, near the front ¢t — x =0, separating the disturbed and the undis-
turbed states, is also equivalent to

&t = O(1). (3.74)

Thus, the non-uniformity of the regular perturbation scheme has been
clearly demonstrated. Kevorkian and Cole (1981) proceed to find a
uniformly valid solution by introducing the slow variable X = ex and arrive
at the equation
. y+1
i —

Xx 2

i, = 0. (3.75)

This equation, after allowing for the change of sign in the second term due
to the definition of t etc., agrees with the inviscid form of the Burgers
equation (2.44).

As we remarked earlier, we envisage a physical situation arising, say, out
of a spherical explosion, and look at the phase of the wave when the initial
energy has been largely spent, and the wave has evolved into an N shape
(see Whitham (1952)). By this time, the wave has weakened considerably,
yet it has small but finite amplitude, and suffers decay also due to
geometrical spreading and diffusive damping. The latter effects are also
small. Thus, we simulate these conditions as though they arise out of the
small expansion of a piston, having a large radius fp(f) The non-
dimensional amplitude of the piston motion may be taken as ¢ so that

or

d
arp(t) = ¢ef(¢), (3.76)

say, where is the typical wavelength and ¢ = (a,#/l)is the non-dimensional
time. A star denotes ambient conditions while “ indicates dimensional
quantities. The other small parameters of the problem are the inverse of the
Reynolds number,

Re i=—t* — 3.77
p*a*l #1 ( )
and
x 1= l =
P TR0

(3.78)

representing diffusive and geometric effects, respectively.
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These small effects introduce three physical time scales

- 4 - LA
t= l/ (c(li—tf) , lp= & ty = @ (3.79)
max .u* a*

These give, respectively, (1) the time it takes the wave to propagate a
distance I at the maximum perturbation velocity, (2) the time it takes the
wave to diffuse a distance /, and (3) the time it takes the wave to travel a
distance #,(0). The phenomena may be such that the time scales of these
effects are different so that one has to consider them separately, or in
different combinations (see Leibovich and Seebass (1974) ). For our purpose
we assume that all of them are of the same order and have to be accounted
for concurrently. We closely follow Leibovich and Seebass (1974). We begin
our analysis with the system (2.19)—(2.21), by ignoring the smallest terms
shown in curly brackets, and including the terms due to spherical or
cylindrical symmetry in the equation of continuity. Accordingly, we have
the system

i+ 5, + po, = —Lpo, (3.80)
, L. (S0 + 1, \0°D

. ke 0T

§;+ 08, = ﬁ—%_a—fi (3.82)

j in eq.(3.80) assumes values 2, 1 and O for spherical, cylindrical and plane
symmetry, respectively. Eq. (3.82) replaces eq. (2.21) so that the dependent
variables now are density, particle velocity and entropy. With the help of
the gas law and the equation of state

p=RpT, (3.83)

¥
(ﬂ) = (i) elssiew, (3.84)
P/ \Pu

we may eliminate the pressure derivative term from eq.(3.81) and express
the temperature derivative in eq.(3.82) in terms of entropy and density
derivatives. We now introduce non-dimensional variables via the relations

p=pl +ep), t=¢eaw, S§=s,+¢c,0 (3.85)

f=xl, f=it,
a*
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where ¢ is the amplitude of the wave. There is another small parameter
x, ' = I/r,(0) which characterises the initial motion due to the piston with
a large radius (see eq. (3.78)). The variables p,v and ¢ are of 0(1).

Eqs.(3.80)-(3.82) can be transformed through egs.(3.83)-(3.85)
into the following system in matrix form,

u, + C(u)u, = Re™'D,(u) + x, ! D,(u, x). (3.86)
where
" v Il +¢p 0
1+¢T
u=(v), Clu)= T v 1+¢T|,
- 1+e¢p
0 0 v
0 0 0
4
Dl(“) = ’ + ' 0 uxx’
v—1 oy
Pr Pr
" [14+¢p]v
Dw=-22 o | (3.87)
x 0

The non-dimensional temperature T is related to (non-dimensional)
entropy and density by

et — _1+eT (3.88)

T (L+epy

In (3.87), Pr = uc,/k, is the Prandtl number, u = p, /u, is the ratio of shear
and dilational coefficients of viscosity and y is the ratio of specific heats. All

these coefficients are of order unity.
We wish to derive an equation describing waves on the constant state

1
u, =(0). (3.89)
1

Obviously, u =u, is a solution of the unperturbed form of eq. (3.86) with all
small parameters equated to zero. We look for a perturbation solution of
eq.(3.86) in the form

u=u,+ (g +euy +° 4+ puy + poiy +0+) (3.90)

where i, and u, are Re ™! and x, !, respectively, and constitute other small
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parameters, besides ¢, arising from small viscosity and geometrical
spreading. Substituting the expansion for the matrix

Clu,+e[ug+-1)=Co +£C(ug, 0} + -+, (391)
Co = Cluy),

in eq. (3.86), we have, to different orders,
(o) + Colto)e =0, (3.92)
(1) + Coltty)x = — C (U, ue) (o) (3.93)
(Uz) + Coltir)x = Dy (e, 10, X, 1),
(3)e + Colus)y = D(uc, tig, X, £)- (3.94)

Eqs.(3.92)3.94) follow from eq.(3.86) by equating terms of order &,¢?,
eu, and eu,, respectively. We may easily identify that

01 0 v p 0
Co=|1 0 1) C,=|T—p v TJ. (3.95)
0 00 0 0 v

Eq.(3.92) admits solutions of the type

ug =rU(x— 4;t) (3.96)
if

[(Co —ADri]Uyx, =0, (3.97)
where X;=x— A, requiring r; to be the right eigenvectors of C,
corresponding to the eigenvalues 4;;U(X;) is a scalar function of X;. The
matrix C, has eigenvalues ( + 1, — 1,0) with corresponding right (trans-
posed) eigenvectors (1,1,0),(1, — 1,0), and (— 1,0, 1), respectively. The
eigenvalues give right running waves, left running waves and entropy
waves, respectively. We assume that the boundary/initial conditions are
such that only the right running waves are relevant (cf. earlier illustration of
inviscid flow, eq.(2.17)). Thus, to the lowest order, A=1,u,=rU(x—1t)=
rU(X) where rT=(1,1,0). Substituting this solution into eq.(3.93) and
changing to X = x —t and ¢ as independent variables, we have

(1) +(Co— D (u)x = — Cylug, uc) (o) x- (3.98)

If we multiply eq. (3.98) with the left eigenvector I of the matrix C, that is,
the vector [ satisfying I(Cy, — I) =0, we get

Huy), = —1Cy(uo, u) (). (3.99)
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The right hand side of (3.99) is a function of X only so that its integration
leads to

I, = — t1C(uo)x, (3.100)

a secular term varying linearly with ¢ and rendering the expansion (3.90)
non-uniform when t = O(1/¢). Similar non-uniformities will arise due to the
expansions with respect to the parameters u, and pu,. The situation is
retrieved by introducing dependence of the solution on the slow variables

T, = £t, T, = ,Ltlt, T3 = ﬂ,zt, (3.101)
besides the fast variable ¢ = 1,, say. Thus, we have, formally,

g 0 ] 0 ]
= +E—

— — — A
ot 01, (31:1+ﬂ161:2+'u261:3 (3.102)

Substituting (3.102) in eq. (3.86) and equating various order terms lead
to

(1)z +(Co — D)y = — Cy(Uo)x — (4o):,> (3-103)
(4 1)eg + (Co — Dy 4 1 )x = DU, 4o, X, 7o) — (o), . ,»
k=12 (3.104)
Multiplying these equations by the left eigenvector ! will lead, on

integration, to secular terms unless we put the right hand sides, so obtained,
equal to zero. We thus have

IC,rUx+1IrU,, =0, (3.105)
ID,—IrU, =0, k=12, (3.106)
where we have substituted for u, the solution, u, = U(X,1,,1,,73); the
function U is the solution of eq. (3.92) with ¢t = 7, and is now also a function
oft,, 7, and 73. The dependence of U on 1,, 7, and 7, is yet to be determined.

This may be done by imposing the ‘orthogonality’ conditions (3.105)—
(3.106) on this function. Explicit calculations give

Po=Ulx—1t,1,15,173), Ug=U(x—1,1,73713) (3.107)

so that, with eq.(3.88) in view, we have from (3.95)

1 1 0
C,(ug) =(y -2 1 y- 1) U(X,1,,15,T3) (3.108)
0o 0 1
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The vector [T = (1, 1, 1) satisfies {(C, — I} = 0. Therefore,
Ir=2,

v
1D, = =211, 1)(0)= —Jr3+ %, X)7M,
0

—1
ICr=@p+1DU, ID, =(%+v+?)U”. (3.109)

Substituting (3.107)—(3.109) etc. into egs. (3.105)—(3.106), we have

U, +TUU, =0, (3.110)
K

UIZ—EUXX=O’ (3111)
jU

U ~—=0 .

¢3+21_3 ) (3.112)
where
y+1 y—1
r=2rl wogavi 20 (3.113)

and x_ ' X has been neglected in comparison with 7, in writing ID,. If we
multiply eqs. (3.110)-(3.112) by &, u, and p,, respectively, and add, we get,
using (3.102) and (3.107), the reconstituted equation

Jy=ERe 1y, (3.114)

U,+£FUUX+21 5

This is the generalised Burgers equation which includes the effects of
spherical or cylindrical spreading, besides those of nonlinearity and
diffusion. Eq.(3.110) is the same as derived by Kevorkian and Cole (1981)
(see eq.(3.75)). Egs.(3.110)—(3.112) may be valid individually or in certain
combinations in different time regimes. For a discussion of this aspect and
for the corresponding solutions of these equations, reference may be made
to Leibovich and Seebass (1974). If we write T=¢I't and 6 =«/eReT,
eq. (3.114) can be transformed into

é

U
U+ UUy+2" =2

7= =3Uxx (3.115)

Henceforth, we again write ¢ in place of 7 in the statement of eq.(3.115).
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34 Singular perturbation solution for non-planar N
waves

We now discuss the initial value problem for eq. (3.115) with

UoX/lg, X< lo,}

0 X| > 1, (3.116)

U(x, t0)={

so that, at t =t,, we have a sawtooth structure of an N wave with an
amplitude equal to U, and wavelength /,, We give here a first order
matched asymptotic solution of this problem due to Crighton and Scott
(1979). The procedure is similar to that in sec. 3.2. There are some
advantages in transforming egs. (3.115)—(3.116) according to

t VP U X
V= -_ -, =—
(to) U, * ly

1+ Uyt — to)/lo, i=0,
T=<1+2Uyt5* "2 —to)/ly, j=1, (3.117)
L+ (Ugto/lo) In(t/to), ji=2,

so that initial value problem (3.115)—(3.116) now becomes

oV oV o*v
x, |x[<1,
V(x,1)={0 |x|>1} (3.119)

where ¢ is an inverse Reynolds number given by
5/2U010, j= O,
&= 5/U0[0 To, j = 1, (3.120)
de VT U, j=2,

with

2U0t0/lo, j = O,
To= 3.121
0 {2U0t0/jlo, j = 1, 2. ( )

The function g(T) is given by
gT)=1, 3(T+To—1), €™ (3.122)

for j =0, 1, 2, respectively. In view of the absence of the factor (y + 1)/2 in
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€q.(3.115), our scalings are slightly different from those of Crighton and
Scott (1979).

The form (3.118), with variable viscosity, makes the outer solution

X 12
v =7 *<T
o %o (3.123)

the same for all j =0, 1, 2. In view of eq. (3.117), the solution is required for
much smaller T than ¢ for j = 1,2. This is a significant gain if the solution is
to be found numerically for very large time.

A formal outer expansion for eq.(3.118) immediately shows that all
higher order terms O("), subject to zero initial conditions in eq. (3.119), are
zero. The shock discontinuity according to the zero order outer solution
has the locus x = T'/2, which is easily obtained by writing the conservative
form

d ?
SN +-(GV?) =0, (3.124)

so that
dx [$VZ]) 1x

T~ [V]1 2T

(3.125)

leading by integration to x = T*/2. This satisfies the initial condition x = 1
at T = 1. The notation ‘[ ] denotes the jump of the bracketed quantity
across the shock.
To obtain the inner solution, we introduce the stretched variable
x — T?

xt=——, (3.126)

with the inviscid shock as the origin, so that eq.(3.118) becomes

v 11 oV ov il 4

aT 2 Vom =935 127
S 3T g T Vv~ I g2 (3.127)

The solution is sought in the form
V=V§x*T)+eV¥x*T)+ . (3.128)

Substitution of (3.128) in eq. (3.127) shows that V¥(x*, T) and V¥(x*, T)
are governed by

1 \ovk F
(V?')' - W)GT: = Q(T)F, (3.129)
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*V¥ _ 6V* ovg avy
g(T)a *2 +(%T vz — V*) ?6)‘* =ﬁ. (3130)
It is easy to verify that eq.(3.129) has the solution
_ x* — A(T)
V3=%T llz[l—tanhm:l, (3.131)

matching, to zero order, the outer solution (3.123) expressed in terms of the
inner variable, Vo= 1/T'/? + ¢x*/T,as ¢ » 0 and x* - — o0, and tending to
zero as x* — + o0, according to intermediate limits. The function A(T),
which arises as a ‘constant’ of integration from eq.(3.129), has to be
determined from higher order approximations, and would give the shock
displacement due to viscous diffusion. If we change the independent
variables in eq.(3.130) to

_x*— A(T)
=TT (3.132)
and T, we get
182V%
Eaayz1 + tanh ovy yV*=8T (T)‘W". (3.133)

Two linearly independent solutions of the homogeneous part of the
‘ordinary’ differential equation (3.133) are sech? y and y sech? y + tanh y, so
that a particular solution of eq.(3.133) may be found to be

dA
V¥ = T T2 g(T)(y*sech? y + 2ytanh y — 1 — 2y)

+ G(T)(ysech? y + tanh y) + K(T)sech? y

+ 4T”2 dg {y — (Incosh y)tanh y + tanh y

+sech? y[y(In2 + 4y) + 3 diln(1 + e?*)]} (3.134)

diln(x) = — j lnt

(Abramowitz & Stegun, 1964, p. 1004). The functions ¢g(T') and K(T) are to
be determined by matching, The solution V¥ is to be matched to ¥, =0in
the intermediate limit, that is, as e =0, y— — co when x < T"%, and to V/; =0
as £—=0,y— + o0, when x > T'/2. Hence we get the following limiting

where
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equations from eq. (3.134):

dA -1 -1/2 1/2dg
I AT+ T %g(T) - G(T)—4T ﬁ(l +In2)=0,
(3.135)
dA
— + T 2D+ G(T)+ 4T‘/2E(1 +In2)=0. (3.136)
dt dT
Elimination of G(T) leads to
Sl*'—4-+ T V2yT)—L1AT ' =0 (3.137)
dT
which, on integration, gives
T
AT)y=A(1) - T”ZJ‘ @dt. (3.138)
1

Crighton and Scott have matched the above solution to the embryonic
shock region over the time the discontinuous shock adjusts to a steady
Taylor shock and have, thereby, found A4(1) = 0. The substitution of g(T)
from eq.(3.122) into eq.(3.138) yields the explicit form of A(T):

A(T)=—=T"InT (planar), (3.139)
A(T)=-4TYV{T -1
+(T,— 1)In T} (cylindrical), (3.140)

AT)=— T"z{Ei(Tl) - Ei(TO“)} (spherical),  (3.141)

0

where FEi is the exponential integral defined by
Ei(x) = J t~le'de
-o

(see Abramowitz and Stegun (1964, p.228)).

Crighton and Scott show that, for planar and cylindrical cases, nothing
short of the knowledge of the full solution would be required for further
progress, while for the spherical case they are able to find the constant in the
final linear solution of the (entirely) diffusive regime. We note, en passant,

that the N wave solution of the linearised form of eq. (3.115) can easily be
found to be

NI 24X oy
v -(7) %1

= CXt U*N2e-X220  gay (3.142)
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where A, is the area j'°_°w U(x,t;)dx and ¢; is the time when the profile has
propagated far enough to become several times its original length. The
constant C will vary for different geometries. For the spherical case, it was
found by Crighton and Scott (1979) by the matching of another perturb-
ation solution in the shock region to the lossless outer solution; for the
cylindrical case, it remains to be determined (see sec. 5.6 for evaluation of C
from the numerical solution).

The matched asymptotic solution found above becomes non-uniform for
large T due to the failure of one of the following hypotheses underlying the
perturbation analysis, namely (i) the shock displacement due to diffusion
remains small, (ii) the shock remains thin in comparison with the
characteristic scale of the inviscid flow, (i) the Taylor-type shock solution
remains valid in the shock region. Before we summarise the conclusions of
Crighton and Scott regarding the validity of the perturbation solution for
different geometries, we note that the embryo shock region which
immediately follows the initial establishment of a (discontinuous) N wave
was found by Crighton and Scott forj = 0, 1, 2; for the planar case, the exact
solution is known, but it does not satisfy the discontinuous initial condition
(3.116).

For the planar case, the shock, according to weak (inviscid) shock theory,
is located at x = T2, According to eq.(3.139), the diffusive effects spread
the shock away from its original ‘weak theory’ position by the timeln T =
O(¢™ ). Further, the ratio (¢V¥/V¥) in the limit T— oo, with y fixed,
shows that the Taylor solution will not be valid when In T = O(¢ ™) (see
eqs.(3.131)-(3.134)). Thus, the perturbation solution breaks down, the
steady Taylor solution implicit in eq. (3.131) is not valid and the shock is no
longer thin. Fortunately, from the Hopf—Cole transformation, we know the
complete solution (2.100) of the Burgers equation, that describes the
evolution of the N wave all the way from a smooth Taylor shock to the old-
age stage when the linear (heat) equation describes the flow and the wave
has died down to a small amplitude.

For the cylindrical case, eq. (3.140), in the limit T — co, shows that all the
conditions (i}—(iii) are violated at the same time, T =0~ '). This non-
uniformity affects the whole wave and the complete equation (3.115) will
have to be solved to make any headway. In the old-age regime, however, the
linearised form of eq.(3.115) gives the dipole solution

X
U= ct—ze""f”', (3.142a)

for which the constant C cannot be found except via the numerical solution
when the latter matches eq. (3.142a) (see sec. 5.6 for further details).
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The situation is a little better for the spherical case j = 2. Taylor’s shock
solution with A(T) given by eq. (3.141) continues to hold for some time.
However, the combined effect of nonlinear convection and geometrical
spreading in the flow is so intense that the balance between nonlinearity and
diffusion in the Taylor shock is not sustained. Thus, the first non-uniformity
in the perturbation solution takes place due to the failure of condition (iii).
Crighton and Scott, while unable to treat this local non-uniformity, find a
matched asymptotic solution in a subsequent time régime when the
nonlinearity becomes recessive. Now, the linearised equation is solved
uniquely in terms of the error function and matched to the inviscid N wave
solution (3.123) near the node. This solution describes the large T
behaviour of the evolutionary shock which is now of non-Taylor type and
in which spherical spreading is a controlling mechanism. At this stage,
condition (ii) is violated. The non-uniformity of the solution now affects the
whole wave. A new solution of the linearised equation with rather unusual
scalings is found, matching the inviscid N wave solution as well as the erf
solution found earlier. This analysis leads to the explicit determination of
the constant C in eq.(3.142) for j = 2. The point to emphasise is that the
inviscid solution near the node remains valid for a very long time indeed,
explaining the excellent agreement of the analytic expression for the
Reynolds number, obtained on the basis of this assumption, with the
numerical results. This was demonstrated by Sachdev and Seebass (1973)
(see, however, sec. 5.6 for more recent work).

We shall refer again to this work in secs. 3.7 and 5.6 when we make a
comparative study of the results discussed herein with those obtained via
another analytic method and by numerical methods.

3.5 The periodic plane piston problem

Now we consider an initial boundary value problem arising from a
sinusoidally oscillating piston, For this purpose we take another variant of
the Burgers equation, due originally to Mendousse (1953), which was
subsequently studied by several authors (Blackstock, 1964, Lesser &
Crighton, 1975, Rudenko & Soluyan, 1977 and Parker, 1980). The equation
has the normalised form

U, — = gu (3.143)

where x is the spatial variable as measured from the driving piston; 7 is the
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retarded time equal to t — x/a,, denoting the time elapsed since the passage
of a reference wavelet. Eq.(3.143) can be derived from eq. (2.44) or directly
by using perturbation techniques (see Lesser and Crighton (1975)). We
emphasise that, in both this section and the next, all the details of the wave
such as the Taylor-shock structure or ‘old-age’ behaviour will be referred to
with respect to time 7 for a given value of the distance x measured from the
piston.
The normalised boundary condition for eq. (3.143) is

0, 1:<0,}

3.144
sint, t=0. ( )

u0,7)= {
We ignore the effect of the finite displacement of the piston and consider the
evolution of the wave produced by the signals sent out from x = 0 into the
domain x > (. Before solving eq. (3.143) subject to eq.(3.144), we consider
the inviscid problem with 6 =0 in eq.(3.143). The characteristics of this
equation

dx dt du
e =" 3.145
1 —-u O ( )
give the general solution
u= f(o), o=1+xf(0), (3.146)

where ¢ is the characteristic variable, which may be interpreted as a
distorted version of time t, the distortion increasing with x. With the
boundary condition (3.144), f(6) =sin g and the solution becomes

u=slne, 6=1+XSIno
or
u = sin(t + xu). (3.147)

This system describes the solution parametrically until x = 1, when the
shock is formed. To see this, we differentiate the first form of eq. (3.147)
with respect to ¢ to obtain

d

£= 1 —xcoso. (3.148)
This expression becomes zero first when x = 1/(cosd),..=1. So the
solution (3.147) remains valid until x = 1, when it develops a shock. From
this stage, the evolution of this solution with distance should, in fact, be
studied with full Burgers equation until the shock structure (with respect
to t) becomes Taylor-type. The solution (3.147) can be put into a more
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familiar form, the so-called Fubini’s solution (Fubini, 1935), if we write

u= ) B,(x)sinnt, (3.149)
n=1
where
2 (" .
B,,=—J~ usinntdr (3.150)
nJo
2 (™. . .
=;j sin £ sin (né — nx sin &)(1 — x cos £)d¢, (3.151)
0

by putting £ =7+ xu and using eq.(3.147). Changing in eq.(3.151) the
products of trigonometric functions into sums of cosine functions and using
the formula

1 n
;j cos(v&é — nxsin§)dé = J, (nx), (3.152)
0
together with recurrence relations for Bessel functions, we get
B, = 222" (3.153)
nx

The Fourier series form of u, eq.(3.149), is the Fubini solution

. in,,(nx) .

sinnt (3.154)
so that we have a means of knowing how higher harmonics are generated by
the quadratic nonlinearity in eq.(3.143) with 6 =0.

We now pursue the boundary value problem (3.143)—(3.144) (which is, in
fact, an initial value problem for the parabolic equation(3.143)), and
continue the study of sec.2.8, with minor differences due to change of
sign in the nonlinear term — uu, (Blackstock,1964). The Hopf-Cole
transformation

u=élogt],, (3.155)

C=exp[5'1jt udt:|, (3.156)

reduces eq.(3.143) to

nx

that is,

=2t (3.157)
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with initial condition

57 N1 —cosq)
Co=C(0,t)={:' ’ T>O’} (3.158)

, T <.

The solution of eqs.(3.157)—(3.158) is

¢ =(2n6x) 112 J Lo(Aye~m0%28x 4

= (21t5x)_1’2[ — f— Lo(A)e~im0%28xd]

0

o

+ f {o(A)e 02 dﬂ:l

® 1
= Jerfc(t/m) — n"’zelfaj exp [ —q*— Scos(mq — t)]dq

/m
® 1
+n“/2e"aj exp[ -qz—gcos(mq+t):|dq
=Il +12 +13, say, (3.159)

where m = (26x)'/2. The integrals I, and I, approach zero as T increases and
represent transients. The main wave is given by I,. If we employ the
formula

g acost — i g — 1)"I,(a)ycosnf (3.160)

in I,, where ¢, are Neumann numbers, ¢, =1,¢,=2 for n> 1, and the
standard integral | cos nmge ¥ dg=4%/ne™" i /* we arrive at the so-
lution (3.155) with

= OZO: e,(— 1)1 ( )e én’x/2 cos nt. (3.161)

I, in eqs. (3.160) and (3.161) stands for the Bessel function of order n with
imaginary argument. Now, several interesting results follow. The asympto-
tic expression for Bessel function I, for small ¢ is

1 el n*—12 (4n*-1)n*-3%)
I"(E) ™ @2n/e) [1 g 21(8/5)2 * ]

(3.162)

In the following discussion, we shall ignore the factor e!/%/(2r/8)*/* which
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will disappear through the transformation (3.155). If we substitute, forall I,,
the first term (unity)in the square brackets of (3.162) 1nto eq. (3.161), then we
recognize that the right hand side is a theta function. Therefore,

(= 94(%, e"‘"’z) (3.163)

(see Abramowitz and Stegun 1964). This function has the property that

[lnB,,(%, e‘“):l = i (sinh nQ)~ ' sinny. (3.164)
y n=1

Comparing (3.163) and (3.164) with eq. (3.155), we have

sinnt
=1 . nxa '
"~ sinh——
2

uxo

(3.165)

The approximation has some validity if é is very small; when n becomes of
order 1/4, the exponential factor in eq.(3.161) helps in keeping down the
error. The expression (3.165) for u is however an exact solution of the
Burgers equation (see sec. 2.9). A further exact solution may be obtained by
rewriting the series in (3.162) as

}_ ~ —-n2§)2 é_ 2 _ ﬁ o
1"(5) e I[1+8 (2 =935+ | (3.166)

This rearrangement of a divergent series requires some justification (see
Blackstock (1964)). However, a formal multiplication of the two factors on
the right hand side of eq.(3.166) will confirm this step. Again, taking only
the first term in (3.166) and substituting into eq. (3.161) lead to

{~ 94(%, e *"’/2) (3.167)
so that we have, using (3.164) and (3.155),

(3.168)

e sin nt

uxé Yy

n=1 ., nod '
' sinh Z2(1 + x)

2
This is often referred to as Fay’s solution (Fay, 1931) and is an exact
solution of eq. (3.143). We further transform Fay’s solution by noting that

(—1fn

. 169
e (3-16%)

sinhnf Y t=f3 ¢
k=0
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T—-y= )Y %sinny, 0 y<2nm, (3.170)
n=1
n sinh a(m — ©  p
Sinh(an y)= Zl n? + a2 sinny, 0<y<2nm, (3.171)

(¢, are again Neumann numbers),

Substitution of (3.169) into eq. (3.168) shows that the term corre-
sponding to k =0 leads to eq. (3.170), while the remaining terms lead to a
sum involving the left hand side of eq. (3.171). Therefore, we get

sinh [ 2k(n — 1)/A]
sinh (2nk/A)

u= L [n—t+2n i(—l)" ], (3.172)
k=1

1+ x

where A = §(1 + x)/=. Since the arguments of the hyperbolic sines are large
for small &, we can approximate the series in eq.(3.172) by

[e o]
kz (— 1)" [e—Zkt/A —e" Zk(Zn—t)/A]
=1

_ ! tanh (z/a) — tanh 2= |. (3.173)
2 A
Eq.(3.172) now becomes
u= ! n—t+ntanh(t/A)—ntanh2n_t (3.174)
T l+x A | '

For t away from 2 and small &, the second hyperbolic tangent may be
replaced by unity, and eq.(3.174) becomes

u—-l
T 1+x

[— T+ mtanh ] (3.174a)

T
(1 +x)
On the other hand, for t ~ 27, the first hyperbolic tangent is close to unity
so that we may obtain eq.(3.174a) with 1 replaced by T — 2xn. Eq.(3.174a)
represents another exact solution of Burgers’ equation (cf. eq. (2.118)).
Finally, in the limit 6 =0, we may replace (3.174a) by

[—t+ ], O<t<m,
1+ x
u= q (3.175)
1+—x[—1:—7t], —n<1<0,

which is the (exact) sawtooth solution of the inviscid Burgers equation.
Thus, it is remarkable that, despite several approximations in the deriv-
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ations, we get several exact solutions of the Burgers equation, holding, of
course, in different domains. This idiosyncratic behaviour of the Burgers
equations will reappear when we consider the singular perturbation
solution of this problem in the next section. In conclusion, we note that the
solution (3.175) emerges as a non-viscous limit of the viscous solution and
satisfies, correspondingly, the equation which is a non-viscous limit of the
viscous equation — a rather uncommon situation.

Blackstock (1964) has improved upon Fay’s solution by retaining
more terms in the series in (3.162).

3.6 Singular perturbation analysis of the periodic piston
problem

We now turn to the singular perturbation analysis of the periodic boundary
value problem (3.143)—(3.144), after the shock is formed at x = 1. At this
distance from the piston, the lossless solution becomes multi-valued for
each value of t = o = 2kn, where k 1s an integer, according to eq.(3.147). At
each of these temporal points a shock forms and the solution (3.147) breaks
down. However, this solution of eq.(3.143) preserves the asymmetry and
periodicity of the boundary condition (3.144); any sharp shock transition
remains at t = 2kn for all values of x> 1. The evolution of the profile
between x = 1, the point of inception of the shock, and the establishment of
the quasi-steady Taylor shock with respect to t (that is, the embryonic
shock régime) can be traced only by solving the full Burgers eq.(3.143),
since, in this régime, all terms are equally important. After the quasi-steady
shock has been established, it is possible to solve the problem by singular
perturbation methods. The thickness of the quasi-steady shock is 0(9), as
follows easily from the balance of the terms uu, and % du,, (Parker, 1980).

Forx =0(u""), where d « u « 1, the inviscid solution (3.147), as in the
earlier analysis of sec.3.4, remains valid as the first term of an outer
expansion, away from each of shock locations t = 2k, and close to the
‘nodes’, t = (2k + 1)n. It may be simplified by introducing the variables x
and B,

x=p"'%, o—(2k+ Hn=pup, (3.176)
so that eq.(3.147) yields the outer solution to order u:
uy =sin((2k + D + pf) = —sinuff ~ — up, (3.177)
t—(2k+ )r — pf = xsin uf ~ xup.
Therefore, the outer solution, for x = O(z~ '), becomes



Singular perturbation analysis of periodic piston problem 73

T—(2k+ )=
x+1
holding in each interval 2knm <t <2(k + 1)z. This is a straight ramp or
sawtooth wave with discontinuities of strength 2z/(x + 1) at each © = 2kmn.
We match this outer solution with an inner solution about the sharp shock

discontinuities as in sec. 3.4. We define the inner stretched variables

Ug~ —up~ — , (3.178)

_ (t—2km) _ _ _ .
T=p———r—, 4l X)=p"'u. (3.179)
(9/2)
Eq.(3.143) becomes
o

— iy =l — 'Sl (3.180)
In view of J « pu« 1, the lowest order equation for # becomes

— 00, =V, (3.181)

This is to be matched to the lowest order outer solution (3.178), say, for
k = 0.1In this case, the shock is at T = 0 and the outer solution is u ~ (7 — 1)/
(x+ DforO0<t<2rand u~ — (1 + m)/(x + 1) for — 21 <1 < 0. Hence the
solution to eq.(3.181) should satisfy the intermediate limits

v Frf(X+yu) asT—> F oo. (3.182)

Such a solution of eq.(3.181) is easily found to be
nT
tanh .
+pu an 2(x + p)

This is a Taylor shock with strength 2mu/(x 4+ u). If we use the matching
principle for getting a composite solution, namely

(3.183)

1I~v(1?,)2)=)E

Ye = Your t Yin — Ymatch (3184)
(see Bender and Orszag (1978)), we have
T—1T um Ut T
~ (T, X, 0) = ———tanh — —
 ~ (7, X, 0) x+1+x+u an X+ x+1
1 nt
= h -1 .
s 1|:7ttan S+ D t:l (3.185)

This representation of the solution holds throughout the basic period
— 7 € © < x, provided the assumption underlying the analysis, 6 "' » x> 1,
holds.

It is interesting to note that the inviscid Fubini solution (3.154) holding
for x < 1 has now transformed into (= — 7)/(1 + x); of course, it holds away
from the shock layer t ~ Q.
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Lesser and Crighton (1975) have shown that the Fourier series form of
the composite solution (3.185) produces Fay’s solution. We proved the
converse of this result earlier in sec. 3.5. Explicitly, if we write

1 T &
tanh -1 |= i

=37 l[n an ot D) t] n; A(x,8)sinnt, |t|<m,
(3.186)

then

(1 —e~2?"2¢os nm)

(2p/AY + n?
where the thickness A = §(x + 1)/xn. If we take the limit 6 — 0 with x = O(1),
we have

A, 6)=%[%+2n i(— 1)? ] (3.187)

26[ 1 2 (=1
An(""”"a[;”",;m}

no(1 + x)

= o cosech (3.188)
so that eq.(3.186) becomes Fay’s solution
=5y — oM (3.189)

n=1

sinh "2—5(1 +x)

The Fourier series representation of the sawtooth solution (n — 7)/(1 + x)in
O<t<2mis

T—-1 isinnt( 2 ) (3.190)

1+x_n=l n

A comparison of eq. (3.189) with eq. (3.190) shows that, for larger n, the 1/n
decay in the sawtooth solution has been replaced by e ~"* *¥/2_ displaying
stronger dissipation due to nonlinearity as well as viscous diffusion. The
solution (3.186) also shows that the shock thickness (with respect to ) now
is of order dx. Lesser and Crighton (1975) show that this solution holds even
when éx = 0(1), and the viscous diffusion has spread from the narrow shock
layer into the entire wave profile, a surprising result since it was derived as a
Fourier series equivalent to a first order composite solution in which the
shock thickness was assumed to be small, of order 6. But this is only
representative of several other curious results that we have encountered.
Thus, the first order composite perturbation solution (3.185) is itself an
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exact solution; its Fourier series representation, with further approxim-
ations in the Fourier coefficients, is another exact solution!

It is now appropriate to summarise how a wave profile produced by a
periodic signal at x =0 evolves with distance. The signal steepens with
respect to t and is described by the Fubini solution (3.154) until the shock is
formed at x = 1. The shock evolves and adjusts until it has a balanced
Taylor structure. This stage is not described by any of the analytic solutions
found so far. Thereafter, we have the composite solution (3.185) which holds
for some distance until it is replaced by Fay’s solution (3.189). Fay’s solution
holds until the signal becomes so weak that it is essentially linear or has
attained its ‘old age’, persisting to an infinitely long distance. The final old-
age solution follows from eq.(3.189) as

u,~de % 2ginr. (3.191)

This solution holds for x> é~! and has only a single Fourier component
which decays under viscous diffusion alone. Of course, the amplitude of this
solution is much smaller than that for the profile which decays due to linear
diffusion throughout its evolution starting with the same initial profile as
for (3.191) (see Blackstock (1964)). For further discussion of the equivalence
of these solutions and their interpretation as a periodic array of spreading
shocks that appear not to interact as they interpenetrate, reference may be
made to the paper by Parker (1980). Whitham (1984) has generalised
Parker’s solutions for the Burgers equation, expressed as a sum of shocks, to
nonlinear dispersive equations such as the Korteweg—deVries equation.
The periodic solution in the latter case is represented as a sum of solitons,
confirming the analogy between shocks and solitons as they appear in the
analysis.

Scott (1981a) has considered the harmonic piston problem for cylindrical
and spherical sources, using the boundary value problem analogue of
€q.(3.118) for the governing equation. Two small parameters ¢ and R,
appear in the problem, the former representing a combination of diffusive
and geometrical effects, while the latter is a combination of nonlinear and
geometrical effects. He has defined various matching asymptotic domains
in the e-R,, plane and in each case the space-time asymptotic structure is
discussed, providing in some cases the analytic form of the leading term.
Rudenko and Soluyan (1977) have, in a somewhat ad hoc manner,
attempted to ‘string together’ inviscid and viscous solutions of the non-
planar equations to obtain composite solutions which have forms similar to
the exact solutions of the planar equation. The problem for the non-planar
case remains yet to be solved in complete generality.
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Murray (1973) considered the generalised Burgers system

v, + 200, — Uv=ev,,, (3.192a)
1

U+eU=1-— j v2dy, (3.192b)
0

o(0,)=0=1u(l,1), »(»,0)=f(y), UO)=U, (3.193)

as a model for turbulence, where v is the velocity of turbulent motion, U(¢)
the velocity of the primary motion and ¢ =1/Re the inverse Reynolds
number. He employed singular perturbation techniques to find periodic
solutions. The results indicated that an ultimate steady turbulent state
emerges and that the small disturbances grow into a single large domain of
relatively smooth flow, accomplished by a vortex sheet in which strong
vorticity is concentrated.
A related system

U + uu, = (I"(t) + luO)uxx’ (3194)
Uty = AJ u® dx, (3.195)
u(x,0) = ug(x), p0)=0, (3.196)

where 4,y and y, are positive constants, appears in plasma physics. The
existence, uniqueness and regularity of the solutions were discussed by
Penel and Brauner (1974). Some numerical results, with a triangular initial
profile, were also presented for a variety of the parameters involved. The
profile evolves into a smooth single hump which decays with time,

3.7 An alternative approach to non-planar N waves

Here, we give an alternative analytic approach (Sachdev, Tikekar & Nair,
1986) to the N wave solution for the equation

utu 420 =12 (3.197
t X 2t - 2 xx J= L . )
(see sec. 3.4), based on the heuristic arguments inspired by the solution

x/t

r \172
14+ — ele 25t
to

u=

(2.100)
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for the plane case, j = 0. The basic idea is that the solution should have the
form of the exact inviscid solution

X
Xy (3.198)
2w 1T
u=
X
——— l=2,
tine’ (3.199)

near x =0 and the asymptotic form (3.142) for large t. For j =0, the latter
agrees with the asymptotic form of (2.100) for large ¢. It turns out that the
lobe Reynolds number (see eq. (2.101) for definition) for j = 1 can be found
exactly by this method except for the value of the asymptotic constant in
€q. (3.142). This does not seem possible in a unique manner for the spherical
case. Thus, the present work, in a sense, complements the study of
Crighton and Scott (1979) who were able to give some analytic results for
the spherical case, but not for the cylindrical case.
Motivated by the form (2.100), we transform eq.(3.197) by

X

—_ 2 — _ 2
u= (26)1/ v, é— W’ T= [1/ , (3200)
so that it becomes
Tor +(2Tv — Eve + jo = v, (3.201)

Now, we introduce the inverse function V by

b= % (3.202)

and ‘peel’ ofl” the factor x/t'/? from u. We obtain an equation with 5 =
x2/26t =&? and T as independent variables:

VGV — TV + (2T — V)(V —21V,)
+3VV, +2qVV,, —dnVi=0. (3.203)

Before we proceed to analyse eq. (3.203), we note that the solution (2.100)
for j =0 can be written as

£

— (A2 — (253112
u=(20)"“v=(29) T( +aTe®)

3
— 1/2
=(29) VET) (3.204)



78 Generalised Burgers equations

where
a=(ty)” 12
and
V=T +aTe*y=T(1 +aTe"
2 3
=T +aT?+aT+ ang—' + arz';—l . (3.205)

We seek a representation of the solution of eq. (3.203) in the form

2 3

V=folT)+ fo(TI+ STV + f5(TV o+

- ¥ 1t (3.206)
i=0 13

which combines the asymptotic behaviour (3.142) and the inviscid
behaviour (3.198)—(3.199). For the plane case, f4(T) is simply the sum of the
remnant of the inviscid solution, namely T, and of the asymptotic time
behaviour, aT?; all higher order f;(T) just correspond to the asymptotic
time factor aTZ. For other geometries, the solution is more complicated.
Substituting (3.206) into eq. (3.203) and equating the coefficients of
various powers of 7 to zero, we have

3, +2T—-Tfo+(—1)fo=0, (3.207)

Sfofa+2fofi—fi—T(fof1 + f1fe)—2Tf1=0, (3.208)
Thofs+[20+ Vfo—Tfo—3f1—6T]f2—Tfof>

+2f[G+0f =Tfi1=0, etc. (3.209)

It is easily verified that, for j=0, the functions fo =T +aT? f, = f, =

fy=aT? satisfy egs.(3.207)-(3.209). We consider the cylindrical and
spherical cases separately.

(a) Cylindrical symmetry

Combining the information from the inviscid solution (3.198) and the
asymptotic solution (3.142), we look for solutions to egs. (3.207)-(3.209) in
the form

fo = 2T + szZ + b3T3,

fl = CIT + CZTZ + C3T3,

fa=d,T+d,T>+d,T?, etc (3.210)
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We find by substitution in eqs.(3.207)—(3.209) that ¢, =d, =0 and ¢, =
2b,, ¢y =by, b, = +3b}/%, dy=b,, d, =%b, etc. so that the functions
fo f1,f> become known in terms of the constant by which itself may be
obtained from the numerical solution. That would also complete the
asymptotic behaviour (3.142). Choosing the positive sign for b,, to avoid
any singularity at a finite time, we have

fo=2T +3bY2T? +b,T?. (3.211)

All f,,i = 1, can now be found by differentiation and algebraic operations
from egs.(3.207)—(3.209) etc. and hence, in principle, the solution is
analytically found.

The solution for j =1 can be written as

u=im 1 ; (3212)
Folt2) + fiE 2 + St +

so that
ou 1

3o () 2

where fo(t'/?}is given by eq. (3.211). Integrating eq. (3.197) with respect to x
from 0 to oo and defining, as before, the lobe Reynolds number R =
(1/8) f, udx, we get an equation for R:

dR R

4 T3 =~ 00

1 1
TR Y L2t + by (3.214)

Eq.(3.214) can be integrated to obtain

B to 1/2 1 172 t1/2+2/b:15/2
R-—(t) +(tb3) lnt1/2+1/b5/2. (3.215)

Here ¢, is another constant. The two constants t, and b, are chosen to
match eq.(3.215) with the numerical solution (see sec. 5.6).

(b) Spherical symmetry

In this case if we peel off T from f; by writing
f0=TFO, f1=TF1, f2=TF2 CtC. (3.216)
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and introduce the variable t =1n T, we get an autonomous system:

dz
dF dF
SFoF,—F,(2+ F,)—F, dr‘ —F, dt° +2F,F, =0, etc.

(3.217)

We may now find F; as a power series in t, that is, In T; the functions F |, F,,
etc. can be expressed in terms of F,, but F itself cannot be found explicitly.
It appears that the solution for j = 2 is much more complicated, involving
expansions in powers of both ¢ and In ¢. This is borne out by the analytic
results of Crighton and Scott (1979). Thus, the shock displacement involves
the exponential integral Ei(x)=4" _t~'e'ds (see eq. (3.141)), while the
other asymptotic solution found by Crighton and Scott (1979) in the shock
regime contains erfc and exponential functions. Crighton and Scott note
that the non-uniformity of the singular perturbation solution first appears
only in the shock region so that the outer solution near the node of the lobe
continues to hold for a long time. The difficulty in our analytic solution is
that fy(or F,) is not uniquely determined. However, once f, is chosen, all
fi(i = 1) are uniquely found. One plausible choice for f(¢) is (¢}/2 In t + at?).
This is the sum of the inviscid and asymptotic contributions as in the planar
case, wherein a is to be obtained from the numerical solution. We shall
return to a discussion of these results in sec. 5.6, when we compare
numerical solutions with the analytic ones.

3.8 Generalised Burgers equations and their
transformations

Since generalised Burgers equations are difficult to treat analytically, as we
have seen, there have been several attempts to generalise the Hopf-Cole
transformation so as to linearise more general nonlinear equations.
Further, it is natural to postulate that a general linear parabolic equation
with variable coefficients would result from a more general nonlinear
equation of the Burgers type by a Hopf-Cole like transformation; one
might start from the general linear parabolic equation and obtain general
nonlinear equations equivalent to it by means of a nonlinear transform-
ation. We shall summarise some of these attempts.

Cole (1951) noted that the three-dimensional analogue of the Burgers
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equation
q.+q ' Vq=1Vigq, (3.218)

which represents the Navier-Stokes equations for an irrotational flow
without the pressure term, may be reduced to the linear heat equation in
three dimensions by the transformation

q= —2vV(In0), (3.219)
namely
6, = vV?26. (3.220)

This argument was generalised by Chu (1965), who considered the system of

n equations
Ou;
ot

du; Ou; Ou;
tFiax, = Ciox, o,
d%u;

0x ;0x;

J J
where the summation convention is adopted with respect to the index j but
the index i is not summed. The functions F;, G; and H, are at least twice
continuously differentiable functions of u,. The R, are continuously
differentiable functions of t,x,,x,,...,x,, and é is a constant. Chu
introduced the transformation

26 00

Fluy=-—2=- (3.222)

+ 0

+HR, G,j=1,...,n), (3.221)

and substituted derivatives with respect to t, x; etc. into eq. (3.221). The
resulting equation, after an integration with respect to x;, reduces to the
linear parabolic equation

ol¢) %6 P

e 56x Fy + [C(t) + 2_6]9’ (3.223)

J

i
ifthe functions F,, G;and H;can be derived from a generating function f;(u;)
through

Fi= f " o
_ dinf
Gi=0 du, ’

H,=fi! (3.224)
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(where i is again not summed), and the function P(x, ¢) is related to R; by

R,=— op : (3.225)
ax;

The function C(t) is an arbitrary function of ¢ arising from the integration
with respect to x; of the transformed equation. We shall here discuss only a
scalar equation rather than the system (3.221). Thus, once the generating
function f is chosen, the original nonlinear equation can be constructed.
For example, for f =0,1,e*,nu" *,Inu, —sinu and cosu, we get the
following variety of equations, respectively:

ou _0%u
o5 3.22
TR (3.226a)
ou ou _*u
- a5 .226b
b =6+ Rix, D) (3.226b)
du Ou u\t Pu _,
a +e g = (a) + (Sﬁ +e¢ R(x, [), (3226(2)
u L O0u _ nn—1)[{0u\*>  _2*u  R(x¥
a +u ox =0 ” (a) + 5ax2 + nu"—_l’ (3226(1)
ou du & [ou\* _9*u R(x0)
S u(nu— 1) =—2 u(a—x) +og 42l (32269
@4_ CoSs u 6_u__5 cotu (du 2+66_2u
ot sinu /éx tanu J \ Ox ox?
— cosecu
+ ( oo )R(x, 0, (3.2260)

where R(x,t) is any function integrable with respect to x. The transform-
ation (3.222) merely requires that a positive solution of the linear parabolic
equation (3.223), or its one-dimensional analogue, should exist; hence every
solution of the original equation may be obtained from that of the
corresponding linear parabolic equation. It is interesting to note that, even
for R =0, the heat equation provides solutions for a whole class of
eqs.(3.226).

Rodin (1970) studied directly the second member of eqs. (3.226), namely

U, + uu, = ou,, + R(x,t), (3.226b)

which is an inhomogeneous Burgers equation and occurs in several
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applications (Karabutov & Rudenko, 1976, Crighton, 1979). He related this
equation with a Riccati equation and found some special solutions (see
sec. 3.10).
For the one-dimensional case (j= 1), eq.(3.223) can be rewritten by

absorbing C(t) into P(x,t) and normalising the variables according to

x _ 6t ul 2%

z—»x, F—»i’, F—» u, P(x, t)—»FP(x, f),
where L is a characteristic length of the wave phenomenon being
considered. The transformed equation (wherein we drop the bar) is found to
be

a0 9%

—=—+ P(x, 1)6. 3.227

o a2 TP (3227)
The transformation (3.222) becomes u= —(2/6)é0/0x, If F(u)=u.
Eq.(3.227) is the canonical form of a general linear parabolic equation with
variable coefficients. To see this, we consider the general equation

U, + alx, u, + b(x, hu = c(x, u,, c(x,t)>0. (3.228)

The one-to-one analytic transformation

= fx(c(s, 0)2ds, t=t, (3.229)
0

takes eq.(3.228) to an equation of the same form but with c(x,t)= 1.
Therefore we may assume c(x, t) =1 in eq.(3.228) to begin with. If we now
set

u(x, t) = 0(x, t)exp[ — % Jxa(s, t) ds:l, (3.230)
0

we arrive at an equation of the type (3.227). Hence eq.(3.227) represents a
canonical form of linear parabolic equations with variable coefficients,
without any loss of generality.

It is natural to expect that generalised Burgers equations should reduce to
a general linear parabolic equation rather than the classical heat equation
through the Hopf—Cole type transformations. We have now to examine
how an initial value or initial boundary value problem for such a linear
equation may be solved. In general, there are no explicit exact solutions. We
shall summarise some of the important special approaches.

A first question that arises is whether there are any operators which map
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solutions of the heat equation onto solutions of linear parabolic equations.
Indeed, Colton (1974) has constructed precisely the integral operator whose
domain is the space of solutions to the heat equation rather than the space
of analytic functions. In the context of the general analytic theory of partial
differential equations, this approach is the natural one for parabolic
equations; just as the integral operators for elliptic equations reduce, in the
case of Laplace’s equation, to taking the real part of an analytic function, in
the case of the heat equation the integral operator of Colton reduces to the
identity operator. Colton (1976) has given a method for approximating
solutions to initial boundary value problems for eq.(3.227). The essential
idea is to construct a family of solutions to eq.(3.227), analogous to the set
of polynomial solutions to the heat equation, given by Rosenbloom and
Widder (1959), namely

(/2] X"~ 2k Ik

h(x,t)=n! Y

k=o(n - Zk)'k'
—(- :)ﬂ/%,,((—_ﬁ), (3.231)

where H,(z) denotes the Hermite polynomials. Widder (1962) showed that
the set { h,(x,t)} was complete in the space of solutions to the heat equation
which are analytic in the neighbourhood of the origin. Colton proved the
completeness of the family of solutions to eq.(3.227), analogous to the
family { h,(x,t)} for the heat equation. This was accomplished by using an
integral operator approach (Colton, 1974). Subsequently Colton (1975) also
gave an algorithm for this purpose and illustrated it with a numerical
example.

While the above approach has several attractive theoretical and analytic
features, the final solution has to be obtained by numerical techniques. To
that extent it detracts from the usefulness of the method in finding analytic
solutions of the generalised Burgers equations.

An alternative approach is to find exact fundamental solutions of the
linear parabolic equations, which may then be used to find a general
solution from an arbitrary initial distribution by a convolution of the initial
distribution function and the fundamental solution. Swan (1977) has given
several important references to previous work on the subject and has found
explicit fundamental solutions for some linear parabolic equations, for a
particular choice of the coefficients which now depend on the spatial
variable only. For example, if the given equation is
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o4 (X, + Ao (XU, + ota(X)u = u,, (3.232)

then

A |
u(x, t) = Wexp { - m[hz(X)

— 2mh(x)t + (m* — 4c2p)t2]} (3.233)
1s its fundamental solution if
_ |79
h(x)—j T
o, (x) = c20%(x), oy(x) = 3c20(x)8(x) — mb(x), (3.234)

o3(x) = > {[6(x)]* + 8(x)0"(x) } — mO'(x) + 1,

where 6(x) is an arbitrary twice continuously differentiable function, and
c,m, pand A are arbitrary real constants. 4 and ¢ are non-zero. Swan (1977)
has also considered a slightly more general equation which includes the
important Fokker—Planck equation

o? d 3
c? ﬁ[ﬂz(x)u] — 3 {[2Hx)0'(x) + mO(x)Ju} — a—l; =0 (3235

as a special case (see also Rogers (1983)). Besides the two approaches
referred to above, one may resort to similarity analysis of the linear
parabolic equation to identify the similarity variables and hence find the
special similarity solutions. The latter could then be transformed to the
solutions of the corresponding generalised Burgers equations via Hopf-
Cole like transformations. Humi (1977) considered the equation

A(X)u,, + B(x)u, + C(x)u =u, (3.236)

with spatially varying coefficients, subjected it to infinitesimal transform-
ations and identified several similarity transformations. Lehnigk (1976a, b)
considered the same equation and discussed the similarity solutions which
are conservative, that is, for which jf, u(x, t) dx is a finite constant. Here x* is
a constant equal to 0 or — co.

Thus, there is a possibility of generating a whole variety of solutions
through a combination of a similarity approach to the more general linear
parabolic equation (3.227) and Hopf—Cole like transformations.

We now discuss a few examples of this type (Sachdev, 1976b).
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(a) Similarity solutions

If we assume 0 =t"J(z), where z=x?/4t and n is a real number, then
€q.(3.227) reduces to the ordinary differential equation

Y +(z 4+ +(Q(z) —ny =0, (3.237)
provided

P(x,t) = %Q(z). (3.238)

Eq.(3.237) can be easily treated. Several special cases are now considered.
(1) If Q(z) = z/4, eq.(3.237) admits the solution

y=e"*?(C, + C,z'?), (3.239)
where C, and C, are arbitrary constants. In particular,if C, =1,C, =0, we
have § =t~ '*e~%/2. The corresponding nonlinear solution u = x/2t satis-
fies the equation

U, Uty + s = Uy (3.240)

412

and represents a sawtooth form (fig. 5 of Benton and Platzman (1972)(B &
P)). The solution 8 =t~ '4z}?2¢~%2 arising from eq.(3.239) with C, =0,
C, =1, gives u= x/2t — 2/x and corresponds to (3.5) of B & P.
(i) Rodin (1969) has considered the special case n=0 of eq.(3.237)
with
0(z) = — (a,2Y? + a,2), (3.241)

where a, and a, are arbitrary constants {in Rodin’s notation, z = x?/t).
Eq.(3.237) can be transformed into

i 1 d'ﬁ p* + 20
arz " 2(1 + 20) d VARG 42 + 1)? rrFE A (3.242)

where
g=e @Dy, Y =220+ 1)z'7 + 28,

—1£(1+4ay)'?

o= > , b=+

2a,
T (1+4a)V*

The erf solutions of eq.(3.242) are possible only if f2 + 20 =0. These
correspond to Rodin’s solution and to (3.1) and (3.3) of B & P.

(i) For general n, eq.(3.237), with Q the same as in eq.(3.241), can be
changed to the form
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& B*+20—4n

d*y .
F=0, 3.243
Y‘d Y? Y”d Y, 41 + 20) ( )

+G

where

-1
Y, =——[2(1 + 20)z'/% + 2872,
V=g a2 2021 + 28]
Eq.(3.243) is a confluent hypergeometric equation. It has solutions in terms

of Hermite functions, so that

0 =¢"e=*P'"H [2(20 + 1)z'/? + 28] (3.244)
if

a=—3%, B=—8a, v=264a2—4n—3). (3.245)
The constant a, can be chosen so as to make v an integer. The solution
(3.244) gives

B 7172 ]
x H’v( - T - 1601 )
u==|3+4a,z7 2 +4z7172 (3.246)

t ZI/Z ’
HV(—T—' 1601)

—
L

corresponding to (3.4) of B & P.
(iv) The inhomogeneous Burgers equation (3.226b) directly admits a
similarity solution

u=t"1%(G+¢ (3.247)
if

R(x0=tPRQ, €=z =517
Eq.(3.226b) becomes

d2G dG _
An integration of this equation leads to the standard Riccati form

dG _

a2~ G*=-2 J[ﬁ + R(&)]d¢. (3.249)

Solutions of this equation for various choices of R(&) correspond to the
single hump solution (figs. 9-11 of B & P).
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(b) Product solutions

The product solution 8 = T(t) X(x) of eq. (3.227) exists only if P is a function
either of x or of t alone. In the latter case, in view of eq.(3.225), we arrive at
the homogeneous form of the generalised Burgers equations(3.226) with
R =0 (but see remarks following egs. (3.226)). Therefore, we consider the
case P = P(x). Taking T =e*, J a constant, we get, from eq. (3.227),

X"(x) + [P(x)— A]X = 0. (3.250)

This equation is amenable to a very general discussion. For special P(x),
say, P = bx,b a constant, eq. (3.227) has via (3.250) the solution

0= c"zlfz.lim(%zm), z=b"3(bx — 1), (3.251)
which, for b = — 1, becomes
Ai
oAl
O=e {Bi }(A + X), (3.252)

where Ai and Bi are the Airy functions. These solutions correspond to (1.1)—
(1.6) of B & P (cf. also Crighton (1979)). For P =bx?, eq.(3.250) has
solutions expressible in terms of Weber—Hermite functions. We note that
the families of solutions, expressible in terms of Bessel or Hermite functions,
may be used to solve a general initial value problem (see Titchmarsh (1962),
Grinberg (1969)). Such solutions would correspond to Table 4 of B & P.
Finally, we note that since ‘a non-zero constant’ is not a solution of
eq. (3.227), we cannot find ‘allied’ classes of solutions from present solutions
by linear superposition with a constant (cf. B & P).

3.9 The inverse transformation

Now we can approach the problem in an inverse manner (Sachdev, 1978).
We begin with the linear parabolic equation

¢ +bd,+cd+ f=cad,,, (3.253)

where a,b,c and f are functions of x and t, and enquire what nonlinear
equations it will generate through the transformation

F(u) = k(x, t)(In ¢),. (3.254)

This transformation is slightly more general than Chu’s (1965) and
introduces a variable function k(x, t) in the Hopf—Cole transformation. We
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thus have
%’5— F, kq:’;x = F(uu, —I:(—xF +F72,
i':5—'=.*3a(17 x—i—xF+I::) bF—ck—%c
%=F’u,+sa5§u,‘+F(—~%

eaf k.. F*\ b f

A e ).
¢xxx_ F k, / ke F?
kT_(fc— T\ T+

+ (F"u,f +Fu_ — (%) F

2FF F?
chF’u + k )

—EFu + = ke (3.255)

Differentiating eq. (3.253) with respect to x and rearranging, we have

& +(b— sax)k% . ki" C, % = sak%;i.

o)
(3.256)

Now we substitute (3.255)‘into eq. (3.256). To get an equation In u
alone, we require that f= 0, that is, that eq.(3.253) is homogeneous. We
thereby obtain

k F F"
u,+(b—sax+28a—’5—2£a )u —ga—u}

k k F
F o ke ke k, ke,
+F’[k2(kk"" 2k)—— bk +exk +b, st
k, a,
(ZSak—z — 8?)] = gau,,. (3.257)

This equation is much more general than that with which Chu (1965)
started his analysis. The term u2 drops out if F” =0, that is, if F is a linear
function of u. Further, eq.(3.257) can be put in a conservative form if the
function a(x,?) is a constant. Taking F = u, as a particular case, we get
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the following exchange process (cf. Murray (1968, 1970b)):

u, + v, + saﬁu ¢ hoe Ko ks u+ke,=0
BT T T Tk *=0

ki a ,

v=|b+2ea— |lu——u* —eau,. (3.258)
k k

This equation generalises the Burgers equation
ll2
u+v,=0, v=—¢eu,+ Ex (3.259)

and gives the class of nonlinear parabolic equations, with a constant
coeflicient of viscosity, which may be transformed into linear parabolic
equations of the type (3.253).

We consider some other special cases of eq.(3.257). If we assume that the
functions a and k are related as in the standard Hopf—Cole transformation,
namely k = — 2a, we can easily verify that eq.(3.257) becomes

F" F a2
u,+(b+ea, +eFu, —ea—ul+ —| ¢l ay ——
F F a

Fa, a, ba, 2ac, |
—ez +b, F ] = £Qll,,. (3.260)

In particular, for F = u this becomes the Burgers equation with damping
and variable viscosity. The term (b + €a,) in the coefficient of u,, even if
taken to be a constant, has an important role to play in the formation and
decay of a shock (when &£ =10), as was shown by Murray (1970a). If we
further specialise eq.(3.260) and choose b + ea, = 0, we have

u, + eut, — u(suax + &) — 2ac, = eau,, (3.261)
2a a

so that we have the possibility of having a damping term proportional to
u?, u or a constant, depending on the choice of the functions a and ¢. The
variable function a on the right hand side can be viewed as a variable
viscosity or simply a term meant to smooth the shock as in the viscosity
method (cf. Dafermos (1973)). After choosing the form of a, we can choose
other coefficients to have a variety of convective and damping terms. If, for
example, ¢ =0, and a, and hence k, are functions of ¢t alone, eq.(3.261)
becomes

u, + euu, — %u = ga(t)uyy. (3.262)
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This includes the Burgers model for turbulence, considered by Case and
Chiu (1969) and Murray (1973), but with a variable diffusivity (see also
Romanova (1970) for its application to acoustic waves in the atmosphere).

Finally, if we assume a, k and ¢ to be constant, but allow b to be a function
of x and ¢, then eq. (3.260) becomes

u,+(b+eFu, — sa%uﬁ + ;bx = £aUl,,, (3.263)
a useful equation with constant diffusivity, which for F = u represents the
Burgers type of equation with a linear damping term that may also depend
on x and ¢ through b,.

Initial and nonlinear boundary value problems for a much more general
Burgers hierarchy have recently been considered by Rogers and Sachdev
(1984).

Nimmo and Crighton (1982) considered a wide class of Bicklund
transformations (BTs) for nonlinear parabolic equations of the form

U+ Uy + Huu,x,ty=q +r+ H(p,u,x,t) =0,
with the usual notation
q=u, p=tu, r=u,etc,

where H(u,, u, x, t) is an arbitrary function of the indicated variables. These
equations include both the Burgers equation with H =2uu, and the
inhomogeneous Burgers equation (3.266) (see sec. 3.10) with H = 2uu, —
f(x,t) as special cases (after allowing for minor changes in the sign of ¢
and some scaling). This paper also contains important references to the
classical theory and applications of Backlund transformations with special
reference to Korteweg—deVries and Burgers equations and their generalis-
ations. Consider the transformation

P=flt,x,uu,p,q, q=yxuu,pqg) (3.264)

with p’ = du'/0x and q' = u’/0t as derivatives of the new dependent variable
u'. We wish to find the functions f and  such that the pair of equations
(3.264) is integrable if and only if u and u' satisfy the differential
equations

r+q+ H(p,u,x,t)=0,
r+q +Gp,u,xt)=0. (3.265)

When this is the case, then eqgs. (3.264) define a BT between the two
equations (3.265).
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Nimmo and Crighton (1982) arrive at the conclusion that the only
nonlinear equations in the class considered that admit BTs are a slight
generalisation of the Burgers equation, namely the inhomogeneous Burgers
equations (3.266) (sec. 3.10). Further they claim that the only other class of
equations that admit BTs of the kind (3.264) are linear parabolic equations
with H = a(x, t)u. More specifically they show that BTs of the above type do
not exist for the modified Burgers equation with cubic nonlinearity, for the
cylindrical and spherical Burgers equations or, indeed, for any other
equation of this class! This is in contrast to the equations of the KdV class
where BTs exist for the KdV equation itself, for the modified KdV with
cubic nonlinearity and for the cylindrical KdV equation.

Nimmo and Crighton (1982) have compared their analysis with Sachdev
(1978) given in detail earlier in this section, and conclude that ‘Sachdev’s
class of equations is no wider than the class we have obtained here’,
although it ‘appears to contain equations that lie outside the class that we
have shown to possess BTs’.

However, it should be noted that Backlund transformations of a
reciprocal type which are not included in the class (3.264) in particular allow
the linearisation of a hierarchy of nonlinear equations (see Rogers (1983),
Kingston and Rogers (1982), Kingston, Rogers and Woodall (1984)). In
particular, the nonlinear diffusion equation

ou 0 1 du d ou

o a[(au + b)? E] + (au + b)? 8x
may be linearised by a combination of reciprocal and Hopf-Cole type
Bicklund transformations. Applications of this result in two-phase flow in a
porous reservoir have been given by Fokas and Yortsos (1982) and Rogers,
Stallybrass and Clements (1983). Reference may be made to the text by

Rogers and Shadwick (1982) for background material on Bécklund
transformations and to Rogers and Ames (1986) for other related matters.

3.10 The inhomogeneous Burgers equation

Besides the standard Burgers equation (2.44), the inhomogeneous Burgers
equation

u, + uu, = ou., + f(x,t) (3.266)

has attracted some attention as a one-dimensional scalar analogue of the
Navier—Stokes equations. We have already referred to the work of Rodin
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(1970) and Sachdev (1976b) in sec. 3.8. Here we summarise other work
related to eq.(3.266). Kraut (1964) proved the uniqueness theorem for an
initial boundary value problem for eq.(3.266) in the rectangle

0<sx<gL, 0<t<T, (3.267)

subject to the homogeneous boundary conditions

w0, =u(L,t)=0, (3.268)
and the initial condition

u(x, 0) = a(x), (3-269)
where

a(0)y=a(L)=0, (3.270)

without resort to the Hopf—Cole like transformation for linearisation. The
proof requires that the coefficient of kinematic viscosity & should be
positive. (There is an interesting paper by Pelinovskii and Fridman (1974)
wherein the consequences of taking  to be negative have been discussed
with reference to the Burgers equation.) Ton (1975) and Holland (1977)
have shown that the solution of the homogeneous (a(x})=0) initial
boundary value problem (3.266)—(3.270) converges to the solution of the
limiting equation as J — 0; estimates of the rate of convergence were also
given, Jeng and Meecham (1972) considered eq. (3.266) as a model equation
for turbulence with the periodic driving force f(x,t)= — Asin¢, =
kx —wt, A > 0. The travelling wave solutions u(x, t) = F(£) were found for
the inviscid case § = 0. Periodic solutions arising from vanishing initial
conditions were also found numerically, using a finite difference method.
The solutions in the continuous part converge to the inviscid travelling
wave solution. The shock is a discontinuity in the inviscid travelling wave
solution, while it has a finite structure in the numerical solution depending
on the Reynolds number of the wave (see also Okamura and Kawahara
(1983)).

Karabutov and Rudenko (1976) proposed the inhomogeneous Burgers
equation

op 1ép op 5@_%[3

O(x,t) (3.2711)

P + —_———p— - —_—

ox " cot  Tor o 1,
to describe the uni-directional excitation and propagation of intense
acoustic waves generated in a medium by the absorption of laser radiation.
Here pis the incremental pressure in the medium, ¢, the speed of sound in the
linear approximation, « = (y + 1)/2p,c3 the nonlinearity parameter, é the
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coefficient of high frequency viscous diffusion, and f the specific coefficient
of volume expansion. The right hand side of eq.(3.271) represents
absorption due to laser radiation. Notice the interchange of the roles of x
and ¢, as in sec. 3.5.

The initial and boundary conditions relevant to eq.(3.271) are

p(x,0) = p(0, ) = 0. (3.272)

The zero boundary condition at x =0, referred to as ‘rigid’ by Karabutov
and Rudenko, is found to lead to more effective excitation of waves.
The Hopf-Cole transformation

p= 20t (3.273)
o u
or
'O!p
u =exp O%dt
changes the problem (3.271)-(3.272) into
1 acoB [*
ety Su, = u45(:: : f ) O(x, t)dt, (3.274)
wx,00=u0,)=1, x=0, t=0. (3.275)

The parameters of the medium determine the characteristic scales of the
problem: x, = 4¢2, t,=2dc, and p, = (xc,) . Changing the independ-
ent variables in eq.(3.274) to

X t

z=—, T=—,

Xo to
and denoting the non-dimensional combination of the parameters occur-
ring in the problem by

_acep

A= i E,, (3.276)

where E, is the strength of the special short pulse

Q(x, t) = Ey0(x)o(t), (3.277)
we have
u, + 2u, —u,, = Ad(2)u. (3.278)

This problem can be transformed by eliminating the first derivative term via
v=ue’"", so that we get the heat equation in v with the corresponding
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initial and boundary conditions:

v,—v,.=0, (3.279)
(z,0)=e"4*% v0,1)=e"%, z20, 7=0. (3.280)

The solution of this problem may be found in Tychonov and Samarski
(1964) and Copson (1975). We therefore have

u=e G 9= %((1 +e )+ (1— e"‘){qb(%;#)

=)l

where ¢(&) =(2/./ 7t)jge'°'2 da is the error function.

The solution for p is found with the help of eq. (3.273). While the solution
(3.281) for u{and hence for p) is not a similarity solution, it arises from a
special delta function form (3.277) of Q(x, t) and represents an intermediate
asymptotic (see chapter 4), since other solutions obtained on the basis of a
finite scale A of the absorption region go over to this solution for x > A.

For A « 1, the first approximation to eq.(3.273) by way of eq.(3.281) is

p . T+2z I 2n24e
Lot o)1 |+ e} aam

This is easily seen to be the solution of the linearised homogeneous form of
eq.(3.271). In the second approximation when we retain linear terms in the
expansion in A in eq.(3.281), we have

1 —(t—22)%/4z t ‘L'+2Z
o e e o5 )1
P _4 (3.283)

A T+ 2z t—2z\|

Po 1+ 3 e2‘(¢(______2-z|-1/2 ) — 1) + 45(——"—'221/2 ):'
Eq. (3.283) shows more clearly how eq. (3.282) follows when A4 is very small.
In the limit of x > x4, that is, z > 1, eq.(3.283) becomes the single hump
solution of the standard Burgers equation (see eq.(2.93)) so that, in this
limit, the intermediate asymptotic nature of the solution becomes more
apparent. It is also of importance to note that, under real experimental
conditions, x> x,, so that the solutions here have genuine physical

significance. Figs. 3.1 and 3.2 give the height of acoustic pulse versus time at
larger distances, and at specific finite points, respectively.
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Fig. 3.1. Excitation of acoustic waves by laser radiation: height of
acoustic pulse versus time at large distance for different source
strengths: (1) A=1.8; (2) A=0.5; (3) A« 1. (From Karabutov and
Rudenko (1976)).

L
Po

0.15

0.1

0.05

5 10 T

Fig. 3.2. Acoustic incremental pressure versus time at various point of
medium for source strength A =0.5 (from Karabutov and Rudenko
(1976)).
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On the other hand, as A — o0, €q.(3.281) has the limiting form

i 1 T—2z . T+ 2z
pmemigiiee(m o -o(57)
(3.284)

so that

oL/ot
Piim = Po I{. . (3.285)

In this case the pressure is finite for all z#0 and 170, but becomes
infinitely large when t— 0. Fig. 3.3 gives pressure versus time at z = 0.25
for various values of 4.

An equation more general than (3.271), which includes dispersion due
to the influence of discrete structures of the medium etc, is likely to
represent more realistically the surface absorption of laser radiation.

Fig. 3.3. Acoustic incremental pressure versus time at z=10.25 for
various absorbed energies (from Karabutov and Rudenko (1976)).



4 Self-similar solutions as
intermediate asymptotics
for nonlinear diffusion
equations

4.1 The nature of self-similar solutions

Mathematicians have long attempted to find exact solutions of nonlinear
partial differential equations. Similarity methods for the purpose are well-
established. Thus, for a problem involving two independent variables, space
and time co-ordinates, say, these techniques reduce the number of
independent variables to one, and the governing partial differential
equations become ordinary differential equations, albeit nonlinear. Thisis a
considerable gain, since the system of ordinary differential equations can
now be solved either in a closed analytic form or numerically. Some of the
best known similarity solutions in fluid dynamics are the Blasius (1908)
solution of Prandtl’s boundary layer equations, Taylor’s (1950) and Sedov’s
(1946) solutions for blast waves, and Guderley’s (1942) solution for
converging cylindrical shocks. Most of the early solutions were derived
using dimensional analysis, and represented quite an advance in the
understanding of nonlinear partial differential equations.

The advent of computers changed the situation considerably. Simplific-
ation accruing from the similarity form of the solution was not the most
important motivation. The questions arose — ‘In what way are the similar-
ity solutions special and unique in the totality of solutions of a given set of
partial differential equations subject to suitable initial and/or boundary
conditions? Do they play any special role? How could they be related to
more general initial/boundary value problems? The answers to these
questions led to a deeper understanding of these solutions, and to their
classification — particularly in the Soviet literature.

The identification of the similarity form of a given set of partial
differential equations is now possible in a fairly exhaustive manner by
means of the invariance properties of the partial differential equations via

98
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the method of infinitesimal or finite transformations. However, these
similarity forms have to be related to their initial and/or boundary
conditions. It 1s here that one has to carefully distinguish their type.

Before proceeding, it is worthwhile to define self-similar (or automodel)
solutions. A particular solution of a physical problem is called self-similar if
the spatial distribution of the characteristics of motion, ie., of the
dependent variables, remains similar to itself at all times during the motion.
In such circumstances, we can find time-dependent scales for all the
dependent variables and the independent (spatial) variable, such that the
dependent variables can be expressed as u; = m(t)F(x/lt)) (no summation
with respect to #). This in turn leads to the definition of universal functions
u;/myt) which depend on the similarity variable & = x/i(t) only.

One of the objectives of the present chapter is to show analytically,
through several examples of nonlinear diffusion equations, that the
similarity solutions describe ‘intermediate asymptotic behaviour of wider
classes of initial, boundary, and mixed problems; they describe the
behaviour of these solutions away from the boundaries of the region of the
independent variables. Alternatively, they represent solutions in a region
where in a sense the solution is no longer dependent on the details of the
initial and/or boundary conditions but is still far from being in a state of
equilibrium’ (Barenblatt & Zel'dovich, 1972). The solution may depend on
the initial conditions in an integral form — representing the memory of the
solution, derived from the initial conditions. Thus, as we shall see, a whole
class of solutions arising from a certain class of initial conditions evolves
asymptotically in time to the similarity solution of the given system of
partial differential equations. We shall study through examples the nature
of these initial/boundary conditions and the manner, both qualitative and
quantitative, in which solutions tend to the similarity solutions. Alterna-
tively, this may also be interpreted as a stability study of the similarity
solutions with respect to certain types of changes in the initial conditions.

The similarity solutions may be categorised as belonging, in general, to
two major classes — type I and type II. Solutions of type I are those which
can be completely characterised by dimensional analysis of the problem. The
independent variables and other dimensional parameters appearing in the
problem fully determine the similarity variable £ = Art™* £ is a non-
dimensional variable so that the constant 4 has dimensions L™ !T% For
similarity solutions of the first type, the parameter « and the magnitude of A
are obtained explicitly from the dimensional considerations of the physical
problem. For the second type, this is not the case. In fact, even the exponent
« is determined by a global study of the ordinary differential equations
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resulting from the similarity assumptions. These equations describe the
internal structure of the waves. The solution of the equations is required to
exist (in the large) subject to the boundary conditions of the problem. This
constitutes an eigenvalue problem. The spectrum for the eigenvalue may be
discrete or continuous. Further, stability considerations determine the
unique value of the exponent . The number 4 cannot be determined from
the ordinary differential equations for the similarity solution. This can be
found from the numerical solution of the entire system of partial differential
equations subject to the class of appropriate initial conditions etc. such
that the numerical solution matches the similarity solution. The matching
determines the constant 4. In this sense, the parameter A represents the
memory of the non-self-similar régime of the solution and is an integral link
between the self-similar and non-similar régimes. It is, in general, a
complicated functional of the initial conditions of the problem.

One of the best known similarity solutions of the first kind is the Taylor-
Sedov solution for blast waves. If the shock heading the blast is assumed to
be strong so that the pressure ahead of it is zero, then the two parameters
E,, the energy of the blast wave, and g,, the density of the undisturbed
medium, uniquely determine the similarity variable

.
" (Eot* /o)

Indeed, the exact solution can be written out. For diffusive equations, a
simple example is provided by the idealised problem of heat conduction in
an infinite medium due to the instantaneous supply of a finite amount of
heat E at a given point, say, x =0. Then, if ¢ is the specific heat of the
medium and k its thermal diffusivity, both assumed to be constant, one may
immediately write the similarity solution of the heat equation

<

U, =Ku,, 4.1)
as
E

u= W e x2/4m' (42)

The best-known example of similarity solutions of the second kind is the
solution for a converging cylindrical shock (Guderley, 1942). For diffusive
phenomena, we shall consider in detail the progressive wave solutions of
Fisher’s equation

u, = vy, + ku(l — u), (4.3)

a nonlinear partial differential equation of diffusion type which describes
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the propagation of a virile mutant in an infinitely long habitat, Here v and k
are positive constants, It was first studied by Fisher (1936) and by
Kolmogoroff, Petrovsky and Piscounov (1937) (KPP). The progressive
wave solutions

u=U(y—ct+a), (4.4)

with ¢ and a constants, can be rewritten as
{T*
u=U(né+clnT+a)=U, ) 5 4.5)

by a simple change of variables { =e*, T=¢"", 4 =e™“ The parameter ¢
now becomes the familiar similarity exponent which may be found by
global analysis of the ordinary differential equation resulting from eq. (4.3)
by substitution of (4.4), and the relevant boundary conditions. It turns
out that it represents a similarity solution of the second kind for which the
eigenvalue ¢ has a continuous spectrum. It may also be observed that the
above transformation brings the progressive wave solutions into a more
familiar similarity form. The similarity solutions, therefore, include travel-
ling waves, product solutions as well as stationary (time-independent)
solutions as special cases, These are candidates for intermediate asympto-
tics of certain problems. We shall, in the present chapter, have occasion to
deal with each of these kinds of solutions. Travelling solutions of eq. (4.3)
are some of the earliest examples of similarity solutions of the second kind.

In fact, the self-similar solutions of both kinds represent degenerate cases
of the complete non-self-similar problem in the sense that they arise as
limiting solutions, as all constant parameters entering the initial and
boundary conditions and having the dimensions of the independent
variables either vanish or become infinite. It is this degeneracy that is
reflected in the reduction of the number of independent variables and in the
emergence of ordinary differential equations. Thus, the similarity solutions,
per se, correspond in general to singular initial conditions in the form of
generalised functions or their combinations. The limiting process is regular
for solutions of the first kind and irregular for the solutions of the second
kind, as we shall now show. Thus, according to the n-theorem (Sedov, 1982),
a relation between n + 1 dimensional quantities a,a,,...,a,,

a=f(al?"'ﬁak’ak+la"',an) (46)

can be recast as

n=F(r,,...,%, ;) 4.7)
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where the parameters =, 7,,...,7,_, are dimensionless quantities of the
forms

a G +1
= My=—... 4.8
a...a’ at.astt” (48)
a'l
Tt”_k=_‘__ .-
apk...ark

In the above, it is assumed that the quantities a,, ..., a, have independent
dimensions, and among a,, ..., a, there are no more than k quantities with
independent dimensions. Here, a may be one of the unknown (dependent)
functions and a,,...,a, may include r, ¢t and the physical parameters of the
problem. If one of the dimensionless parameters, 7;, say, is either small or
large, the situation is idealised and a limiting process is carried out such that
; tends to zero or to infinity. If, for fixed values of all other parameters, the
function F(x,,...,n,-;) has a finite limit as &; tends to zero or infinity, we
have a regular limiting process. In this case, the parameter 7; drops out of
the problem, leaving no imprint whatever. A self-similar problem of the first
kind results and the solution can be found by purely dimensional
considerations; in short, we have a completely self-similar phenomenon. If,
on the other hand, this is not so, and instead we have either

lim 717 *F = p(my, .oy Ty s g5 e v e s pmi)
asm—»0 or m— 0, (4.9)

or

F=m((my/m )iy s i (3 i e s T 13 T gaee s o) + 7

for some m; and n; and some constants « and f, as m; and 7; — 0 (the limit
being non-zero and finite), then a seff-similar problem of the second kind
results. In this case the parameter z; does not disappear from the problem.
The self-similar solution is now determined via the solution of an
eigenvalue problem with the relevant boundary conditions. We refer to this
phenomenon as incompletely self-similar. Further details of self-similarity,
illustrated by a variety of examples, may be found in the books by
Zel'dovich and Raizer (1966) and Barenblatt (1979) (see also Newman
(1983)).

In the present chapter, we shall study several nonlinear diffusion
equations, their self-similar solutions, and the role of these solutions as
intermediate asymptotics. Some of these equations are different from those
of Burgers type, and are distinguished mainly by the absence of convective
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terms. Accordingly, they provide illuminating contrast with the Burgers
form.

4.2 Fisher’s equation

As the first example of nonlinear diffusion equations that are not of Burgers
type, we consider Fisher’s equation

u, = vu,, + ku(1 — u). 4.3)

Here v is the diffusion coefficient, k a positive multiplication factor, t is time
and y is distance. This equation describes nonlinear evolution of a
population u in a one-dimensional habitat. It was introduced by Fisher
(1936) to describe the propagation of a virile mutant in an infinitely long
habitat. It also represents, with a minor variation, a model equation for the
evolution of a neutron population in a nuclear reactor, where the domain is
obviously finite (Canosa, 1969, 1973). Eq. (4.3) describes a balance between
linear diffusion and nonlinear local multiplication and admits shock-like
solutions. However, as we shall see, this equation differs from the Burgers
equation in several important physical and mathematical aspects; this is
one reason for our choice of this equation as a representative of equations in
which there is no convective term. We shall give first a simple analysis of the
salient features and solutions of this equation.
If we introduce the non-dimensional time and distance

t=kt, x=(k/v)'/?y, (4.10)
eq. (4.3) becomes
u, = u,, +u(l — u). 4.11)

The habitat can support only a certain maximum population # per unit
length, which, for simplicity, we choose to be unity so that

O0<u(x,0)<1, —o<x<co. 4.12)

We look for all solutions of eq. (4.11) subject to (4.12) such that all the x-
derivatives of u tend to zero as x — + <0, and

lim w(x,)=1, lim u(x,6)=0, t=0. 4.13)

xX=—a X—+w®

We note that the end conditions u = 1 and u =0 are solutions of eq. (4.11).
Physically, the first condition states that the population is saturated at the
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left end while the second condition denotes zero occupancy of the habitat at
the right end. KPP proved that, for all initial conditions of the type (4.12),
the solution of eq. (4.11) s also bounded for all time with the same bounds as
in (4.12) so that

O0<ux )<, —w<x<ow, t>0.

Furthermore, it was proved that for the initial conditions

1, x<0,
u(x,O)—{O, DO,} (4.14)
or
1, x <a,
ux,0)=< f(x), a<x<b, (4.15)
0, x>b,

where the function f(x) is arbitrary, and a and b are finite numbers, the
initial solution evolves, as t — co, into a shock-like travelling wave which
satisfies the conditions (4.13), and propagates to the right with the
‘minimum allowable’ characteristic speed c,,,;, = 2. Since the basic eq. (4.11)
is invariant under the transformation x — — x, it suffices to consider right-
moving waves only.

First we prove, by phase plane analysis, that eq.(4.11) admits travelling
wave solutions

u(x, ty=u(x — ct + d) = u(s), 4.16)

¢ denoting the speed of propagation of the wave. The constant d (cf.
eqs. (4.4)—(4.5)) will not play any role in the present discussion, so it may be
chosen to be zero. The solution form (4.16) of eq.(4.11) with boundary
conditions (4.13) constitutes a self-similar solution of the second kind with
an infinity of possible wave speeds ¢ = 2, as we now show. If we substitute
(4.16) into eq. (4.11) and take cognizance of the boundary conditions (4.13),
we have

d’u  du 5

R i —u?= 4.17
457 +cds +u—u=0, (4.17a)
w—oo)=1, u+0)=0. (4.17b)

Eqs. (4.17) define a nonlinear eigenvalue problem in an infinite domain,
with the wave speed c as the eigenvalue. In the phase plane (du/ds, u) = (y, v),
eq.(4.17a) becomes

dy u’—u-cy

4.18
i ’ (4.18)
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with singular points (0, 0) and (0, 1). Its linearised form is

d_y_—-u—cy

o 5 (4.19)

In the notation of Birkhoff and Rota (1978, p. 124), the discriminant
relevant to eq. (4.19) is A = ¢ — 4, and g is positive, being equal to 1. Since u
is always positive, being the population of the habitat, we would want the
point (0,0) to be a stable node. A centre or focus would require the
trajectory to enclose the origin and would lead to u assuming negative
values. The discriminant A should, therefore, be positive so that ¢ = 2. We
have thus a continuous infinite spectrum of eigenvalues for the problem
(4.17). The other singular point (1,0) is easily seen to be a saddle point and
the trajectories for values of ¢ = 2 are as shown in fig. 4.1. This result was
proved by both KPP and Fisher.

Since ¢ is always greater than 2, ¢ = 1/c? turns out to be a convenient
small parameter to solve eq.(4.18) by a perturbation method. If we
introduce a new dependent variable y = ¢y, eq.(4.18) becomes

dy u?—u—y

™ —}_}—— (4.20)
This appears to be a singular first order nonlinear ordinary differential
equation, since ¢ multiplies the highest order derivative, but a straightfor-
ward perturbation expansion,

Flu, €) = golu) + €9, (u) + £2g,(u) + -+, (4.21)

L) W
TN

Fig. 4.1. Phase portrait of eq. (4.18):(0,0) is a node and (1, 0) is a saddle

point for ¢ = 2. The integral curve joins these critical points. (From
Canosa (1973))

0.0
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when substituted into eq.(4.20) gives
o= u? —u,
g1 = —9oYos (4.22)
g2 = —4god1 — 9od1, €IC.

The solution passing through the singular points # = 0 and u = 1 comes out
through mere substitutions; there is no need to solve the differential
equations of various orders. Moreover, the boundary conditions are
satisfied by terms of each order, as may easily be checked by inspection. The
solution is

Wu, &) = eV4u? — u) — 3*(2u® — 3u* + u)

+ 285/2(5114 —10u? + 6u? — u) + 0(87/2)_ (423)

This ‘singular’ perturbation problem presents quite a contrast with the
problems we have studied in chapter 3. The series (4.23) is an accurate
asymptotic series as ¢ — 0(c?— o0). It is also a good approximation even
when & = ¢~ 2 = 0.25, corresponding to the slowest wave.

The solution (4.23) enables us to obtain a relation between shock wave
thickness and its speed. The wave front is steepest at the point of inflexion,
d?y/ds? =0, ie., y(dy/du)=0. Assuming that u=7%+aqe at this point,
substituting into dy/du = O and using eq. (4.18), we get a = — . Substitution
into eq.(4.23) then gives the coordinates of the point of inflexion as

d
(u,y)= (u,%) =34 —¢/4, — (1 — &%/4) /4c). (4.24)
If the steepness S of the wave profile is defined as the magnitude of the slope
at its point of inflexion, then du/ds from (4.24) gives, to an error O(¢2),

1
S= (4.25)

Further, if L denotes the thickness of the profile whose total height is unity,
it 1s easily checked geometrically that

or

(4.26)

This establishes an interesting result, namely, that the propagation speed of
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the wave is linearly proportional to its thickness; the time L/c for all the
waves to pass a stationary observer is constant. In contrast to these results,
the self-propagating shock governed by the Burgers equation has a unique
speed provided by a conservation law and the end conditions. It is
independent of the structure effected by the viscous diffusion; its thickness
depends on its strength or speed in a much more complicated way
(cf. eq. (2.87)). Besides, as we noted in chapter 2, the shock-like solution of
Burgers equation is a self-similar solution of the first kind.

Before concluding the analysis in the phase plane, we note a curious
relation between steady state solutions of the Korteweg—-deVries—Burgers
equation

h + hh, +h,_, = 6h_,. 4.27)

(Johnson, 1970, 1972), and those of travelling waves of Fisher’s equation. In
eq.(4.27), d is the coefficient of viscous damping. Introducing the variables

ATy =Ty, T<i—2hat o vk (4.28)
_hw s —(z/hw)llza = %o .
into eq.(4.27), we get
dv dv dv  d%

2 1/2
"‘5(H) |

(Here h, is a constant). An integration of eq.(4.29) and the use of
undisturbed upstream and downstream boundary conditions, v—0,
T-ow,v>1,T—> — 0, give

d%v dv

(F + U(U - 1) = Jﬁ. (4.30)
If we further change the variables according to

s=—T, u=1-—y,

we get precisely eq. (4.17a) with ¢ = ¢. The KPP-Fisher conditions =c¢ > 2
leads to the shock-like profiles of Johnson, which are monotonic both
upstream and downstream. For ¢ < 2, steady solutions of eq.(4.27) are
shocks which are oscillatory and damped downstream, and monotonic
upstream. Johnson (1970) also carried out a perturbation analysis to
confirm these results obtained by phase plane analysis and numerical
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integration. Zakharov and Korobeinikov (1980) have considered the
invariant solutions of the nonplanar Korteweg—deVries—Burgers equation
m, L4

U, + YU, +

2 — Uy + Buxxx =0

where j =0, 1, 2 for plane, cylindrical and spherical symmetry, respectively,
and m,y, u and B are constants. In several sub-cases corresponding toj= 1,
j =2, and for zero or non-zero values of y, ¢ and B, the form of the solution
was identified. Reference may be made to their original paper for physical
applications of this generalised Korteweg—deVries—Burgers equation.

We now give the solution of egs. (4.17) in the physical plane. Introducing
the variable z =s/c in eq. (4.17a) and using again the small parameter
&= 1/c?, we have the boundary value problem

d?u  du 5
- _y? = 4.31
sdzz +dz +u—ut=90, ( )
w—o0)=1, u(+ o0)=0. (4.32)

A regular perturbation series
u(z; €)= ug(z) + eu (z) + - - (4.33)

isassumed and substituted into eq. (4.31). The coefficients of various powers
of ¢ are equated to zero to get

Uy + Uy — uz =0, (4.34)
uy + (1 — 2ug)u, = —ug,etc. (4.35)

If we choose the origin of z to be the point of inflexion of the profile, we
have the initial conditions for u; (following) from eq. (4.24) as

ug(0) =14, u,(0)= —¢,etc. (4.36a,b)
Egs. (4.34)—(4.35) subject to (4.36a,b), respectively, can be solved. The

solution to O(¢?) is

u(s; ) =

TroF
es/c 4 es/c

Canosa (1973) has compared the accuracy of this second order perturbation
solution with the numerical solution of Fisher (1936) and the agreement is
excellent over the entire profile thickness even for the smallest wave speed
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¢ =2,e=1. The problem (4.31)-(4.32) is not really singular because, in the
limit e —»0,u— 0 or 1 and du/dz— 0, eq.(4.31) has a uniform limit and the
regular perturbation procedure gives an accurate solution in the entire
domain. The solution (4.37) shows that the relaxation length or e-folding
distance for the wave is ¢. Comparing this with eq.(4.26), we find that the
profile thickness is four times the e-folding distance.

Since this solution represents an intermediate asymptotic (as KPP have
proved analytically and Gazdag and Canosa (1974) have shown numeri-
cally), it is expected that it would be stable. The stability of nonlinear
self-similar solutions has been discussed by Barenblatt (1979): a self-similar
solution of a given problem 1is stable if the solution of any perturbed
problem with sufficiently small perturbations can be represented in the
form of a self-similar solution corresponding to a constant parameter that
has, generally speaking, changed from its initial value, plus some additional
term whose ratio to the unperturbed solution tends to zero as ¢t — co0. Let
U=U({),{ =x— At + A, be a self-similar solution which is perturbed at an
initial time ¢, to

u(x,te) = U(x — Aty + A) + dd(x) = U({) + d¢(x),

where & is a small parameter and ¢ is non-zero only over a finite interval.
Suppose the solution of this initial value problem, after a sufficiently long
time, becomes

u(x, ) = U({ + a) + w((, 1)
= UQ)+ aU'(Q) + w(C, ),

where w((, t) = 0 as t —» co and where a is a small quantity corresponding to
a small value of 6. In such a circumstance, the self-similar solution is stable,
and, in fact, has evolved into another self-similar solution corresponding to
a different value of A. The autonomous nonlinear equations of Fisher type,
with the boundary conditions similar to (4.13), are invariant with respect
to the two-parameter group of translational transformations

X=x+a =t+p u=u

In finding a solution of progressive type we seek a one-parameter
subgroup of this transformation group corresponding to « = A + constant
(where A = ¢ is an eigenvalue), and a solution invariant with respect to that
subgroup:

u(x', t'y = u(x,t).

‘The eigenvalues A that extract from the basic group a one-parameter family
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are determined by the condition for the existence of an invariant solution in
the large, i.e., the satisfaction of the boundary conditions by an invariant
solution of the equation.’ The progressive wave solution is thus determined
up to a constant in the phase { = x — At + A. Therefore, a definition of
stability must have the corresponding invariance, and the perturbed
solution should be allowed to tend to a solution, which is a shifted form of
the original one. This shift does not spell instability.

However, if we admit perturbations of a non-finite extent, then the
solution is not necessarily stable, as Canosa has shown for the case of
Fisher’s equation.

Now, we discuss the stability of eq.(4.11) by introducing a co-ordinate
moving with the wave, s = x — ct, so that it becomes

U, = ug + cug + u(l — u). (4.38)
Let the perturbed solution be
u(s, t) = u(s; ¢} + eu(s, t), 4.39)

where the second term represents a small disturbance on the travelling wave
with speed c¢. Substituting (4.39) in eq. (4.38), we have, to order &,

v, = vy + cvg + [1 — 2u(s; c)]v. (4.40)
We say that the solution u(s; ¢} is stable if

either lim u(s; £} = 0 or lim v(s, t) = u,(s; c). 4.41)

{— o t—

The first statement is the usual one for stability while the second implies
that

u(s, £y = u(s; c) + eus; c), 4.42)
that is, the solution becomes
u(s — 0s; t} = u(s; ¢) — dsuys; ¢) (4.43)

if —ds=¢; (4.43) represents a neighbouring travelling wave with a slight
translation away from the original wave. That ug(s; ¢), the derivative of u
with respect to s, is a (stationary) solution of eq.(4.40), is easily seen as
follows. First, we put

v(s,t) = f(s)e™ ¥ (4.44)
in eq. (4.40) to get the eigenvalue problem for f(s):

f"+ef'"+(A+1-2u)f =0, f—-0 ass— £ 0. (4.45)
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For A=0,
f(s)=uds;c), (4.46)

as is easily checked by differentiating eq.(4.38) with respect to s and
setting f = u(s;c). If the perturbation v(s, ) is of finite extent, say, over
— L <x< L, the eigenvalue problem (4.45) in terms of a new variable,
y(s) = e*/2 f(s), becomes

V' +[A—q()]y=0, (£L)=0, (4.47)

where
2

qls) = % —(1 = 26) 2 2u(s;¢) > O. (4.48)

The last inequality follows from ¢ being greater than or equal to 2. From
standard results on eigenvalue problems (Birkhoff & Rota, 1978, p. 281) we
conclude that all eigenvalues A for (4.47) are real and positive and hence all
perturbations of the wave having a finite extent decay exponentially with
time.

However, consider an initial perturbation of the form

ev(s, 0) = u(s; ¢ + o¢) — u(s; ¢), (4.49)

leading to the evolution of u(s;c + dc), a neighbouring travelling wave
moving with a velocity dc in the frame of reference in which u(s;c) is
stationary. Then the solution euv(s, t) of eq. (4.40) with (4.49) as the initial
condition is given by

ev(s, t) = u(s — (dcht; ¢ + 6¢) — u(s; ¢)
= u(s; ¢ + 8¢)— ufs; ¢ + éc)(dc)t — u(s; c)
= u(s; €) + uls; )oc — uds; c + dc)(oc)t — u(s; c)
= (B¢)(ufs; 0) — tuys; ), (4.50)

where a suffix denotes a partial derivative and terms of O(dc)? etc. are
ignored. A direct substitution of (4.50) into eq. (4.40) confirms that gu(s; ¢)
satisfies this equation. Eq. (4.50) means that, relative to an observer moving
with the wave of velocity c, the faster of the two waves will move away from
the other a distance which is linearly proportional to the time elapsed since
the instant of the perturbation. Canosa has concluded that, in this sense, all
travelling waves of Fisher’s equation are unstable (cf. however Barenblatt
(1979)). He has also demonstrated that ‘superspeed’ waves with ¢ >2 do
not necessarily evolve into the minimum speed wave (¢ = 2) when subjected
to arbitrary perturbations of infinite extent (see Hagstrom and Keller
(1986)).
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To supplement this analysis, Gazdag and Canosa (1974) have solved
Fisher’s equation numerically, using a pseudo-spectral approach for an
accurate discretisation of the spatial derivatives (see sec. 5.5). They come to
the following conclusions. (1) For a variety of initial conditions (including a
step function and a wave with local perturbation), the solution evolves into
the travelling wave of minimal speed ¢ = 2. (2) For an initial super-speed
¢ > 2, the evolution depends on the termination of the right hand tail of the
wave, This is a necessary concomitant of their numerical method. Such
truncation is physically plausible because the role of long distance dispersal
in the spread of the genes is negligible. (3) Local perturbations are quickly
smoothed even for superspeed waves. (4) From an initial distribution
localised in space, two identical waves of minimum speed evolve, one
propagating to the right and the other to the left.

Here, we may refer to the work of Larsen (1978) who has found upper and
lower bounds for the solutions to the equations of Fisher type. These
equations generalise eq. (4.11) so that u(1 — u) is replaced by a function F(u)
possessing similar qualitative properties. Larsen has also considered the
time-asymptotic (or intermediate asymptotic) convergence of transient
solutions to travelling wave solutions, noting in particular the crucial
dependence of long-time behaviour of the asymptotics on the manner of
decay of the initial data at infinity.

We now discuss an exact solution of eq. (4.17) for a particular value of the
wave speed ¢, and its relation to Painlevé transcendents (Ablowitz &
Zeppetella, 1979). These functions are solutions of second order nonlinear
differential equations whose only movable singularities are poles in the
complex plane (no moving branch points or essential singularities). They
were first classified by Painlevé and have been reviewed succinctly by Ince
(1956). If we assume a singular solution of the type

u(s) ~ k(s — s59)™* 4.51)

for eq. (4.17a) where a > 0, then the most singular contribution comes from
d?u/ds* and u* terms and these terms balance if « = 2 and k = 6. Ignoring
the translation constant s, corresponding to the movability of the pole, we
seek a Laurent series solution

uis)=6/s>+a_,/s+ag+a;s+--. (4.52)

Substitution of (4.52) in eq. (4.17a) determines a_,, a4,a,,a, and ay
uniquely as functions of c. However, the equation for a, has

100/ c\? 720(/c\®
Oa4+'z-0‘(g) ——8_(5) =0. (4.53)
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For this equation to be satisfied, either ¢ =0 or ¢ = + 5/,/6 ~ + 2.04. The
case ¢ = 0 refers to stationary solutions, and is, in any case, integrable in
closed form in terms of elliptic functions. The case ¢ = 5/,/6 belongs to the
range of wave speeds discussed earlier. The solution in the neighbourhood
of the origin, which, as we noted earlier, is a stable node, has the form
(Lefschetz, 1977)

u(s)= Y a,,emi i, (4.54)

mn20
m+nzl

Substitution of (4.54) into eq.(4.17a) shows that, for ¢=5/./6,4, =
—2/,/6 and A, = — 3/,/6 whence eq. (4.54) assumes the simpler form

u(s) = io: a,e” "8 (4.55)

n=2

where a, satisfy the recurrence relation

4= [%”‘_ﬂ - S ag,., n>4 (4.56)

i=2

for arbitrary a, and a;. Since the range of s is — o0 <5< co0, and the
solution is required to be positive in the entire range including positive
values of s, it follows that a, > 0. Choosing a, = a® and a; = a>b, leads to
a,=a"b, in (4.56), where b, =1 and

n—2
63 bb,_;
i=2

bn = m, n ? 4. (457)

The solution (4.54) becomes
n(—s+./6Ina)
VO

Thus, ais merely a translation parameter and may be conveniently set equal
to 1 without loss of generality. The free parameter b, identifies different
trajectories moving into the node. The particular choice by = — 2 gives
bs = 3 and, by induction from eq.(4.57), b, = (— 1)"(n — 1). We are thus led
to the compact form

(4.58)

u= nZZ a"b,e” "6 = "ZZ b, exp

X 1
- 1y _ —ns//6 = . "
u(s) "Z:z( 1y(n—1)e P (4.59)
This solution satisfies the boundary conditions u( — c0) =1 and u(c0) =0
and decreases monotonically. Other choices of b; lead to other such

solutions. Ablowitz and Zeppetella have further shown that the



114 Self-similar solutions as intermediate asymptotics

transformation
u(s) = e*w(z),
z=ogg " E+2A0s (4.60)
converts eq.(4.17a) into
W' = 6w? (4.61)
for
Ay=—2/\/6, c=5//6and a=1, (4.62)

with solution w= P(z —k;0,g,). Here, P(s;g,,95) is the Weierstrass P
function with invariants g, and g, (Davis, 1962). In general, for ¢ = 5/,/6,
eq. (4.17a) can be transformed into one of the 50 Painlevé type enumerated
in Ince (1956). It is conjectured (see Ablowitz et al. (1980)) that nonlinear
dispersive equations amenable to the inverse scattering method are all
connected to Painlevé-type equations by appropriate similarity
transformations.

Abdelkader (1982) has extended the above results to a generalised
Fisher’s equation. The travelling waves are governed by

uw+cw+u—u"=0, 1<n<oo. (4.63)
Abdelkader has shown that for

c=n+3)/2n+2)'? 2<c<w,

the solution is expressible in terms of hyperelliptic integrals or, in some
particular cases, elliptic integrals (see also Rosenau (1982) for a related
equation describing a thermal wave in a reacting medium).

Finally, we refer to the work of Kametaka (1976) who has extended the
results of KPP to an equation which generalises eq. (4.11) such that a
function f(u) with suitable properties replaces u(1 — u). Kametaka gives
existence results for travelling waves, and stability theory for time-
dependent as well as travelling wave solutions. His results are set in the
context of earlier work of KPP.

4.3 A nonlinear heat equation

Now we study another nonlinear diffusion equation

d
% = a—;[D(u)ux] , (4.64)
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which appears in a wide variety of physical applications, and has interesting
analytic features. It coincides with the standard heat equation for D(u) = 1,
which, under appropriate circumstances, is a good model for heat
conduction in the absence of relaxation effects. However, when temperature
variations are large, one must take into account a certain dependence of D
on temperature. Eq. (4.64) has a rich history. The mathematics of diffusion by
Crank (1975) devotes considerable attention to this equation; other texts
which deal with this equation are Ames (1965) and Luikov (1966). If the
nonlinear diffusion coefficient D(u) = nu"~ ! is such that 0 < n < 1, D(u) —» o
as u — + 0, one refers to the phenomenon as fast diffusion, while, for n > 1,
Du)—0 as u— +0 and the diffusion is called slow. While in heat
conduction we generally deal with slow diffusion, there are circumstances in
plasma physics (Bertsch, 1982) when, for example, n=1% so that the
diffusion is fast.

A typical problem relevant to eq. (4.64) is an initial boundary value
problem in a semi-infinite domain initially at a temperature (or con-
centration) u, when it is suddenly changed to u, at the left end boundary,
say x =0, and then held at that value thereafter. Another type of boundary
condition consists of prescription of flux at x = 0. These formulations of the
problem may be amenable to similarity form, so that the analysis becomes
relatively simple. One may also pose a pure initial value problem for
eq.(4.64) by prescribing u(x, 0) initially with suitable behaviour at x — + co.
An interesting study of nonlinear diffusion equations of the type

Ou 0 .4

— l—l._(x

- n P
6t ax u ux)’ u /0

is due to Grundy (1979). Here, 4 is an index equal, in turn, to 1,2 or 3 for
plane, cylindrical and spherical geometries. Grundy considered the similar-
ity solutions of this equation. He reduced the second order non-
autonomous equation to a certain system of two first order equations,
following an earlier work of Jones (1953). One of the members of the first
order system is of the form

dY _ F(X,Y)
dX ~ G(X,Y)

This reduction enables a study in the phase plane and a thorough
discussion of the existence and uniqueness of all the solutions of the
similarity type. Grundy has related his study to several previous investig-
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ations. We mention here another generalisation of eq. (4.64), namely

L aix[n(u)g—ﬂ + 0,
a nonlinear heat equation with a source term. Invariant solutions of this
equation were found by Dorodnitsyn (1982).

Before we take up the study of initial and/or boundary value problems
for eq. (4.64), we subject it to certain transformations in order to identify the
similarity variable, as well as its canonical form (Munier et al., 1981). This
analysis illuminates the structure of the equation.

Choosing D(u)=ku" in eq.(4.64), we introduce the Kirchhoff
transformation

v=f "de.
0

The resulting equation in v is

v o*v &%

i k[(n + DI+ l)axz = Ky"e+ l)ﬁ’ say. (4.65)
If we define the one-parameter continuous (multiplicative) group

v=a’,

t=afF; (4.66)

x =a’x,

where a is the parameter of the group and «, 8 and y are constants to be
determined such that eq.(4.65) is invariant under (4.66), we have

ov oo

0
PP = Kgl*t®in+ 1)a=2yl5n/(n+1)
B a 7 FrER (4.67)
For invariance of eq.(4.65), we require that
o—B=oa+ ? Ja-2 (4.68
n+1 a 68)

Since, from (4.66),

NOS AN
“‘(5) =(?) =(xf) ’ %69

the invariants of the group are

v v X
"= = T and  C=—p=

X
RS (4.70)
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Accordingly, eq. (4.65) (with D(u) = ku" in eq. (4.64)) admits the similarity
form
D= talﬁf(x/t)’/ﬂ)
— fin+ 1)(2(0—1)/nf(xt—w)’ @.71)

where @ =1y/B. Here we have used the condition (4.68). Substituting
(4.71) into eq. (4.65), we get

n+1
n

Ro—1)f —wlf =Kfre+b e 4.72)

By choosing w = 1/(n + 2), this equation can be integrated once to give
fl — "'koéfl/(’“- 1) +A,

n+1

°"Kin+2) @7

where A is a constant. The only case for which we have an explicit analytic
solution for f corresponds to A =0. In this case, we have

min+1) _ n kéz k 4.74
f —_n+1 07"" 1 ( )

where k, is an arbitrary constant. The solution for v becomes

1 27 (n+ 1)/n
U=‘amf(t_$§)=[klf_"/("+2)_§ n kox_:l ’ (475)

n+1 "t
leading to
1 n x2 i/n
—_ 1/(n+1) —nfin+2) _ _ _
u (n+1) I:klt 2n+1k0t]
or
- 1 n 'uxz 1/n
=| K1 t —nfin+2) ___ - .

if an obvious translation and scaling in ¢ are allowed. In the above, K and u
are arbitrary constants. A strict similarity solution which does not decay or
grow (explicitly) with time and is a function of the similarity variable
n = x/t'/? only comes about when @ = 3; the parameter n remains arbitrary.

We next attempt to reduce eq. (4.64) to a nonlinear equation of the
simplest type, exact linearisation such as that for the Burgers equation not
being possible. For this purpose we seek Biacklund transformations such
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that u(x, ), x and ¢ go, respectively, into

- ou ou
u(£9t) - U(xs ty u9a_x,5?):

2= x( %6428, @.77
T ox’ ot 17

- ou du
t—T(x, ,u,a 6:)

An extensive treatment of Biacklund transformations may be found in the
text by Rogers and Shadwick (1982) and of Lie—-Bécklund transformations
in Anderson and Ibragimov (1979). It is again convenient to first introduce
Kirchhoff’s transformation for general D(u), namely

¢=Fu)= fu D(u)du.
0

We have, therefore,

a¢ du
F( )— =D,
dp ., Ou Ou
= = Pz =Dl (4.78)

Assuming F(u) to be a single valued function we may invert it so that

=F~(¢). (4.79)
Equation (4.64), in view of (4.78) and (4.79), becomes
¢ i SN BN
7 =Pz =FF"(@)5 7= A5 7, (4.80)
so that
A($)=F'(F (¢} (4.81)

The next step is to simplify the nonlinearity A(¢) in eq. (4.80). A hodograph
transformation is used such that the dependent and independent variables
¢ and x are interchanged:

—x, E=¢ I=t (4.82)
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Differentiating ¢ with respect to ¢ and x, we have

oF 0§op_ . opob

e " xax "

o’ (¢ o &*¢

Pre (ax) T (4.83)
Substituting (4.82) and (4.83) into eq. (4.80), we get

0P \? 0 629'5

(Exf) i A(X ) (4.84)

The nonlinearity A(¢) has been rendered innocuous. The nonlinearity now
appears as (9¢/0x)>. However, eq.(4.84) suggests an obvious trans-

formation
P\ !

z= (E) . (4.85)
We differentiate eq.(4.84) with respect to x so that

¢ 0 1

oxor x[ Al )6x 6{5/6x] (4.86)

In terms of z, this equation becomes
62 6 _ 0z

which, when expressed in terms of the variables X and {, defined according
to

dx

dX = ﬁ’ Z(f, E) = C(X, t_),
assumes the form
6(,' 625
where
a(X)=——

A()

Collecting the various transformations we have the connection between



120 Self-similar solutions as intermediate asymptotics

eqs. (4.80) and (4.87). That is, the Biacklund transformation

ux, 0| ﬁ()ﬁ,f)=a—u-,
X - X (4.89)

t =

)

= t,
changes the nonlinear heat equation

ou

2

0“u
into
o L, o[ . od

Eq.(4.91) represents a canonical form of the nonlinear heat equation
(4.64) via (4.89) in the sense that any nonlinear equation of the form (4.64) is
equivalent to eq. (4.91) with a quadratic nonlinearity in the coefficient.

In the process of reduction, we have introduced non-autonomy in
eq.(4.91) since now the right side of eq.(4.91) has A(X) multiplying the
second derivative 0%4/0%>. Munier et al. (1981) introduced further changes
of variables to convert eq.(4.88) into the form

2 3
g—': - vz% + a%. (4.92)

This is not much simpler than eq.(4.88) or eq.(4.91). However, it enabled
them to establish homology between nonlinear equations of the type (4.64)
with different coefficients D(u), say, D,(u) = u"* and D,(u) = u">, n, orn, # 2.
Such equations can be changed into the form (4.92) with different values of
the parameter «. The homologous equations have solutions which are
deducible from each other by simple transformations.

4.4 Asymptotic behaviour of solutions — intermediate
asymptotics

Much later than the work of KPP referred to in sec. 4.2, Serrin (1967)
proved that the similarity solutions are limiting forms of more general
solutions of systems of partial differential equations. He considered
specifically the system of Prandtl’s boundary layer equations and showed
that the solutions subject to a considerable class of boundary conditions at
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the leading edge of the plate converge to the Falkner—Skan similarity
solutions at large distances downstream. Subsequently, similar results were
proved for the nonlinear heat equation (4.64) by Peletier (1970) and
Kamenomostskaya (1973, 1978).

We now briefly outline the procedure. First, the existence and uniqueness
of the similarity solutions, governed by nonlinear ordinary differential
equations, subject to physically motivated boundary conditions, are
proved. The methods employed are often constructive. The solutions of the
partial differential equations, with the same boundary conditions and with
the asymptotic behaviour of their initial conditions the same as for the
similarity solutions, are analysed, and their existence and uniqueness
proved. Then it is proved that the solutions of the initial boundary value
problems of the partial differential equations tend, as time tends to infinity,
to the similarity solutions, pointwise and/or in the integral sense. The
precise quantitative manner in which this convergence comes about is
found as a consequence of the analysis.

In the following, we shall assume the existence and uniqueness of the
solutions of the relevant ordinary and partial differential equations, and
merely refer to the pertinent literature for further details.

Peletier (1970, 1971) has considered the asymptotic behaviour of the
solution of the Cauchy—Dirichlet (initial boundary value) problem for
eq. (4.64) in the half-strip H; = (0, c0) x [0, T'] with initial condition u(x, 0)
= uy(x),0 < x < 00, and boundary condition w(0, ) = U,, t > 0. The initial
function uy(x) is required to satisfy the compatibility conditions u4(0) = U,
and [D(ug)ug] =0 at x=0 and uy— B, (a constant) as x— co. The
existence and uniqueness results for the similarity solution to this problem
were obtained by Shampine (1973) and Atkinson and Peletier (1974), and
the corresponding results for the partial differential equations were proved
by Oleinik and Kruzhkov (1961). The smoothness requirements on u(x, t)
and uy(x) for the existence proof are assumed to be met, and the coefficient
D(u) is also assumed to be sufficiently smooth and positive for all u > 0.

For the purpose of illustration, we take up here the pure (Cauchy) initial
value problem for eq.(4.64) (Van Duyn & Peletier, 1977a):

t, = (D)), (4.64)

u(x,0) = uy(x), — 00 < x < 00, (4.93)

in the strip Sy = (— 00, o0) x (0, T) where T is some fixed positive number;
the function uy(x)— A, as x — — o0, and u4(x)— B, as x —» 0, A, and B,

being fixed but arbitrary real numbers. The initial function uy(x) and the
diffusion coefficient D(1) > A > 0 are chosen to belong to C***(R), where R
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denotes the real line and 0 <« <1 so that the solution exists and is
sufficiently smooth, that is, it belongs to C>*%S8;). A is a real positive
number.

Eq. (4.64) can be transformed into an ordinary differential equation in the
similarity variable
X
T (t+ D2

so that u(x, £) = f(n) satisfies
[DUNSfT +4nf =0, (4.94)

wherein the prime denotes differentiation with respect to 5. In order to
compare the solution of the Cauchy problem for eq. (4.64) with that of
€q. (4.94) we impose the boundary conditions

f(—o0)=A4, f(+x}=B (4.95)

Van Duyn and Peletier (1977b) proved that the problem (4.94)-(4.95) has a
unique solution f(n; 4, B) which is monotonically decreasing if A > B and
monotonically increasing if A < B.

First we examine the behaviour of the similarity solutions as n — c0. To

"

be specific, we assume that f decreases monotonically from A aty = — oo to
B at n= co0. If we set p(n) = D(f)f’, then eq.(4.94) becomes
P +3n[D(f)1"'p=0. (4.96)

Since D(f) >0 for all f, and f — B as n— oo, the integral [§|[D(f)]~" —
[D(B)]~!|dn exists; therefore, by eq.(4.96), p=0(e~"/*P®) as n— o,
and hence, by another integration,

f(m;A, B)— B = O(erfc{n/2[D(B)]"/*}) as n— co. (4.97)
Similarly,

f(n;A, By— A = O(erfc{ — n/2[D(4)]1'*}) as n——co. (4.98)

As stated earlier, we impose the same behaviour on the initial function
uy(x) by putting n = x in (4.97)—(4.98):

ug(x) — Ag = Olerfc{ — x/2[D(44)]1/?}) as x— — oo,
(4.99a, b)
Ug(x) — By = Oferfc{x/2[D(By)]1'/*}) as x— + o,

where A, and B, are some specific values of the constants 4 and B.

Lemma 1. Let u(x,f) be a solution of eqs.(4.64) and (4.93), with uy(x)
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satisfying (4.99). Then there exist numbers 4%, 47, B*, B~ such that

max { f(n; Ao, B7).f(1; A, Bo)} < u(x, t) < min { f(s; A, B*),
fn; A%, By)} forxeR andt > 0. (4.100)

Proof. By (4.97),
f(x; A, B)— B=Oferfc{x/2[D(B)]*/*}) asx— co;

when B = B, u,(x) and f(x; A, B,) have the same asymptotic behaviour as
x — o0. Moreover, f(x;A4, By)— A and uy(x)— A, as x - — c0. Because of
the monotonic behaviour of f, there exists a constant A* > 4, such that

us(x) < f(x;4*, By) for all xeR. (4.101a)
Similarly there exists a constant A~ < 4, such that
us(x) =2 f(x;A,B,) for all xeR. (4.101b)

It now follows from the maximum principle (Protter & Weinberger, 1967)
that
flx(t+1)"Y% A7, By <ulx, ) < f(x(t + 1) Y% 4%, B,) in Sy.
(4.102)

Here we have kept the constant B, = lim u,(x) fixed. Using exactly the

xX—

same argument, we can prove that
FOdt + )7V A0, BT) < i(x, £) < f(x(t + 1)" Y% Ay, BY) inSy.
(4.103)

Combining (4.102) and (4.103) we get (4.100). We note that T s
arbitrary. The inequality (4.100) provides preliminary bounds for the
solution u(x, t) in terms of similarity solutions. Now we proceed to obtain
an estimate for the pointwise convergence of the solution u(x,t) to the
similarity solution.

Proposition. Let A, > B, and let there exist a positive number a such that

f(x+a;Aq, By) Suy(x) < f(x —a; Ag, Bg) for all xeR.

Then the solution u(x,?) of the initial value problem (4.64) and (4.93)
converges towards f(x(t + 1)~ "/?) as t - o0 and

suplu(x, ) — f(x(t + )~V K@+ 1)71, 120,
xeR

where K = 2a max {f'(n);neR}.
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Proof. Tt follows from the hypothesis and the maximum principle that
fx+allt +117 ") < ulx, ) < f([x —allt+1]1713)  (4.104)
in §(T). Since

X xX+a
——n 12/l ——=5 4.105
f([t+1]”2) f([z+1]1/2) ( )
by the monotonicity of f (1), reversing the sign in (4.105) and adding to the

right inequality in (4.104) etc., we have

lu(x, t) — f()| < f([x—alle+ 1173 — f([x + al[t + 1173
<2a(t+1)" " max {f'(nN;neR} =Kt +1)"'"? inS§;.
(4.106)

Since the constant K 1s independent of T, the result follows.

Integral estimate

We now introduce 77 and 7 = In (1 + ¢) as the new independent variables in
place of x and t. At t =0, n = x and 1 = 0, so that the initial value problem
(4.64) and (4.93) now becomes

u, = [D(uyu,]1, + 3nu,, (4.107)
in the strip ( — o0, c0) x (0, In[1 + T7]), which may again be called S, and

u(n, 0) =uyln), — oo <n<oo. (4.108)
By Lemma 1, for any 7€[0,In(1 + T)],

lu—f|=1(t— Bo) = (f — Bo)| < (= By) +(f — Bo)

< [min{f(n; Ao, B*),f(n; A*, Bo)} — Bol + (f — By).
(4.109)

Therefore, u — f is bounded and, in view of (4.97),
u(n, 7) — f ) = Olerfc{n/2[D(Bo)]"?}) asn—oco;  (4.110a)

similarly

u(n,t)— f(n) = O(erfc{ — n/2[D(40)]"?}) asn— —
(4.110b)
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for any 7¢[0,In(1 + T)]. Now, we let

é(c) = f " Lutn, 1) £ dn. @.111)

In view of (4.110a, b), ¢(1) is well-defined.

Lemma 2. The function ¢(z) is given by
d(1)=p(0)e""%, 0<1< 0. (4.112)

Proof. Subtracting eq.(4.94) from eq. (4.107) and integrating with respect
to n from — oo to + oo, we have

d
d_(f = [D(upu, — D(N)f,12 0 + 30— )12, —2¢(1).  (4.113)
From (4.110a,b) and the asymptotic behaviour of erfc, it is easily
verified that n(u — f)— 0 as {n|— co. Since f(n) tends to constant limits as
|| — oo, it follows that f, =0 as |5| — co. Again, (4.110a,b) and the fact
that uy(n) — 0 as [y| — co imply, by a standard argument, that u, tends to
zero as || — co. Further, u(and D(u)) remain bounded; therefore, the first
term on the right hand side of eq.(4.113) also vanishes. We arrive at the
equation

d
d—f= —3o(1), 0<1<T, 4.114)
which, on integration, gives eq.(4.112) if we allow T to tend to infinity.

Now we prove the main theorem.

Theorem 1. Letu(x, t) be a solution of the problem (4.64) and (4.93), where
u, satisfies the asymptotic conditions (4.99a, b), and let ii(y, t) = u(x, t). Then
there exists a constant x, which depends only on u, and f, such that

r ld(n, ) — f(Idn < wl(e +1)" Y2, >0, (4.1195)

—

Proof. First we obtain an estimate for |u — f|. To that end, we construct
two functions ug () and ug (n) such that they satisfy the same conditions as
uq(n) and are chosen such that

ug (n) = max {ugn),f()}, uo (n) <min {ug(n).f(m)};
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besides, (ug ), and (ug ),—0 as |n|— co. Let u™(n,7) and u~(y,7) be the
solutions of eq.(4.107) assuming the initial conditions ug () and ug (1),
respectively. Then, by the maximum principle,

u*(n,7) 2 max {u(n, 1),f (1)},
u”(»,7) < min {u(n,7),f(n)}.

Therefore, when u = f,

u—fl=u~f<u*~f

and, when u < f,

lu—fl=f—-u<f—u".
Hence
lu—fI<@™ = fN)+(f—u") (4.116)

and

r |u—f|dn<f (u+—f)dn+r (f=u)dn

Se"’zj [ug (1) — ug (m)1dn = x(t + 1)~ 1/2, (4.117)
The final step foliows from the application of Lemma 2 to the solutions u™
and u~. The constant x depends only on u(n) and f(n), and the integral it
represents is well-defined due to the assumed asymptotic nature of ug (1)
and ug (1)

Van Duyn and Peletier (1977a) have carried out further analysis to derive
an improved regularity result in order to obtain a better rate of convergence
for the integral estimate than (4.115).

Bertsch (1982) has extended the results of Van Duyn and Peletier (1977a)
to the case D(u)=mu™',0<m < 1. This case pertains to fast diffusion
which occurs in plasma physics (see Bertsch for a physical discussion).
While Bertsch has studied the Dirichlet problem in the semi-infinite domain
Sr={x1t0<x<,0<t<T}, T>0, Berryman (1977) and Berryman
and Holland (1978) have discussed it in a finite domain for which separable
solutions exist and serve as intermediate asymptotics. This problem is
treated in the following section (see also Kamin and Rosenau (1981) and
Rosenau and Kamin (1982) for similar results for thermal waves in
inhomogeneous media).
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4.5 A nonlinear diffusion problem arising in plasma
physics

We generalise the nonlinear diffusion equation of sec. 4.3 and write

F(x)%:%[D(n)g—z:', 0<x<1, (4.118)
so that we have nonlinear diffusion coupled with a (space-dependent)
geometrical factor F(x). This equation describes particle diffusion across
magnetic fields in a toroidal octupole plasma containment device (Drake
et al., 1977). Here nis the particle density, x is the spatial distance and t is the
time, The geometrical factor F(x) is a positive function describing the
octupole geometry. The diffusion coefficient D(n) is a nonlinear function of
density, and, in the experiments of Drake et al., it was found to follow
Okuda-Dawson diffusion (Okuda & Dawson, 1972)

D(nyocn™ 172, (4.119)

In other density and field strength regions it would be given more generally

by
D(n) c n’, (4.120)

with 6 = — 1. In their experiment, Drake et al. observed the remarkable
feature that, after a few milliseconds, the density profile evolved into a
fixed shape, which then decayed in time. They referred to this time-
independent (factor of the) density profile as the normal mode. This
behaviour is suggestive of a separable solution of the relevant nonlinear
equation (4.118) with suitable initial conditions. The experimental results
on the toroidal octupole are well approximated by assuming null
conditions on the boundaries:

n(0,5)=n(1,t)=0. (4.121)

The experimental results as well as the numerical studies (Berryman,
1977) indicated that the separable solution evolves from arbitrary initial
data with boundary conditions (4.121) in a finite time. In this sense, the
separable solution forms an intermediate asymptotic (Berryman, 1977,
Berryman & Holland, 1978). With

Dmy=(1+d&n°, 6>—1, (4.122)

(the case 6 = —1 would give a similarity solution requiring different
boundary conditions), it is more convenient to introduce the pseudo-
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density

mx,)=n'*% 5> —1, (4.123)
so that eq.(4.118) becomes

F(x)(m*~ "), = m,,, (4.124)
where

q=%$§ (4.125)

For ¢ > — |, the function m(x, t) has the same behaviour as n(x, t) so that
0 < m(x,t) < oo when 0 <n(x,t) < co and, furthermore, m =0 when n=0.
The boundary conditions on m are

m(0,) = m(1,) = 0. (4.126)

The geometrical factor F(x)is positive in the cases of physical interest and
may have an integrable singularity at an interior point x = x,, say, of the
square root or logarithmic type. Thus F(x) satisfies

Fix)>0 for0<x<1, (4.127)

1
f F(x)dx < o0. (4.128)
o

Moreover, it is consistent and convenient to have F'(x) = 0 for x < x, and
F(x)<0for x> x,

Eq.(4.124), which both is nonlinear and has a variable coefficient, is
not solvable in a closed form. Therefore, first the analytic behaviour of the
solution of eqgs. (4.124)—(4.126) with F(x)=1 will be studied, and then the
influence of F(x), both quantitative and qualitative, will be determined
using analytic and numerical methods. In particular, the case 6 = — 1,
corresponding to g = 3, is of major physical interest and will be carefully

analysed.
Taking F(x) =1, eq.(4.124) becomes

(mi~h, = my,. (4.129)

This equation has a quite general similarity solution (Ames, 1965).
Restricting our consideration to the separable solution, we set

m = T(t)S(x). (4.130)
Substituting (4.130) into eq. (4.129) we have
(g—DTT 3T =8"8'"9= -}, (4.131)
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where A is the separation constant. The solution for T is easily found to be

Mg —2 14a=2)
T=A0[1— g’_l)Ag(q—Z)z] (4.132)

where A4, is an arbitrary constant.
According to eq.(4.131), the shape function S(x) satisfies the nonlinear
ordinary differential equation

dzs
oz HAsTT =0, (4.133)

This equation is invariant under the transformation
S(x) = aSe(x), A-ldea?™ 2, (4.134)

where a is a constant. If S, is a solution of eq.(4.133) with separation
constant A= 1, then S(x)=aS,(x) is also a solution with A= 154772
Therefore we can choose a such that 0 < § < 1. We shall assume, without
any loss of generality, that such a scaling has been performed and that S lies
between 0 and 1. Multiplyingeq.(4.133) by dS/dx and integrating, we get an
implicit solution for S, namely

Ay dy N
15) = Om=gx, 0<x<s, (4.135)
where S =0 when x =0 and
24
i = (4.136)

Eq.(4.133), with homogeneous boundary conditions at x=0 and
x =1, has a solution symmetric about x =3. The integral I(S) can be
expressed in terms of the incomplete Beta function or the hyper-geometric
function as

1 11 1 1
1(S)y=-Bg| —,= | =S"4,F (—;1+—;S) 4.137
()qs(qz) Fil 1+ (4.137)
While one may find x for a given value of § between O and 1, it does not seem
possible to invert eq.(4.135) in a simple way. We may, however, use it to find

interesting relations between the various parameters of the problem. For
example, if we put S=1,x =73 in eq. (4.135), we have

1 dy .
o (T=y97 ™ ¢
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or
1
2 r(}/‘l)r(z) , (4.138)
qTz+1/9)
as may easily be verified.
Eqgs.(4.136) and (4.138) show that the eigenvalues

7 =1q0? (4.139)

become known for all admissible values of g between 1 and oo correspond-
ing to the values of & between +co and —1+0 (see eq.(4.125)).
Furthermore, the integral of the physical density’s shape function is given
by

=2I(1)=

' -1 ' 1 9%
—3 q— — q= —_
y_LS (x)dx—ZJ~ 517} (x) SdS

§a-1 4
=(2/p) f - Sq)mdS o (4.140)

The total number of particles, according to the separable solution (using
€qs. (4.123),(4.125),(4.130) and (4.140)), is

1

N(t) = f n(x, t)ydx =yT*" (1) (4.141)
(4]

for all time. It can be easily verified that, as é continuously varies between

+ oo and —1 + 0, g varies between 1 and + oo, g varies between 4 and 2, y

between 1 and 0 and A between 8 and + co, monotonically.

It is clear that, even when F(x) is unity, no explicit analytic solution of
eq. (4.118) of separable type can be found. Thus there is a need for an
accurate numerical procedure to find the solution for general F(x). A simple
iterative method was given by Berryman (1977). The equation for S(x), for
the case of general F(x), is easily found to be

— §"(x) = AF(x)S™ }(x). (4.142)

If, for eq.(4.142), we set up an iterative process, with ith iterate S;,=ZX,
obtained by solving the linear boundary value problem

I (x) = — AF(x)SZ{

Z{0)=Z(1)=0, (4.143)

we can devise a suitable scaling so that this process converges; that is,
§;~S;_, after some i. A simple scaling is to divide Z; at each i by its
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maximum value in 0 < x < 1, so that

Six) = ZL,Z(x) (4.144)
where
()" ' = max Z{(x). (4.145)
[IES £
According to the computations carried out by Berryman, this normalis-
ation, though trivial as far as computer time is concerned, is crucial for
avoiding divergence and strong dependence on the choice of initial iterate.
Indeed, Luning and Perry (1981) have rigorously proved that this iterative
process converges for a suitable choice of the initial iterate. Berryman has
chosen the initial iterate Sy(x)}= ¢(x)=0 such that ¢ is a continuous
integrable function not identically zero.
Now, the Green’s function for eq.(3.143) (Birkhoff & Rota, 1978, p. 46) is

_ X(l - f)a X< gs
G(x, ¢{) = { Hl—x), x3& } (4.146)
The explicit solution of eq. (4.143) then is
Si(x)=i:f G(x, §)F(§)SIZ{ (§)d¢. (4.147)
0

The specific initial choice S, =4x(1 — x), satisfying the zero boundary
conditions at x = 0 and x = 1, turns out to be quite convenient, and all the
computations by Berryman (1977) and Drake and Berryman (1977), for
different values of ¢, were found to converge rapidly.

Eq.(4.147) shows that the geometrical factor F(x) can make S(x)
asymmetric if F(x) itself is. It can change the magnitude of the eigenvalue A
and hence the time decay rate of the solution, T%, since g = 24/0%. More
importantly, it can affect the stability of the separable solution if the decay
rates of the perturbations to this solution get altered substantially more
than the original decay rate.

Before studying the stability of the separable solution and its asymptotic
behaviour, we summarise the results for the numerical solutions of the
original partial differential eq.{4.124) with F(x)=1,6= —1, and initial
conditions

3
m(x,0)= > a;sin(l + 1)x. (4.148)

i=0
Four different sets of values for the Fourier coefficients (ay, a,, a,, a3) were

chosen: (i) (1,04,0,0), (i) (1,0,0.3,0), (i) (1,0,—0.3,0) and (iv)
(1,0,0,0.225). Eq.(4.124) was integrated using a linear three-level difference
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scheme developed by Lees (1966). By times ¢ < 0.1, the particle distribution
for all four cases decayed and began to evolve according to the separable
solution. In all cases, the particles escape (n = 0) before ¢ = 0.2, Thus, several
initial density distributions, finitely different from the separable solution,
converge to the latter in a short time, confirming the experimental
observations that particles, initially injected into the containment device
with some arbitrary spatial distribution, after a finite time appear essen-
tially in the normal mode, that is, the separable solution. Here, then, is
an example of a product (or separable) solution serving as an intermediate
asymptotic — akin to but different from the similarity solutions discussed
in earlier sections.

Stability and asymptotic behaviour of the separable
solution

First we consider the case with F(x) = 1, namely eq. (4.129), and assume the
perturbed solution to have the product form

m(x, t) = S(x)T(t) + w(x)v(t) (4.149)

where T'(t) and S(x) are given by egs. (4.132) and (4.133) and the term u(x)v(t)
is small. Substituting (4.149) into eq. (4.129) and linearising, we can write
the resulting equation in a separable form

(= DT [In(vT*"?)], = u,,S? Yu= —x, (4.150)
x being the separation constant. The equation for v,

(@= DT [In@T*" )] +x=0, 4.151)
has a solution of the form

v=cT?, (4.152)

where ¢ is a constant, if

£ (4.153)

pra—2=~

Since T decreases as t increases (see eq.(4.132)), v decreases if p >0 and
decays faster than the separable solution if p> 1. Therefore, to ensure
stability, we require that p> 1. To find p, we have to find «; from the
eigenvalue problem

uf (x) + K;87 2(x)u{x) =0, (4.154)
u(0)=0, ufl)=0.
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For k, = 4, the solution u, is simply S. This solution is positive everywhere.
The general eigenvalue problem (4.154) (Coddington & Levinson, 1955) has
an infinite number of eigenvalues kg,x,,...with x, <k; <k,...and
K; — o0 as i — 00. The eigenfunction u; corresponding to x; has exactly i zeros
in (0, 1). We can now identify x, and u, with the lowest eigenvalue and the
corresponding eigenfunction, respectively. The higher eigenfunctions
u,,u,,...have exactly one, two,...zeros, respectively, in (0, 1). The perturb-
ation u,, we have seen, corresponds to a change in the initial amplitude of
the separable solution. For this case (k, = 4), €q.(4.153) gives p=3 —q.
Therefore, according to eq.(4.125),

1, 620
> y s 4.155

This implies stability of the separable solution for & > 0 with respect to the
lowest mode. For 0 > 6 > — 1, further examination is needed.

Now, turning to k, and u,, we seek a solution of (4.154) which vanishes
only once in (0, 1) and also vanishes at the boundaries. A trial solution

u, = S(x)8'(x), (4.156)

which meets both the requirements (since S(x) vanishes at the boundaries
and §’(x) = 0at x = 1), iseasily seen, on use of eq. (4.136), to satisfy eq. (4.154)
with eigenvalue

K1 =qA+0Y) =02+ g (4.157)
Substituting x,/4 from eq.(4.157) into eq.(4.153) we find that
p =4 (4.158)

for all q. Thus, the lowest nontrivial perturbation decays much faster than
the separable solution. All other eigenvalues decay still faster, since
ki/A > K, /4 for i > 1. The stability of the separable solution has therefore
been established in the geometry-free case, F(x) = 1.

Berryman has also proved stability of the separable solution in the
presence of a geometrical factor F(x)for é > — §, provided F(x)is symmetric
about x =1 and F'(x) > 0 for 0 < x < 1. It is conjectured that the separable
solution is stable for 6 > — 1 for arbitrary functions F(x) which satisfy
the conditions (4.127) and (4.128) and for which F'(x) = 0 for x < x,. This
conjecture is supported by numerical evidence.

Now we derive bounds on the asymptotic amplitude A, for large ¢, for
slow diffusion, 1 < g < 2, corresponding to 6 > 0, and the extinction time ¢*
of the solution for fast diffusion, ¢ > 2, for which the density vanishes
everywhere in a finite time (Berryman & Holland, 1978). It is useful to
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introduce the following integrals:

™

ag(ty=c~ ! | m(x, HF(x)$?~ '(x)dx, (4.159)
py=c~t | m*~ (x, )F(x)S(x)dx, (4.160)
0()=c™ ' | mi(x, F(x)dx, (4.161)
R(t)=c"! | mi(x,t)dx, (4.162)
where u
c= f F(x)$%(x)dx (4.163)

and all integrals are taken over the interval 0 < x < 1. The function F(x) (see
(4.127) and (4.128)) is positive and integrable.

If we differentiate eq.(4.160) with respect to t, use eq.(4.124) to replace
F(x) (m*~ 1), by m,, and integrate by parts employing the null boundary
conditions on m(x, t) and S(x) at x =0, 1, we have

%,B(t) =c! mexS dx=c! fme, dx

=—ic! Jm(x, HF(x)8? 1(x)dx = — Aay(t). (4.164)

In the penultimate step, we have made use of eq. (4.142). Eq. (4.164) provides
one relation between f(t) and ay(t). A second relation is obtained by
Holder’s inequality applied to the integral in eq.(4.159) for (positive) f(x)
and g(x), namely

1/P 1/Q
ff (x)g(x)dx < { f[f (x)]”dx} { J[g(x)]gdx} , (4165

with 1/P + 1/Q = 1. For the integral in eq. (4.159), we have

f(x)= mFI/(q-l)Sll(q-l), g(x)= F(q—Z)/(q—l)Sq(q—Z)/(q—1)’

g—1 1 1
P= —1 = — =
q H Q q_z, P Q

so that, using the definition (4.163) for ¢,
ao(t) < [B(r)]'74™ 1. (4.166)
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Eliminating a4(t) from egs. (4.164) and (4.166), we obtain a differential
inequality for B(t):

- ;—tﬁ(t) < ALB©]Va N, (4.167)
Upon integration of eq.(4.167) and changing the sign etc., we have
pe) = p(0)— Art, (4.168)
where
q—2
¥=——-. (4- 169)
qg—1

For fast diffusion, — 1 < 6 <0,q > 2,implying r > 0 (see eq. (4.125)}), if the
pseudo-density m (and hence the density n) vanishes after a finite time ¢* (see
eq. (4.132)), then B(¢*) vanishes too. Therefore, the extinction time ¥,
according to (4.168), satisfies the inequality

o ? ;(:)). (4.170)

Thus, (4.170) provides a rigorous lower bound for #*.
For slow diffusion, 1 < g <2, r < 0; therefore, it follows from (4.168) that

B0 <[BO) + Alrle]~ " (4.171)

In the asymptotic time limit, m(x, t) = S(x)T'(t) (see Berryman and Holland
(1978)), eq. (4.132) gives

T2 = 4572 4+ rlt. 4.172)

Substituting S(x) T(t) for m(x,t) in eq. (4.160) and employing the
definition (4.163) for ¢, we evaluate B"(t); hence (4.171) and (4.172) give

(AL 2+ Alrl) < [BO) + Alr|e] 7Y,
that is,
Ay < [B(0O)]VD, (4.173)

The inequality (4.173) provides an upper bound for the asymptotic
amplitude A,.

We now derive an upper bound for the extinction time t* for fast
diffusion, ¢ > 2. By the definition of Q(¢) and R(t), eqs. (4.161)—(4.162), and
use of eq.(4.124) for m, we have

do qR(1}
Tr _ T KO, :
1 -~ (4.174)
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dR zc_l rn2
P < 17
de q—1 Jm" 2F(x) dx <0, (4.175)
and
R(t) =—c! fmxxmdx =—c ! \[(WT%FW)(M‘UZFUZ) dx .
(4.176)

In (4.175) and (4.176), we have performed integration by parts once. We
now apply Schwarz’s inequality to eq.(4.176) to obtain

R <c™ jm“Fd f X ZF—Q(t)c‘lfn:""z(i: 4.177)

Eliminating the integral from (4.175) and (4.177) and combining the result
with (4.174), we have the inequality

S tRoQ- <0 4.178)

It is easily checked that the equality sign in (4.178) holds only when we
use the separable solution m = 5(x) T(t). Again substituting this limiting
expression for m into eqgs.(4.161) and (4.162), we have

—2/9
RQ 2zt J S§T2(t)dx-c2’“( J S“Fdx) T2

=c " Yicc? e = ), (4.179)

since

fSidx= —fodex=ljFS“dx=lc. (4.180)

The inequality (4.178), by an integration and use of (4.179), gives
AQ24 < R(¢). (4.181)
Eliminating R(t) from (4.174) and (4.181) and integrating, we have

— ;[Q(q - 2)/“(t) —Qu- 2)/q(0)] > At. (4.182)

Since for fast diffusion, ¢ > 2,r >0, and at the extinction time t=t*,
Q(t*) =0, we have, from (4.182),

t* <[Q(0)]9~ 24/ jr. (4.183)
This provides an upper bound for ¢*. The bounds (4.170),(4.173) and (4.183)
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are the best possible since the equality sign holds when m(x,t) is the
separable solution.

Berryman and Holland (1978) have compared these bounds with their
perturbation solution, using a set of initial data. The perturbation solution
was found to lie between the upper and the lower bound.

In another paper, Berryman and Holland (1982) have considered the case
0= —1, n,=(Inn),,, and have proved the asymptotic form of solution,
namely In [n(x, t)/ng] > A e~ """ /2 sin mx as t — co, where ny is the value
of n at the boundaries of the interval [0,1] and A4 is the asymptotic
amplitude.

4.6 The non-planar Burgers equation

We shall now discuss the similarity solution of the generalised Burgers
equation

u, — uu, = g(x)u,, (4.184)

whose special planar case we introduced in sec. 3.5. Here, ¢ is the retarded
time, t = T— R/co, x=[(y+ 1)/2c]1fa”"*(R)dR and v=a""*u is the
particle velocity. The function g(x) is determined by the duct area a(R) (a
function of the actual distance R); g(x) = da'/*(R)/(y + 1)c,. The constants &,
¢, and y stand for the coefficient of diffusivity of sound, the undisturbed
sound speed and the ratio of specific heats, respectively. The function g(x)
represents the effect of geometrical expansion, which for spherical, cylind-
rical and plane symmetries is e*, x and 1, respectively. As we explained in
sec. 3.5, the role of space and time coordinates has been interchanged in
writing eq. (4.184) to facilitate the posing of a boundary value problem.
Thus x is, in fact, a time-like variable and the boundary condition for
eq. (4.184) is u(0, ) = uy(t), simulating a piston motion. Before we discuss
the asymptotic behaviour of eq. (4.184), we analyse its similarity solution
for the cylindrical case g(x) = fx where B is a constant. This solution is
an intermediate asymptotic (Rudenko & Soluyan (1977); see also sec. 5.8).
We easily check that the solution to the equation

u, — uu, = fxu, (4.185)
has a self-similar form

u = Q(t/x) = Q(&). (4.186)
Substituting (4.186) into eq. (4.185) we have

—(Q+ 5 =pQ". 4.187)
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We simplify this equation by introducing

Q+¢=pY2H, t=pY¥ (4.188)
so that it becomes
dH d’H

This equation is autonomous and easily admits a first integral. However,
this integral is not appropriate to the present problem wherein we want the
solution to tend to constant values, say, C + D as { - + o0; these boundary
conditions result from a piston motion at x = const with constant end
conditions at t— + co. We transform eq.(4.189) by changing both the
dependent and independent variables,

H = 2F(n(()), (4.190)
so that it becomes
dn\*  _d%n d
ol =1 I Fl1-2F1), 4.191
F(dr:) g a .51

the prime denoting differentiation with respect to n. Now dn/d{ is chosen
such that differentiated terms have the same degree of nonlinearity; this
leads to dn/d{ = F and eq.(4.191) becomes

FF'+ F(F+2F)=1. (4.192)

Setting F? = K, we have a linear equation

"

which has the solution

K=n+ce "=pg—noe 27" say, (4.194)
so that

F=1(n—noe 2"/, (4.195)

Here ¢ and 1, are constants. The solution for u is written in a parametric
form as

u=Qt/x)= — &+ 2B'*F(n),
" dﬂ ] 2 Ho»

=y+ 2| —, 4.19
E=y+8 LFW) (4.196)
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where 7 is the parameter. The second of egs. (4.196) follows from integrating
dn/d{ = F and assuming £ =y when 5 = n,. The solution (4.196) has two
constant parameters, y and 5, While y can assume any real value, the para-
meter 7, can vary only between — 1 and + co. The inequalities n = n, >
— L follow easily from the consideration of eqs. (4.195). The choice of sign
in eq.(4.195) gives two sections of the curve for Q(£). the plus sign
corresponds to the curve with £ 2 y while the minus sign defines it for £ < y.
The two parts join smoothly at £ =y, corresponding to # = #,. This can be
seen by expanding F? about 5 = 7,: to a first approximation, F? ~ (1 + 21,)-
(n —ny). The parameter y merely reflects the Galilean invariance of
eq.(4.185), u—»u+ A,t >t + Ax; the parameter n, plays a crucial role. In
fact, it is a measure of the strength of the wave: as ¢ -+ + oo (corresponding
to n— o0, — %, respectively), Q - — y + B/2A(y,). The strength of the wave,
232A(n,), depends on 5, and increases from — oo to + oo as n, increases
from —1to + oo, so that the wave can have any height 28'/2A(,), positive
or negative. Since dQ/d¢ = 2n,e~ 2%~ the profile Q(&) is monotonically
increasing or decreasing, depending on whether n, is positive or negative.

Itis easy to find particular solutions of eq. (4.187) relevant to other special
circumstances. Thus, when the solution is essentially linear, corresponding
to 1o — 0, we may ignore the Q) term in eq. (4.187) so that

— Q' = Q. 4.197)
This equation can be integrated to give
2e\YV?  E—vy
Q= Co('ﬂ—) erf(—zﬁ)—”z =+ Cq. (4198)

This can be matched to eq.(4.196) at n = n, in the limit #,— 0 by choosing
¢, and ¢, suitably; we have then

Q= (2np)**noerf[(£ ~ /2B)' "] 7. (4.199)

Similarly, if we seek a Taylor-shock solution, we balance nonlinear and
viscous terms in eq.(4.187):

—QQ = O, (4.200)

This equation when integrated and matched to eq.(4.196) at # = 4 in the
limit 7, — oo gives

Q =2(Bno)""? tanh [(no/B)' (€ — 1)1 —». (4.201)

The role of 5, as a measure of the wave strength has now been clarified.
Finally, Q = — £is obviously a solution of eq. (4.187). This solution, holding
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in a finite interval, can be joined to constant solutions of eq. (4.187) at the
two ends of the interval to give an expansion front.
We refer here to a related equation

exy” +(g(x) -~ y)y' =0, xe(0,R)
w0) =0, MR)=k,

which describes stationary solutions of a corresponding evolution
equation (see sec.4.9). The latter arises in the context of pre-breakdown
discharge in an ionised gas between two electrodes. Diekmann et al. (1980)
have studied this equation in detail with particular reference to the physical
nature of g(x) and the limiting behaviour of the solution as the diffusivity
coefficient ¢ -0 and the domain R — c0. Matched perturbation solutions
were constructed and their asymptotic nature was analysed.

4.7 Stability of the self-similar solution of the
cylindrically symmetric Burgers equation — another
intermediate asymptotic

Now we study the solutions of initial value problems

u, —uu,=gxu,,, 0<x<w, gx)x—=pF#0 asx— o0,
(4.202)
u(0, t) = uyl(t), (4.203)

which tend asymptotically to the similarity solution u = Q(t/x) of eq. (4.185)
as x tends to infinity (Scott, 1981b). We have already found the solution
Q(t/x)in sec. 4.6. We now assume that uy(z) is continuous and bounded and
is such that a unique bounded solution to egs. (4.202)—(4.203) exists, for
which u, u,, u,, and u,, are continuous in x > 0. We shall also assume that if
uy(t) satisfies the conditions

uyt)-C+D ast— + o, (4.204)
and

dug . .
d—tols continuous and tends to 0 as t— + co,

then w(x,t)-C+ D and du/ét—0, as t— £ co, uniformly in 0<x <
X, < 00.

We shall prove that the solution u(x, t) of eqs. (4.202)—(4.203) under the
above conditions satisfies the asymptotic relation

1Q(t/x) — u(x, )| -0 (4.205)
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as x — 0o, uniformly in t. Here, the asymptotic behaviour of the initial
profile uy(t) (and hence of u(x, t)) as t — oo 1s made to coincide with that of
Q(t/x) (see the discussion following eq. (4.196)). Accordingly, we determine
that y= — C and B'2A(y,) = D. The proof of (4.205) is carried out in
three steps. First, (4.205) is proved with the initial condition uy(f) = Q(¢),
the functional form of the similarity solution itself (cf. sec. 4.6). Secondly,
ug(t) is extended to become Q(t) + A secht, where A is constant. Finally,
Ug(t) is chosen to be any continuous function satisfying (4.204).

In contrast to the results for the nonlinear heat equation in sec. 4.4
and in view of the more complicated nature of eq. (4.202), no estimates for
the rates of convergence are obtained. The proof for convergence will
involve some estimates for the fundamental solution of linear parabolic
equations with variable coefficients, for which we shall refer to Friedman
(1964). The notation F(a. b. ¢) will refer to theorem or lemma number c of § b
in chapter a of Friedman (1964).

Lemma 1. The asymptotic result (4.205) holds when u(t) = Q(2).

Proof. Let v=Qt/[x + 1]) be the (similarity) solution of

v, — oo, = Pf(x+ 1), (4.206)
u satisfies the equation

u, — uu, = g(x)u,,. (4.207)
Subtracting eq. (4.206) from eq. (4.207) and writing w = u — v, we have

ow 10 o’w Vi)

= 3 [wu+0v)]= Q(X)W + [g(x) — B(x + I)JW’

(4.208)

where

w(0,t) = u(0,t) — v(0,£) = 0. (4.209)
By introducing the independent variable

z= f g(&)d¢ (4.210)

0

and writing g(x) = G(z), eq.(4.208) becomes

@_i[w(u+v)]_ 0w _G@) - Bx+1) 0%v

where v =Q(t/[x + 1]) and (x + 1) are known functions of z and ¢ so that
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eq.(4.211) is a linear inhomogeneous equation in w with the source term

G—Blx+1)d oH

where G — fx+1)0
— p(X v

Here, the coefficient of dv/dt is a function of z alone. If we write w = 8i//6t in
eq. (4.211) and integrate it with respect to ¢, ignoring the ‘constant’ of
integration, we have

o w+vdy O

We write eq.(4.214) in the form

8 (w+v)dp %
Lo =E—TE—F—H(Z,I). 4.215)

IfI'(z, ¢ {, 7) is the fundamental solution of L¢ =0, then it easily follows that
the solution ¥ of eq.(4.214) is given by

Wz t) = J z f ) Tz, t; ¢, 1) H(, 1)dr d¢ (4.216)
0J-o

with (0,t) = 0 (see F(1.7.12)). The partial derivative of the fundamental
solution satisfies the inequality
~ K2t =0)2/(z =)
Tk,
ot z—{

where K, and K, are constants, independent of z,t,{ and t (see the
derivation of F (1.6.12)). Since dv/dt is bounded and g(x)— fx as x —
(that is, as z — c0), it follows from eqs.(4.213) and (4.210) that

Hiz,t)=o(x" Y )= oz~ 1/?) (4.218)

(4.217)

as z— oo, uniformly in ¢.
If we define

I(z)= j max |H|dz, (4.219)
0 —0<t<m®
then by theorem F (2.4.9), wherein

2 u+vd 0
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and the relevant functions are

1(z) £ y¥(z,1), (4.221)
we obtain

W< I(2)=o0lz"?) (4.222)

as z— co, uniformly in .
Eq.(4.216) may be rewritten as

Yz, t)= Jt; F(z, t;%,t)n,b(%,t)dt
+ J‘z J‘w ['(z,t{,0)H({, t)dT d(, (4.223)
z{2J -

by making use of (4.29) of F (1.4.8).
Differentiating eq. (4.223) with respect to ¢, using the estimates (4.217),
(4.218) and (4.222) for 8I'/dt, H and ¢, respectively, we have

(5

|H(C,7)|dtdl = o(1), (4.224)

r
|w| = Ad gt—(z, t;z/2,7) dz

IS
<
ot Cw

z a0
zi2J —

the two terms on the right side of (4.224) being of order ||/z'/? and
1/z%,& > 0, respectively, and hence small as z — oo, uniformly in ¢.
Since w = u(x, t) — Q(t/(x + 1)), we have

|t(x, £y — QAt/x)| < |ul(x, t) — Q(t/(x + )| + |1Q/[x + 1])
~Q(t/x)| = 0. (4.225)

ol
E(Z, (1)

as x — co, uniformly in .
We now proceed to the second stage of the proof, in which it is shown
that all the solutions of eq.(4.202) corresponding to the initial conditions

ug(t) =Q(t) + Asecht, Aaconstant, (4.226)

converge to that with (t) as the initial condition; we denote the latter
solution by U(x, t). We first prove the following lemmas.

Lemma 2. If uy(t) has the form (4.226), then |du/dt| < K/x for some
constant K, for all t and x> 0.
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Proof. We write the basic equation (4.202) as

ow udw O*w

_ —— - - 7

0z Got ot (4.227)
so that w may be thought of as a solution of this linear equation (z here is as
in eq.(4.210)). Let the fundamental solution of this equation be again
denoted by I'(z,1; {, 1), for which the inequality (4.217) holds. The homo-
geneous eq. (4.227) has the ‘solution’ (cf. eq. (4.223))

* z z
u(z,t)= J‘wu(i,t)r(z, I,E,T)dt (4.228)

so that
du ® z ol(z,t;z/2,1)
— g =, —_— B
3 J_m u(2 1.') 5 dz (4.229)
® |or
< constant x J E(Z’ t;z/2,7)|dt
K
< —
<7 (4.230)

using (4.217) and the boundedness of u(z/2, 1), and integrating. Hence the
lemma is established.

Lemma 3. If uy(t) is of the form (4.226), then
|U(x,t) — tx,t)] =0 (4.231)

as x — oo, uniformly in ¢t. We recall that we have here denoted the solution
of eq.(4.202) with uy(t) = Q(r) by U(x, ¢).

Proof. We again write w=u— U so that (cf. eq.(4.211))

ow @ 0*w

- = [+ U] =g %5

5 7t (4.232)

First we assume that 4 >0, so that w(0,t) = 4 secht = 0, then, by theorem
F (2.4.9), w> 0 for all ¢ and for x = 0. Further, by Lemma 2,
ow| K

= 1< (4.233)

for some constant K.
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Integrating eq.(4.232) with respect to ¢ from ¢, to t,, we get

d [ ow 1 f2

EJ.“ wdt = [g(x)ﬁ + i(u + U)w]“. (4.234)
Integrating (4.234) with respect to x and remembering that w(0,t)= 4
sech ¢, we have

i2 x ta
J wdt = J [g(x)%—v: +%(u + U)w:l dx + 2A[arctane'];?,

b 0 " (4.235)
the last term on the right being the value of the integral on the left at x =0,
In the limits t;, - — oo and ¢, — o0, w and dw/dt both tend to zero by basic
assumptions about the solutions of eq.(4.202) and the initial conditions.
Therefore, we find that

f wdt = An (4.236)

for all x.

For afixed x, let the maximum value of wbe w_,, at t = r_,,. Considering
the two parts of the inequality (4.233) separately and integrating with
respect to t, we have

W2 Whayx — Klt - tmaxl/x' (4'237)

Integrating (4.237) in the interval |t — 1, ,,| < xw,,/K, we have

wmasil Kizl\, _ xwha
wdt = Winax — dz=—71—.
lt—tmaxl € XWmay /K — XWhax/K X K

(4.238)

We have shown earlier that w(x, t) > 0 (see opposite eq. (4.232)), and so
combining (4.236) and (4.238) we have

An 2 xwl /K (4.239)
or
Woax S(ATK/X)12 50 (4.240)

as x — oo. Thus, we have
wl=|u—Ul->0 (4.241)

as x — oo, uniformly in ¢.
The proof for A <0 is similar. Hence the lemma follows. Finally, we
prove the main theorem of this section.
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Theorem 1. The result (4.205) remains valid for any continuous function
uy(t) satisfying (4.204).

Proof. The analysis for this part of the theorem is similar to that for the
nonlinear heat equation (sec. 4.4). For any ¢> (0, we can choose 4>0
such that

|ug(t) — Q)| < &+ Asecht. (4.242)

We construct two solutions u_(x, t) of eq.(4.202) with initial conditions

u,(0,8) = Q(t) + (¢ + Asech ). (4.243)
Then the difference functions
w,o(x,8)= +(u, —u (4.244)
satisfy the equations
ow, Ow, Ou 0w,
r_ Tt = b 4.245)
x Yo e eI e (

and w,(0,£)20 in view of (4.242)-(4.244). Hence by theorem F (2.4.9)
we have w_(x,t) =0 for all ¢, and x > 0. It follows, therefore, that

Uu_<u<u,. (4.246)
Because of the Galilean invariance of eq.(4.202) (see sec. 4.6), the functions
v (x,)=u_(x,tFex)Fe 4.247)

are also solutions; furthermore, they satisfy, in view of eq. (4.243), the initial
conditions

v,(0,£) =Q(t) + Asecht. (4.248)
Therefore, by Lemma 3, we have

lv, —Q(t/x)| =0 (4.249)
uniformly in ¢, as x — co; that is, by the definition of v,

lu, —Q(t/x +¢&) Fe| -0, (4.250)

in the same limit, uniformly in t. By expanding Q(t/x + ¢) about & = t/x for
x > X >0, we can write (4.250) as

lu, —Q(t/x)| < 2(1 + |nol)e (4.251)
since |dQ/d¢| < 2|n,l, as may easily be checked from egs. (4.195)-(4.196).
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Further, since u lies between u_ and u, according to (4.246), we have

lu— Qe/x)| < 21 +[no])e (4.252)

for x > X. The number ¢ is arbitrary, hence the theorem is proved.

While no estimates relating to asymptotic convergence have been found,
itis important to note that the similarity solution here has been shown to be
not only an intermediate asymptotic, and stable to initial conditions in this
sense, but also stable to strong perturbations of the coefficient g(x), which is
merely required to be Holder continuous and such that g(x)/x — f as x — co.
Thus, the similarity solution possesses strong global stability.

4.8 The linear (similarity) solution as an intermediate
asymptotic — the super-cylindrical Burgers equation

It is known that, if a wave decays sufficiently, its amplitude becomes so
small that the nonlinear terms become unimportant. Thus, far away from
the origin of the wave, the solution is described by the linearised form
of the basic equations. The latter may or may not possess similarity
solutions. Moreover, it may happen that the full nonlinear system of
equations does not admit similarity solution, while the linearised system
does. Thus, the solutions of initial/boundary value problems may tend
asymptotically to these linear similarity solutions, perhaps after a much
longer time than they would to nonlinear similarity solutions. We shall now
discuss one such example (Scott, 1981b). We consider the equation

u, — uu, = g(x)u,,, (4.253)

where the function g(x) is such that
g(x)/x—> 0 asx— 0. 4.254)

This is termed the ‘super-cylindrical’ case, in contrast to the cylindrical case
discussed earlier for which g(x)/x — B, a finite number; for example, g(x) is
equal to e* for the spherically symmetric Burgers equation. If we ignore the
nonlinear term uy, in eq.(4.253) and introduce

z= ng(x)dx, (4.255)
0

then the resulting linear heat equation

U, =, (4.256)
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has the similarity solution
C + Derf(t/2z'%) = F(x, t) (4.257)

which tends to a constant value as z, and x, tend to infinity.

The proof of the intermediate asymptotic nature of F(x, t) with respect to
the general initial value problems for (4.253)—(4.254) for a class of functions
(0, t) as initial conditions will be carried out in two stages. First, we show
that if U(x,¢) is the solution of the heat equation (4.256) with general
initial condition U(0, £) = u,(t) satisfying

ug()>C +D ast— + oo, (4.258)

and u(x, t) is the corresponding solution of the nonlinear problem (4.253—
4.254), then |u— U|—0, as x— oo, uniformly in z. The second stage
comprises a proof that |[U — F| -0, in the same limit, uniformly in ¢.

Lemma 1. If uy(t) satisfies (4.258), then |[u—U|—-0 as x— oo, uni-
formly in ¢.

Proof. We again write eq.(4.253) as

ou 62u_ 1 du

E -_ ? = WZ)ME, (4.259)

where G(z) = g(x), and regard this as an inhomogeneous heat equation with
a source term on the right side. The solution of this equation is obtained as

2 —(t-1%4(z-0)
wz, t) = Uz, 1) — Jf L dw)e drdt

_o2G() 8t 2m'(z - M2

_ uz(c’ ‘r)(t _ .L.)e—(r-t)2/4(z—é)
=Ueg- J j . GOtz —p e
(4.260)

after an integration by parts with respect to 1. Eq. (4.260) satisfies the initial
condition u(0, t) = U(0, t) = uy(¢). By our basic assumptions u is bounded, so
we can estimate |u— Ul|:

Z(C’ ,t)lt__tle—(l 1%/4(z-0)
w-vi< | [ G(C)Jﬂ [—prr ¢

f G(O(z -

- f [ f xg(z)dz} e, (4.261)
0 4
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where K > 0 is a constant and eq. (4.255) has been used, in addition to the
relation G(2) = g(x). In view of (4.254), given ¢ > 0, we can find X >0 such
that

glx) = x/e (4.262)

for any x > X. Therefore, when x > X, we have, from (4.261),

2 1/2 2¢ 1/2
|u_U|<KU S f( S ]

X
= (2¢)'2K [(_ZW + - —arcsin— ] (4.263)
For x > 2X, (4.263) gives
lu~U| <(2£)”2K(\/3 ”). (4.264)
Since ¢ 1s arbitrary, we have proved the lemma.

Lemma 2. |U - F|—0as x— o0, uniformly in ¢, for any continuous u(t)
satisfying (4.258).

Proof. The solution of the heat eq.(4.256) with general initial condition
uy(t) satisfying (4.258) is

[ uplr)em o
Ulx,t) = f_ TS dr 4.265)
so that
® [uy(t)— F(0,7)]e~ %4
’ e 42
(x,¢) f_ . 2Anz)'2 dr, (4.266)

since F(z, t) satisfies the heat equation. The behaviour (4.258) of uy(7) and
eq.(4.257) imply that we can find T > 0 such that

lug(r) — F(O,7)| < &

for |t| > T. We now estimate |U — F|:

lug() — F(O, T)|e =0~ 14z
< “
|U—-F| < (JITI>T Jlrk'f‘) 2(nz)1/2 T

e+ J lu(t) — F(0, 7)|dt(nz)~ V2,
2 e
< 2¢ (4.267)
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for sufficiently large z, that is, for sufficiently large x. This completes the
proof.

Combining Lemmas 1 and 2, we find that |u—F|-0, as x— oo,
uniformly in ¢. Thus, the solution, in the super-cylindrical case, tends
asymptotically to the error function solution of the linearised equation and,
for large x, the nonlinear term contributes little to the solution.

4.9 Other generalised Burgers equations

We summarise asymptotic results regarding two other generalised Burgers
equations.

(@) The first appears in the physics of ionised gases and is a generalised
form of cylindrical Burgers equation (cf. sec. 4.6),

U, = extl,, + (g{x) — uu,. (4.268)

We consider an ionised gas between two electrodes, which contains ions
and electrons with densities n(r) and n.(r, 1), respectively, r being the radial
distance in a cylindrically symmetric configuration. The ions being heavy
and slow are assumed to possess density n;(r), which does not change with
time. The electrons, in comparison, are highly mobile. Referring in
particular to the so-called pre-breakdown discharge which spreads out in
filamentry form, we wish to find out n(r,t) for given n(r) and enquire
whether, for a given initial (electron) distribution, the electrons stabilise
and, if so, to find the time needed for such a stabilisation.

If we write

m1/2
u(x,t) = n.(r,Ordr (4.269)
JO
and
ml/2
g(x)= n(r)r dr, (4.270)
JO

then it can be shown (Diekmann, Hilhorst & Peletier, 1980, Hilhorst,
1982) that u(x, t) is governed by eq.(4.268) wherein ¢ = 2kT/uc,, with k, T
and u denoting Boltzman constant, temperature and (electron) mobility,
and c, a fixed constant. The boundary conditions are

u(0,) =0, (4.271a)

fm [ngr) —n.(r,t)]Jrdr=N >0,
()
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that is,
u(oo,t)= K =g(c0)— N, (4.271Db)

where obviously K lies between 0 and g(co). The initial condition is
u(x, 0) = Y(x). (4.272)

Eqgs.(4.268) and (4.271)-(4.272) constitute the mathematical problem.
Hilhorst (1982) has proved the existence and uniqueness of the solution to
this problem subject to the conditions that g is twice continuously
differentiable over [0, c0), g(0) = 0,g'(x) > 0 and g"(x) < 0 for all x > 0, and
the initial function y(x) is continuous, with piecewise continuous derivative
on [0, ), moreover, Y(0)=0 and Y(o0)= Ke(0,g(0)). Besides, it is
assumed that there exists a constant M,, > g'(0) such that 0 < y/'(x) < M, at
all points x where ¢/ is defined. The corresponding steady problem (with
u, =0 in eq.(4.268)) was investigated in great detail by Diekmann et al.
(1980), who proved the existence and uniqueness of the solution for this
case, and found a matched asymptotic solution. Hilhorst (1982) proved the
following theorem regarding the stability of the initial boundary value
problem and the evolution of the solution to steady state.

Theorem 1. Let ®(x) be the solution to the steady problem.

Suppose r satisfies the aforementioned hypotheses, then, for each x >0,
lim u(x, t, ) = O(x). 4.273)
=

If ¢ < g(c0) — K, the convergence is uniform on [0, c0); if ¢ > g(0) — K, it 1s
uniform on all compact intervals of [0, c0).

The rate of convergence is exponential (in time) if g(x) = ¢y x!/* for x = x,,
for some positive constants ¢, and x,; it is algebraic if ¢ < g(c0) — K, and
the initial function ¥ converges algebraically to K as x — co.

(b) The second equation concerns unsteady one-dimensional infiltration
of water into a homogeneous soil. It has been observed that after sufficient
time the moisture profile assumes a certain permanent shape, which then
moves downwards with a constant velocity without further change of form.
The governing equation for the moisture u(¢, x) of the soil, as a function of
depth x, measured downward from the ground, and time ¢ is

ou & ou )
Frim a—;[D(u a] - aK(u), (4.274)

where D(u)>0, K)>0, D'(4)>0,K')>0, K'()>pu>0 when u3
Uy > 0.



152 Self-similar solutions as intermediate asymptotics

Depending upon whether there is ground water at depth x = X or not,
two initial boundary value problems were posed by Khusnytdinova (1967),
and their asymptotic behaviour studied. The intermediate asymptotics
or permanent waves were given by the self-propagating solutions u =
U(x — At + ¢4), where A and ¢, are constant.

Problem 1. Taking into account the initial moisture distribution in the
soil and infiltration (of water) at the surface of ground, and with no water at
a large depth, the initial and boundary conditions become

w(t,0)=u,, t>0,
u(0,x) =uy(x), 0<x< o0, (4.275)
Ug < uO(x) < Uy,
where

o = lim uy(x)
X o0

and
u1 - 1

at the ground corresponding to full saturation of the soil there.
Withregard to egs. (4.274) and (4.275), the following theorem was proved.

Theorem 2. Let u(t, x) be a solution of the problem (4.274)—(4.275). If the
initial function u(x) satisfies the condition

|K'(uo) — A|
D(ug) °

where M is a constant, then there exist constants M >0, ¢, and >0,
independent of the solution u(t, x), such that

lu(t, x) — U(x — At + co)| < Me™*. (4.277)

UgX)—ug<M,e ™% y,> x=0, (4.276)

Problem 2. This problem differs from Problem 1 in that there is water at
a finite depth x = X so that the initial and boundary conditions become

ut,0y=ut, X)=u,;, w0,x)=uyx),

4278
0<x<X, uy<uyx)<u,. ( )

The corresponding theorem is the following.

Theorem 3. Let u(t,x) be a solution of the boundary value problem
(4.274) and (4.278). Then there exist (positive) constants M and f such that

lu(t, x)—u,| <Me™#. (4.279)



5 Numerical solution of
nonlinear diffusion
equations

5.1 Introduction

It would be apparent from chapters 3 and 4 that analytic methods for
nonlinear problems of diffusion (in common with all nonlinear problems)
have severe limitations. For example, the non-planar N wave solution
obtained by Crighton and Scott (1979) via matched asymptotic expansions,
undoubtedly useful in the Taylor-shock régime, holds only over a certain
finite time as detailed in chapter 3. The evolutionary shock régime after the
Taylor shock and the subsequent decay later to the linear form are scarcely
covered by analysis. The self-similar solutions discussed in chapter 4,
although the only genuine exact solutions of nonlinear problems (when they
exist), are special in nature. They may not exist for a given problem. Even
when a self-similar form exists, it satisfies only special initial/boundary
conditions so that a given physical problem dictating specific initial and
boundary conditions will, in general, not have a self-similar solution. The
latter almost always satisfies some singular initial conditions signi-
fying its asymptotic nature. One naturally turns, therefore, to numer-
ical techniques to get a clear qualitative as well as quantitative picture of the
phenomena over the entire course of the wave. Since the problems that we
discuss involve shocks with discontinuous or steep-fronted initial con-
ditions and have an infinitely long time domain, the numerical methods
must be sturdy enough to meet these exigencies. The finite difference or
pseudo-spectral methods that may be used for such problems should have
other necessary attributes, namely stability, convergence, small truncation
error, in addition to economy in computational time in view of the large
evolution time of the wave. These requisites have been discussed in a simple
and lucid manner by Smith (1978).

In this chapter, we shall discuss two specific numerical approaches to
nonlinear diffusion problems: the implicit predictor—corrector method of
Douglas and Jones (1963), and the pseudo-spectral approach following

153
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mainly the work of Gazdag (1973) and Gazdag and Canosa (1974). Each of
these methods enjoys some of the advantages enumerated above, but their
selection has been motivated quite considerably by the author’s personal
experience. Since the finite difference methods are now fairly standard and
may be found in several texts such as Richtmyer and Morton (1967),
Mitchell and Griffiths (1980), and Jain (1979), we shall content ourselves
with a brief description. However, the pseudo-spectral approach has been
adopted only recently, so we shall describe it in a more elaborate manner.
We choose Fisher’s equation and the non-planar Burgers equation as the
models for a careful numerical study. The (exact) travelling wave solution of
the Fisher’s equation and the N wave solution of the plane Burgers
equation will provide necessary checks. We may add en passant that the
travelling wave solution of Fisher’s equation will (numerically) be shown to
serve as an intermediate asymptotic to which a larger class of solutions with
different ‘admissible’ initial conditions approach in the limit of large time,
as explained in chapter 4. We shall also discuss the intermediate asymptotic
nature of some self-similar solutions of a GBE with positive or negative
damping, and the nonplanar GBE, each with a general power in the
nonlinear convection term.

5.2 Implicit finite difference schemes

If we consider the general nonlinear parabolic equation
u,, = F(x,t,u,u,u,) 5.1)

in the region (0<x<1)x(0<t<T) subject to suitable initial and
boundary conditions, a straightforward explicit difference scheme would
give

1

ih i [ui, ] - ui' ]
h? Octh = F(lh’]k’ U Oxth J—Hk—l— )

S Uiy U
xui.j_ 2h b

Uiy = 25ty

Oy = K :

(5.2)

where u; ; denotes the solution at the discrete point (ih, jk) as obtained by the
difference method and &, refers to the central space difference. While
(5.2) is a convenient formula for obtaining u, ;. , in terms of u, ; simple
stability arguments show that this formula severely limits the time step k in
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terms of the space step h. For example, for the heat equation (F = u,), this
restriction is k <1h? (see Smith (1978)). We note that it is a fortunate
circumstance of the finite difference approach to the numerical solution of
partial differential equations that the proofs of stability, convergence etc. as
applied to linear partial differential equations with constant coefficients
carry over with minor changes to those for nonlinear partial differential
equations.

In view of the severe restriction on (time) mesh size in the explicit scheme,
one is led to search for other methods which may enjoy unconditional
stability. Implicit difference methods, which make use of (implicit) inform-
ation at the current time level as well as the information at the previous time
level, belong to such a class. We shall now discuss one such method referred
to as the predictor—corrector method. The basic ideas derive from the use
of this method for ordinary differential equations. For the first order
equation

y=fxy) (5.3)

the simplest (two-level) predictor—corrector formula is

w(x N g) = W)+ 215 (),

w(x +h)y= w(x)+hf(x +g,w(x +g))

Here w denotes the discretised value of the function y at the grid points.
Under reasonable hypotheses for the initial value problem for eq.(5.3),
it is easily seen that the scheme (5.4) is second order accurate, that is,
| y(x) — w(x)| < Ah? at the grid points. This provides a considerable comput-
ational accuracy at the small price of evaluation of w at two points, namely
x+h/2 and x + h.

Douglas and Jones (1963) proposed a finite difference analogue of
(5.4) for eq. (5.1) supplemented by the data

(5.4)

u(x,0), u0,), u(l,t), 0<x<l, O<t<gT. (5.5
The intermediate time level ¢ = (j + )k predictor

821y 12 = Fxi 1ot Osthyy [tiguns — i 3%)  (5.6)
was followed by the corrector

%5§(ui.j+ 1) =Flxa s Ui je 12
0.0 joq +ut;)s [wijey —u j1/K) (5.7)
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with the discretely known values in(5.5), ; o, 4o ,, and uy ,,, Where 0 <i <N,
0<m<M,Nh=1,and Mk = T. Each of egs. (5.6) and (5.7) involves values
of u at three space grid points (i — 1)h, ih, (i + 1)h at its respective time
(j + %k and (j + Dk so that the evaluation of u; ;,,, and u, ;,, requires
simultaneous solutions of algebraic equations, which take into account the
given values u; o, ug ,, and uy . If the function

F=fi(x,t,u)u,+ f(x,t,u)u, + fx,t,u) (5.8)

(it covers equations of Burgers type), then it is easily seen that egs. (5.6) and
(5.7) give rise to linear systems of algebraic equations in u;;.,, and
u; ;+ 1,0 <i< N. Besides, this system fortunately is tridiagonal so that fast
Gauss elimination procedures may conveniently be resorted to (see Smith
(1978) and Mitchell and Griffiths (1980)).

Douglas and Jones (1963) have shown that if a solution of egs. (5.1) and
(5.5) exists that has bounded fourth derivativesin0 < x < 1,0 <t < T and if
F = F(x,t,u,,u,, u;) has continuous derivatives with respect to u; such that

‘g—: <4, i=123

OF (5.9)
—2=2a>0,

Ou,

for0<x<1,0<t<T — o0 <u; < oo, then the solution of the predictor —
corrector scheme (5.6)—(5.7) converges uniformly to the solution of eq.(5.1)
with an error that is O(h? + k?). The predictor—corrector scheme improv-
ises upon the standard Crank—Nicolson scheme (Smith, 1978) in leading to
linear algebraic systems of the convenient tridiagonal form. This is in
contrast to the latter, which differences nonlinear partial differential
equations into a system of nonlinear algebraic equations. Thus the difficult
task of solving nonlinear algebraic systems is circumvented, without loss of
accuracy of Crank—Nicolson. On the other hand, one could go further and
look for three- (or more-) level difference schemes which may be exploited to
some other advantage such as a smaller local truncation error or greater
stability. This was attempted by Lees (1966). It has been found that this
scheme can be used with advantage where steep or discontinuous initial
data are involved. Mitchell and Griffiths (1980) consider the nonlinear
parabolic equation

buyu, = [a()u,],, alw)>0, bu)>0, (5.10)

to illustrate Lees’ three-level scheme. First, it may be observed that, if
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eq. (5.10) is approximated by the simplest difference approximation

1
b(“i,j)ﬂ(“i,j+ 1 U - 1)= 5x[a(“i,j)5x(“i,j)]a (5.11)

with J, again denoting the central space difference, we have an uncondition-
ally unstable situation; this was strictly proved for the special case a(u) =
b(u) = 1. However, if eq.(5.11) is first rewritten as

b(ui,j) (i o1 — 0 5 1) =2rla(u;, 1/2,j)(ui+ 1.j = ui.j)
—a(y; - 1/2,j)(ui.j —U;- 1,j)],

k
?‘=h—2,

and then u;, , ;,u; ;and u;_, ;are replaced by the averages of values at the
three time levels

1
(U g1 T Uis 1 Uier 1)
1
Wi U ),

and
1
3(“i—1,j+1 +“i—1,j+“i—1.j—1)’

respectively, then we obtain the formula

b(ui,j)(ui,j+ 1~ Ui j- 1) =%r{°‘+[(”i+1,j+1 — Ui+ 1)+ (4 1.j— “i,j)
+(Wyg,jm1 —Wij-1)] — 0L ey —Uio e 1)

+(uy g — g )+ Wy — Uy j-1)1}, (5.12)

u. s+ u;
a+=a i+1,j i,J ,

(erg
_ ui,j+u,'_1‘j
o =a ——— .

(5

In writing eq.(5.12), a(u;,,;) and a(u;_,;,;) have been replaced by
a([u; 4, ;j+u; ;]1/2) and a([u; ; + u,_, ;1/2) so that u need be evaluated only
at (spatial) grid points. The system of algebraic equations arising from
eq.(5.12) at t =(j + 1)k is again linear; however unlike in the two-level case,
we need additional data at ¢ = 2k by alternative means, besides the initial
data, to commence the computation. The data, furthermore, should have an
accuracy compatible with that of the three-level scheme. Lees proved the
convergence result for the scheme (5.12), namely there exists a constant A,

where

and
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independent of h, k and u such that
max|u; ; — u(ih,jk)| < A(h* + k?) (5.13)
¥
for sufficiently small h and k where u(ih, jk) is the solution of the differential
equation (5.10) at the grid point (ih, jk).

In the context of the model equations considered in this monograph,
Sachdev and Seebass (1973) used the Douglas—Jones two-level implicit
difference scheme for the study of propagation of non-planar N waves. We
shall discuss this matter in detail in sec. 5.6 in the light of some more recent
calculations. As we remarked in sec. 4.5, Berryman (1977) used Lees’
scheme to study the rapid evolution of a separable solution from an
arbitrary initial distribution of particles, for the model equation (4.118)
describing cross field diffusion in a toroidal octupole plasma-containing
device.

Finally, we refer to Meek and Norbury (1982) for some other two-level
finite difference schemes for nonlinear parabolic equations.

5.3 Pseudo-spectral numerical scheme

In a pseudo-spectral scheme, the time derivative is differenced according to
leap-frog (mid-point rule) or more accurate methods using a Taylor series in
time, while the space derivatives are approximated very accurately by
means of Fourier transforms. The time is therefore discretised in a forward
marching manner while the space derivatives are evaluated to an accuracy
permitted by a distribution which can be defined on a finite set of mesh
points, by employing a fast Fourier transform (FFT) algorithm (Cooley,
Lewis & Welsh, 1969). This scheme has proved very efficient in solving
nonlinear model equations, both dispersive and dissipative. For example,
Fornberg and Whitham (1978) have adopted this method to solve a whole
class of nonlinear dispersive equations typified by the Korteweg—de Vries
(K-dV) equation and its generalisations. They studied a variety of
problems including solitary wave interactions, wave breaking, the reso-
lution of initial steps and wells, and the development of nonlinear wave
train instabilities. Their calculations were performed mainly for graphical
use, the time and space step sizes were so chosen as to make all errors in
quantities like wave shapes, speeds and positions below the level thatcan be
measured from the graph. The solutions were checked with exact analytic
solutions {when they were available) and their accuracy confirmed.
Fornberg and Whitham observed that, when time size is halved, the overall
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error due to time discretisation (by the second-order-accurate leap-frog
method) decreases by a factor of 4; in contrast, a halving of the space mesh
reduces the spatial discretisation error by several orders of magnitude. The
stability analysis for the linearised K—dV equation showed that the stability
restriction for the pseudo-spectral approach is At/Ax* < 0.1520, and ‘the
limit of (central) finite-difference methods with orders of accuracy increas-
ing to infinity is identical to the pseudo-spectral method using [their]
equation (9)’ without the nonlinear part. For most practical finite-difference
methods, the values of the stability constant are all of the same order of
magnitude. The numerical calculations were carried out on the IBM
370/158 in single precision with accuracy between 6 and 7 decimal places,
and a real problem with 128 mesh points in the period required
approximately 25 milliseconds per time step, independent of the dispersion
relation.

In the context of nonlinear diffusion, Gazdag (1973) proposed a scheme
which, for time differencing, borrows a feature from the Lax—Wendroff
scheme (Richtmyer & Morton, 1967): in the Taylor series in time, the higher
time derivatives are replaced by space derivatives with the help of the given
(evolutionary) equation. An accurate evaluation of the space derivatives is
accomplished by finite Fourier transform. Gazdag refers to this as the
accurate space differencing (ASD) method. The accuracy depends on the
number of terms retained in the Taylor series for time discretisation, and the
extent of the wave number spectrum in the definition of the finite Fourier
series. Gazdag gave a stability analysis for a convective equation and
computed the travelling shock wave solution of the plane Burgers equation
evolving from a discontinuous initial profile. We shall describe this work
in detail in the next section,

5.4 Accurate space differencing or pseudo-spectral
method for a scalar convective equation

We first discuss the n-dimensional convective equation

148
2 4vVi=0 5.14
5, TVVE=0, (5.14)
where { = {(x,¢t) is a scalar and v=(x,¢) is a vector v = (v,v,,...,v,) Which
depends on the n spatial co-ordinates x =(x,,x,,...,X,) and time, and is
assumed to be known for the sake of simplicity, although, in general, it
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would be computed at each time step, for example, by solving the Poisson
equation (see Arakawa (1966)). As we remarked earlier, the value of the
unknown function {™*! at time t = (m + 1)At is found from the values at
t = mAt by the Taylor series
aCm 625m(At)2

ot 2

L™ (Aey
o p!’

Cm+ 1 é‘m

(5.15)

with an error O((Art)’*'), where the time derivatives in eq. (5.15) are
obtained from eq.(5.14) in terms of space derivatives, by successive
differentiation and use of eq. (5.14):

a
E =Y V‘:’
% g vi—vy(%
ar” Via )
are 1N ay ot
ottt ,ZO (—ilit ar V(F) (5.16)

forl=2,3,4,..., p. The superscript m on { has been suppressed in egs. (5.16)
for the sake of convenience. Thus, the Taylor series (5.15) is expressed
entirely in terms of {™ and its spatial derivatives at t =mAt. For one
dimension, the latter are found by writing the finite Fourier transform

1 M1 .
Z(k, t)=K/I_ _ZO {(jAx, t)e ™ *UAD, (5.17)
j=
for
M M M
k— —‘7‘}'1,—74’2,...,7— 1,
o
T Ax
and its inverse
Mj2-1 o
{(jAx,t)= Z Z(k, t)e*usn, (5.18)
k=—M/{2+1

The spatial derivatives of { can be written as

g—i(ij,:) = Y Z(k tyikeurn), (5.19)

[kl < M/j2
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azc : 5 25 ik (jAX
a—z(JAx,t)= Y, Z(k,e)(— k*)eus, (5.20)
X k=-M/2+1

etc. The function {(x, t) is assumed to be some distribution with periodic
boundary conditions in the space variable. The period is normalised to be
27 for ease in presentation. This interval is discretised into M equidistant
points with spacing Ax =2xn/M, and the function {(x,¢) is numerically
defined only at these points. If the phenomenon is non-periodic, the (non-
normalised) length L is chosen sufficiently large so that all characteristic
features (such as soliton interactions or shock evolution) develop in this
length.

To study the stability of this scheme, we regard the vector v as a constant,
and enquire whether any single Fourier component, say e¢**at =0,
remains bounded or grows to become unbounded as time increases. In the
former case, it is stable, while, in the latter, it is unstable. The solution of
eq. (5.14) satisfying {® = {(x,0) = e= is given by

L(x, £y =e*™", (5.21)

The Fourier component €™ after time At becomes

C(X At) = ei](v(x—vAt) — ei]"xe—ik'mt
b

= gikxg+id = {1(say), (5.22)
where
¢=—k-vAt

so that, in accordance with eq.(5.15),

2 1 b)Y
C‘=[1+i¢——+-~+(lj,) ]c°

2!
= A ()(°. (5.23)

Thus, A,(¢) = X.f- o[ (i¢)'/1'] is the amplification factor corresponding to p
terms in the Taylor series (5.15). It is clear that stability requires |4,| < 1.
Gazdag has shown that, with p = 3,4, 7 and 8, this condition is satisfied for
—n < ¢ <= The amplification factor 1,(¢), being a complex quantity,
also introduces a phase error

¢,=arccos[Re(4,)/|4,]

which may lead to numerical dispersion. Gazdag has shown that, for p =
3,4,7 and 8, the relative phase error 6, = (¢, — ¢)/¢ remains small for any
given ¢.
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To demonstrate the use and efficacy of the pseudo-spectral approach,
Gazdag considered the evolution of the Taylor shock from discontinuous
initial conditions under the governance of the plane Burgers equation (cf.
sec. 5.6). He gave two approaches; the first requires the split of the equation
into convective and diffusive parts, while the second treats the equation asa
whole. We skip the first in view of the errors that may accrue from such a
split. The plane Burgers equation

U, + uu, = gum (5.24)

with the discontinuous initial conditions

u,, x<90,
”(x’0)={01 x>0}

was solved by the pseudo-spectral approach to establish in due time the
steady state solution

_1 W i
“-5“1[1 tanhza(x 2)] (5.26)

The solution u(t + At) in terms of u(t) was computed from the Taylor series
up to O(Ar)*:

(5.25)

At)? At)?

u(t + At)= u(t) + u(t)At + u,,(t)% + u,,,(t)(—:;%
where
U, = — uu, +§uxx,
0
Uy = — U, — u(ut)x + E(ut)xxa ( (527)
0

Upyy = — Uy Uiy, — zuz(ur)x - u(“tr)x + E(un)xx-

The right sides in egs. (5.27) are obtained from the values of the function u at
t via the finite Fourier transforms (see (5.17)—(5.20)). The domain of
integration

D={x0<x<L}

was partitioned into two subdomains: D=D,+ D,. The domain
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Do(0 < x < 0.6) had the distribution

0, 0<x<01,
u(x,t)=1¢ 0.5{1 —cos[(x —0.1)z/0.3]} 0.1<x<04,
1, 0.4 <x <06,

(5.28)

for all time during the computation. This ‘inert’ domain D, was chosen to
provide a smooth transition between the end points of D, as shown in
fig. 5.1, to assure periodicity over D, as well as to restrict the expansion of the
wave to the left. The data over D, (as a part of D) was used for the
computation of the space derivatives of u by the Fourier method, but was not
updated with time. The computation was advanced in time over the domain
D,. The mesh sizes were chosen to be At = 0.001, Ax = 0.01. The coefficient
o was chosen to be 0.01. The domain D was represented by 256 mesh
points. Fig. 5.1 represents the evolution of the discontinuous profile at
successive separations of 0.2 time units. The steady profile emerges at
about ¢t = 0.85. Table 5.1 shows the comparison of analytic and numerical
solutions for 6 =0.004, 0.01 and 0.02. While the overall error is of the
order of 0.01%; of the maximum value of #,, and the velocity of the wave
profile is 0.4999 (compared to the exact value 1), the forerunner of the
shock front shows some deterioration for the smallest (chosen) value of
0 =0.004. The discrepancy, Gazdag avers, may be attributed to the
truncation of the spectrum in wave number space so that in the shock

ol T
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Fig. 5.1. Solution of Burgers equation from discontinuous (step) initial
conditions. The time separation between any two consecutive plots is
0.2 units. The domain of integration is also shown (from Gazdag
(1973)).
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Table 5.1. Comparison of analytic and numerical results for Fisher’s
equation for the shock evolved from discontinuous initial profile (5.28)
under Burgers equation. The steady (Taylor) shock structure is given for
various values of 6 = 0.004, 0.01 and 0.02 ( from Gazdag, 1973).

u(x)

6 =0.004 6 =0.01 6=0.02

x Exact Computed  Exact Computed  Exact Computed

1.37 1.000 0.993 0.9975 0.9972 09524 09524
1.38 1.000 1.005 0.9932 0.9930 09239  0.9239
1.39 1.000 0.991 0.9818 0.9814 0.8805 0.8805
1.40 0.999 1.007 0.9520 0.9517 0.8171 0.8172
141 0991 0.979 0.8795 0.8792 0.7305 0.7305
1.42 0.901 0.919 0.7286 0.7285 0.6218 0.6218
1.43 0428 0428 0.4969 0.4969 0.4993 0.4993
1.44 0.058 0.062 0.2666 0.2667 0.3769  0.3768
1.45 0.005 0.005 0.1179 0.1180 0.2684  0.2683
1.46 0.000 0.000 0.0469 0.0469 0.1820  0.1819
1.47 0.000 0.000 0.0178 0.0178 0.1189  0.1189
1.48 0.000 0.000 0.0066 0.0066 0.0757  0.0756
1.49 0.000 0.000 0.0024 0.0024 0.0473 0.0472

domain, where high frequency (and therefore high wave number) compo-
nents dominate, there is a small loss of accuracy. More accurate representa-
tions of shocks or wave profiles with steep gradients would require higher
wave numbers, necessitating smaller mesh sizes and thereby raising the
computational cost.

5.5 Solution of Fisher’s equation by the pseudo-spectral
approach

We have given in considerable detail the analytic solution of Fisher’s
equation in sec.4.2.. In particular, we referred to the theorems of
Kolmogoroff et al. (KPP) to show how the self-propagating solution of
Fisher’s equation forms an intermediate asymptotic in the terminology
introduced in chapter 4. In the present section we shall verify some of these
analytic and stability results numerically using the pseudo-spectral appro-
ach, and, in the process, further elucidate the latter method. Here we follow
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Gazdag and Canosa (1974). We consider two types of initial value problems
for Fisher’s equation

Up = Uyy + u(l - u)s
0<ux,0)< 1, }—oo<x<oo. (5.29)
“Non-local’ initial conditions:
lim u(x,f)=1, lim u(x,t)=0, t>0. (5.30)
X—= —w X—+m
‘Local’ initial conditions:
lim u(x,t)=0, ¢=0. (5.31)

x— + 00
Furthermore, it is assumed that all x-derivatives tend to zero as x — + 0.
KPP proved the existence and uniqueness of the solution to the non-local
problem (5.29)—(5.30). Gazdag and Canosa extended the initial distribution
over 0 < x < L by imposing symmetry about the origin, u(x, 0) = u( — x,0),
and requiring that the solution u is periodic in space so that u(x + 2nL,t) =
u(x, t) for all integers n, positive or negative. This arrangement served two
purposes. First, both kinds of initial conditions, non-local and local, could be
simultaneously treated. The physical explanation for this is that two
profiles propagating in opposite directions have no effect on each other, if
the distance d, from the wave fronts to the origin is large compared to the
mean free path, which was taken to be 3 (equal to three times the non-
dimensional diffusion coefficient) for the non-dimensional form of the equa-
tion. Secondly, the periodicity requirements for the use of finite transform
were met. The length L (see fig. 5.2) was chosen sufficiently large so that the
profile could evolve from its initial discontinuous shape to its self-
propagating form in such a manner that the front identified by the point of
inflexion was sufficiently away from the end of the interval L. This was
ensured by terminating the numerical experiments as soon as the length 4,
over which u is non-null became rather close to L. Specifically, the number

dy

I'"‘\‘
1 e .’ ®p ‘; Y

ke
—L 0 d, | L 2L 3L

Fig. 5.2. Initial and boundary conditions for Fisher’s equation (from
Gazdag and Canosa (1974)).
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of mesh points chosen was N = 512, with mesh spacing Ax = 0.5 so that L
(half the length of the domain of evolution) had 256 points.

Gazdag and Canosa assumed that the nonlinearity and diffusion could
be separately treated without serious detriment to the final results. While,
as we mentioned earlier, this is strictly not true, the results based on this
assumption were found to be satisfactory. Thus, writing

u(xHD Im+ 1) = u(xn, tm) + Au(xﬂ, tm)At)
= WXps t) + A S (X, L AL) + Aglx,, 1y, At) (5:32)

where A denotes increment due to the relevant effect in time At. The
function f is governed by the linear diffusion equation

Jo= faxs (5.33)

with initial condition f(x,, t,) = u(x,, t,,), while g, representing the nonlinear
local interaction, is governed by the nonlinear first order equation

g, =9(1—g), (5.34)
with initial condition g(x,, t,,) = u(x,, t,,). The diffusion equation (5.33) was
solved by finite Fourier transform while eq.(5.34) was solved by Taylor
series in time, Thus, writing

N
fxm= 3 Flkjne
f;; Ht (5.35)
=2 —N<j<N,
ks NAx’ <J

substituting it in eq. (5.33) and equating coefficients of e!**» on both sides,
we have

O )= — Ky, =~ N+,
-N+2,..., N=1,N,
with the solution
Fkjt, )= F(k; tm)e—kaAt (5.36)

satisfying the initial condition at t = ¢,,. The increment AF over time Az to a
single Fourier coefficient becomes

AF(k;, by At) = (6759% — 1) F(k £,

and therefore the total increment A f due to (linear) diffusion over At is

N
Af (Xt At) = AF(kjt,, Ar)e*s*. (5.37)

j=-N+1
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The contribution due to nonlinearity, Ag, is obtained, say to order (A1)*, by
substituting

g:=9(1—9),

9. = (1 — 29)g,,

e = (1 — 29)9, — 2g,),
. Joe = (1 — 29)G1e — 6919:
nto

AG(Xps Lo, AL) = G(Xps b+ 1) — G(Xpy b)
4 3'g(x,, t) (AL)
i; g((%i )( i!) '

(5.38)

The truncation error in the computation of Ag is O((At)*). The computations
reported by Gazdag and Canosa were carried out with Ar = 0.01,ensuring a
very small truncation error due to discretisation with respect to time. The
space discretisations are also of a high degree of accuracy on account of the
use of the finite Fourier transforms. Since zero is a solution of the basic
equation (5.29), it is obvious that the initial round-offerror &(x,) at any point
x, introduced while computing Au is itself governed by eq. (5.29) (cf. Smith
(1978)). It may be expressed as a Fourier series

N
gx)= Y  E(kyes, (5.39)
j=-N+1
The two split effects, nonlinearity and diffusion, influence the round-off
error differently. Diffusion smooths out the distribution (5.39). It smears out
the rapidly oscillating higher modes (in the shock layer) more effectively. On
the other hand, in the tail of the wave, where u « 1, the local multiplication
process (5.34) operates so that du/dt ~u and u(t) =~ use’. This implies
exponential growth of errors; there would be points x, in the profile, where

u(x,) <&(x,)« 1.

After some time, the exponential growth of the round-off error at these
points will completely overshadow the exact solution u(x,,). Indeed this kind
of situation was encountered by Gazdag and Canosa. To obviate it, they
(artificially) cut off the tail and set the value of u equal to zero at all points
where |u(x,)| <5 x 107%, an empirically chosen value. Such a procedure
does affect the accuracy of the rest of the profile. However, good agreement
of their numerical results with the exact solution vindicated this truncation
of the tail. We shall revert to the discussion of this matter later in sec. 5.6 in
the context of N wave calculations. The formation of the tail and its
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(unstable) growth are not intrinsic to the numerical method used here. They
arise from the particular nature of the solution of the equation. The
truncation of the tail is also consistent with the physical nature of the
problem since the role of long distance dispersal in the spread of the gene is
negligible.

Since the numerical results related to Fisher’s equation have a direct
bearing on our analysis of sec. 4.2, we consider them in some detail. Fig. 5.3
displays the evolution of the wave of minimum speed with ¢ = 2 from the

1.0 j
0.8F
U
0.6
0.4r 1=0 =10 1=120
0.2F \K
0 . L x
0 10 20 30 40 50 60 70

Fig. 5.3. Evolution of step form initial conditions (for Fisher’s equ-
ation) into a wave with minimum speed ¢ = 2. The time separation
between any two successive curves is two units (from Gazdag and
Canosa (1974)).

N

60 70 80 90 100 110 120 130 140 ©

Fig. 5.4. Evolution of the wave of speed ¢ =4 into minimum speed
wave (from Gazdag and Canosa (1974)).
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KPP initial conditions in the form of a step function. Two successive curves
in this figure (and the following) are separated by two dimensionless time
units, and the wave speed as measured by the distance travelled by the point
of inflexion divided by time was checked to be 2, once the asymptotic self-
propagating régime is established after a certain initial evolution. Fig. 5.4
depicts the evolution of an initial self-propagating super-speed wave
u=u(x — ct) with ¢ = 4. For a certain initial time (about 8 units), the wave
propagates unchanged with speed ¢ = 4; thereafter, as the figure clearly
indicates, the tail of the wave exhibits a clear upward trend or flattening.
This is brought about by the truncation of the (theoretically infinitely long)
tail on the right, which, cumulatively, changes the form of the wave, leading
finally to the emergence of a minimum speed wave with ¢=2. These
computations demonstrate several features:

(i) These waves are stable to arbitrary non-analytic perturbations
of finite extent.

1.00
038
U
0.6
0.4
0.2

0 2 20 50 60 70 80 90 100 110 120 130 140 150160 170 180

Fig. 5.5. Evolution of the wave of speed ¢ = 6 into the minimum speed
wave (from Gazdag and Canosa (1974)).
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Fig. 5.6. Evolution of a ‘dented’ wave of speed ¢ = 4 into the minimum
speed wave (from Gazdag and Canosa (1974)).
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(i) Superspeed waves, after sufficient time, evolve into the wave of
minimum speed (see also fig. 5.5 for the evolution of the wave
with ¢ = 6 into minimum wave speed).

(iii) The truncation of the tail is essential for the stability of
numerical results as well as the correct depiction of the physical
picture, namely absence of long distance dispersal effect; the
evolution time for the minimum speed depends on the cut-off
point.

Fig. 5.6 shows an initial wave with ¢ =4 with a finite dent superposed
upon it. As the analysis of sec. 4.2 predicted, the perturbation of finite
extent, a finite dent, is smoothed out exponentially fast in time, and the third
profile (at ¢ = 4) is essentially the travelling wave of speed ¢ = 4. The later
evolution of this wave to one with minimum speed ¢ = 2 comes about in the
manner described earlier.

Fig. 5.7 shows an initial profile with a (non-analytic) spiky distribution.
Diffusion first precipitously smooths it down to a smaller height. There-
after, it gradually recovers its height (u = 1) under the influence of nonlinear
multiplication, and evolves in time to the wave of minimum speed. Tables
5.2 and 5.3 show the comparison of the analytic and computed results for
the waves with speeds ¢ = 4 and ¢ = 2 at different times. The function u(s),
s = x — ct, is compared at different distances which, in the wave frame, are

1.0
0.8
0.6
0.4

¢ = 0o,
0.2

0

Fig. 8.7. Evolution of a local spiky distribution into the minimum
speed wave (from Gazdag and Canosa (1974)).
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Table 5.2. Comparison of analytic (eq. (4.37)) and numerical
results for Fisher's equation for the wave of speed ¢ =4,

The wave profile u(s) computed at t = 2,4 and 6 is given

as a function of distance, measured in the wave frame, from the
point of inflexion of the wave (from Gazdag and Canosa

(1974)).
u
Analytic Computed Computed Computed
s att=2 att=4 att==6
—19.99 0.991 0.991 0.991 0.991
- 1799 0.986 0.986 0.986 0.986
— 1599 0.987 0.987 0.977 0.977
— 1399 0.965 0.965 0.964 0.964
—11.99 0.945 0.945 0.944 0.944
— 999 0914 0914 0914 0913
- 799 0.868 0.868 0.868 0.868
- 599 0.803 0.803 0.803 0.802
- 399 0.715 0.715 0.715 0.714
— 199 0.606 0.606 0.606 0.605
0.0063 0.484 0.484 0.483 0.484
2.0063 0.362 0.362 0.361 0.363
4.0063 0.253 0.253 0.253 0.258
6.0063 0.168 0.168 0.168 0.177
8.0063 0.107 0.107 0.107 0.121

measured from the point of inflexion of the wave. The analytic results
were derived in sec. 4.2. The time mesh here was chosen to be 0.01.

The excellent agreement between analytic and numerical values even
after 600 time steps (of size 0.01) demonstrates the accuracy of the pseudo-
spectral (or accurate space differencing) scheme. At t=6, there is a
perceptible change in the distribution of u near the tail from that given by
the analytic solution for ¢ = 4, reaffirming our earlier comments regarding
build-up of changes at the right tail and their propagation to the left
resulting ultimately in the emergence of the wave of minimum speed (see
Table 5.3 for the evolution of the profile at ¢ = 20).

Hagstrom and Keller (1986) have treated the boundary conditions for the
Fisher’s equation more carefully. They find that it is the initial data in the
right tail which determines the wave speed. They derive appropriate
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Table 5.3. Comparison of analytic (eq.
(4.37)) and numerical results for
Fisher’s equation for the wave of speed
¢ =2, similar to Table 5.2, at t =20
(from Gazdag and Canosa (1974)).

u
Computed
5 Analytic att=20
—18.08 0.999 0.999
— 16.08 0.999 0.998
— 14.08 0.998 0.996
—12.08 0.994 0.992
—10.08 0.986 0.984
— 8.08 0.967 0.964
— 6.08 0924 0923
— 408 0.836 0.836
— 208 0.678 0.678
- 008 0.447 0.447
1.924 0.215 0.214
3924 0074 0.069
5924 0018 0016

boundary conditions at the (finite) artificial boundaries, which replace
actual infinitely extending ones, by solving linearised problems using
Laplace transformation in time. They find that the solutions evolve to a
wave of speed ¢(B) provided the initial condition uy(x) ~e™#* as x - o0;

cf)=(01+p"/B,B<1,and c(p)=2,>1.

5.6 Non-planar N wave solution by the implicit and
pseudo-spectral finite difference approaches

We observed in secs. 3.4 and 3.7 that matched asymptotic expansions and
the generalised similarity solutions of ‘a related inverse function’ do not
solve the non-planar N wave problem in its entirety. While the former gives
shock centre as long as the shock is thin, shock displacement due to
diffusion is small, and the shock conforms to Taylor structure, the latter
gives asymptotic formulae for the Reynolds number for large times. There
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are clear analytic gaps. There is a time régime when the shock is quite thick
(we shall give its quantitative measure presently) for which the asymptotic
generalised similarity solution referred to above does not provide even the
Reynolds number. A complete analytic solution for the non-planar Burgers
equation describing N waves does not seem feasible at present, chiefly
because no Hopf—Cole like transformation to linearise this equation has
been found. We must, therefore, resort to numerical solution and fill the
analytic gaps, verifying, besides, the results with known analytic solutions
in different time régimes. This is what we attempt to do in the present section.
In the process, we also bring into focus the respective advantages of the
implicit finite difference scheme and the pseudo-spectral approach by direct
comparison of the numerical results obtained via each method.
We recall that the non-planar Burgers equation is

u 0

3 = iuxx, (540)

u, +uu, +J
where the variables have been defined in secs. 3.4and 3.7,and J =0, 1, 2 for
plane, cylindrical and spherical symmetry, respectively. (A slight change in
notation has been introduced for convenience.) Eq.(5.40) is to be solved
subject to the initial sawtooth profile of half-length I, at t =¢;:

u(x, t) = {x’ x| < [°’} (5.41)

0, Ix|>1l,.

This is the time when a steepening of a wave under the lossless equation
(6 =01in eq.(5.40)) has resulted in (a discontinuous) shock formation. The
subsequent evolution of the shock takes place under the competitive
influences of nonlinear convection, a small diffusion, and geometrical
spreading when J =1 or 2. We have already given a slightly different
formulation of this problem due to Crighton and Scott (1979) in sec. 3.4.
We shall refer to it again when we need to compare the results. The initial
value problem (5.40)—(5.41) differs from that of Sachdev and Seebass (1973) in
that the initial profile, in contrast to (5.41), had been endowed with a Taylor
structure in the beginning itself, thus missing the embryonic stage
altogether. This paper used an implicit finite difference scheme which gave
adequate results since a smooth profile presents no serious computational
difficulties. However, as pointed out by Crighton (1979), the numerical
study by Sachdev and Seebass was not carried out far enough to the linear
(old-age) regime. The work by Sachdeyv, Tikekar and Nair (1986), which we
detail now, gives a comprehensive numerical study remedying the short-
comings in Sachdev and Seebass (1973). Another contribution of the latter
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paper was the derivation of the Reynolds number formulae for J = 1, 2, by

assuming that the slope of the wave profile at the node is given for all time
by the inviscid solution

<
X/zt, le\ls} J=1,

Y= 0, |x|>1, (5.42)
x/tlnt, |x|<1, _
0, [x|>1,

Thus, the slope u,(0, t), according to eq.(5.42),is 1/2t and 1/tIntfor J = 1,2,
respectively. The lobe Reynolds number of the N wave is defined as

R= —J udx. (5.43)

Dividing eq.(5.40) by 4 and integrating with respect to x from 0 to oo, we
easily derive a first order (ordinary) differential equation for the Reynolds
number. The derivative u, is zero at x = co and is obtained from eq. (5.42) at
x =0. The first order ordinary differential equation in R is integrated to
provide (cf. sec. 3.7)

1/2
$(2)" -
R= (5.44)
t
c_1idyr 5,
t 2t J,Iny

where ¢, and ¢ are constants of integration which are evaluated by making
use of initial conditions. Thus, for J = 1 with ¢; = 1.25 and R, = 23.03, ¢, was
found to be 692.08, while for J =2, with ¢, =261 and R, = 23.03, the
constant ¢ was found to be 60.109. These initial conditions refer to an
N wave with Taylor shock structure embedded in it. As we shall see,
eq. (5.44) gives a very accurate description of the N wave Reynolds number
up to R ~ 1. It fails in the low Reynolds number (near-linear and linear)
régimes, suggesting the pervasiveness of diffusion in the entire wave profile
at this stage so that even the slope at the origin is not given by the inviscid
solution (5.42).

Implicit difference scheme

Eq. (5.40), in the difference form according to the Douglas—Jones scheme
(5.6)—(5.7), is written out as
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Uiy 1,j+4172 2(1+ 2h2/5k)“i.j+ 12 T Ui-1 12

2k h
=2“i.f[“5—k+§3(“i+ 1,j = Ui-1,5)
=" | predict 5.45
250 + Dk (predictor), (5.45)

h 2h?
(1 ~ 3t 1/2)”i+ Lj+1 7~ 2(1 +_I?)ui’j+ '

h h
+ 1+3ui,,-+1/z Ui yj+1= _1+3ui,j+1/2 Upr1,j

2h? h
+2 1_5_k u,',j_gui—l,jui,j+l/2

2Jh2ui,j+ 1/2

ok + ) (corrector). (5.46)

— Ui, t+
Sachdev and Seebass used initial conditions as given by eq.(5.42),
supplemented by thin shock layers at the head and the tail of the N wave,
wherein the distribution, according to Taylor structure, is

Umax
U= 1+ e“mmt(x_x-)/é' (547)

Here u,,,,, is the value of u at x = x,,,,, and x; is the centre of the thin shock
such that it is situated half-way between the points where u = 0.95u,,,, and
u =0.05u,,,. Assuming these initial values, the solution at the subsequent
time is obtained by an iterative scheme that assumes that the solution at a
few points on the left of the node of the N wave is anti-symmetric with
respect to those on the right. The system of linear algebraic equations at
t;j+1,2 and t;,  is tridiagonal if the value of u at the extreme left-end point
can be guessed. This requires changing the value of u at this point at ¢;, ,,
and ¢;,, until the required anti-symmetry condition is satisfied to the
desired accuracy. As the computation proceeds, the wave spreads to the
right (and left) and new points have to be added at successive times, where
the value of u is significant (say greater than 107%). As the pulse grows in
length, say, becoming twice its original length, the mesh size is increased to
keep the matrix of the system of linear equations (5.45)—(5.46) from
becoming unwieldy. The calculations were repeated to ensure that the
accuracy of the solution did not suffer due to this change of mesh size. First,
the numerical scheme was checked with reference to the exact solution of



176 Numerical solution of nonlinear diffusion equations

the plane Burgers equation

. x/t _ X/t
- 1 +ex2/261/(eR _ 1) - 1+ (t/to)uz ex2/26l :

(5.48)

The numerical and exact solutions with initial time ¢; = 1, initial Reynolds
number R;=3, and ¢, =364.26 (cf. eq.(5.48)) were found to compare
extremely well. We shall however present some recent numerical results by
the implicit scheme as well as those by the pseudo-spectral approach in
what follows (Sachdev, Tikekar & Nair, 1986).

Pseudo-spectral approach

As we mentioned earlier, if the initial profile is smooth, the implicit finite
difference scheme is adequate and gives good results. The errors do not
accumulate and the wave profile is quite accurately determined over its long
evolution. In contrast, our experience has shown that a discontinuous
initial profile is not properly handled by an implicit scheme. The
discontinuous profile does not easily settle down to one with a smooth
Taylor shock and the errors introduced are so large that they are likely to
vitiate all subsequent computations. To circumvent these difficulties, we
had recourse to the pseudo-spectral approach (see sec. 5.3) which proves
particularly useful in the early stages of the evolution of the sawtooth
profile. Once the steep shock régime has been traversed and the Taylor
shock has formed, we switch over to the implicit scheme which then gives
good results over the entire evolution of the wave with a computational
time which is of the order of one tenth that for the pseudo-spectral
approach.
We write the finite Fourier transform

1 K1 .
u(k;, t)= X IZO u(lAx, t)e ~tksitx (5.49)
and its inverse

ulAx, )= Y ufk,t)essx (5.50)
ki <K/2
over the interval (0,2%) of x. Here, the spatial mesh size Ax is equal to
2n/K, K denoting the number of mesh points; k; are wave numbers
varying between 0 and K — 1. The spatial derivatives easily follow from
eq. (5.50):
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u(lAx,0y="Y  (ikpia(k; ) e,

lkjl < K2

ullAx,t)= Y (ik))?dk; 1) s (5.51)

Ik <K/2

The solution at (t + At) is obtained from the Taylor series

(At)? (Ar)?
TR

u(x,t + Aty =u(x, t) + (A, + U+
where the time derivatives u,u, etc. are substituted from the basic
equation (5.40) in terms of the spatial derivatives as follows:

u
U= —uu, — Jﬂ + (0/2)uy,

Uy = — Uty — (1), — (J/26)14,

+(Ju/26%) + (8/2) (1)1 (5.52)
Uy = — Ughy — 2ttty — Uthy); — (J/20),,

+ (/2 — (Ju/t%) + (6/2) (th) -

The spatial derivatives on the right hand sides of egs. (5.52) were obtained
from the distributions of u, u,, u,, etc. successively, using egs. (5.51).

The Taylor series for u(x, t + At) was truncated after four terms so that
the error is O(At)* (cf. Gazdag (1973)). The initial domain (0, 27) was
divided into 256 mesh points in which the (initial) sawtooth profile u = x in
|x| < l, occupied only 80 points so that the profile could grow due to
diffusion, as it evolved. We describe the actual calculations with reference to
the plane Burgers equation, for which the exact solution is known for all
time so that the veracity of the numerical methods can be checked.

Plane Burgers equation

The plane Burgers eq.(5.40) with J = 0, subject to initial condition (5.41),
was solved using the pseudo-spectral approach. The spatial domain was
chosen to be (0, 27) to satisfy periodicity conditions required by the finite
Fourier transform. The initial sawtooth was placed in the middle of the
domain with adequate space on either side. The mesh sizes were chosen to
be Ax =0.005 and At =0.01. Other parameters were specified as follows:
lo =0.205, Uy = u(ly, t;) = 0.205, 6 = 0.001 and t; = 1 (see sec. 3.4). The initial
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Table 5.4. ‘Convergence’ of value of t,
as time increases (see eq. (5.53))

t R, 10710,
1.0 21.354 0.18793
11 21.488 0.22534
12 21.446 0.22556
13 21.406 0.22562
14 21.369 0.22564
1.5 21.334 0.22565
1.6 21302 0.22564
1.7 21.272 0.22563
18 21.243 0.22563
1.9 21.216 0.22563
20 21.190 0.22563

number of mesh points was taken to be 256. Soon after the computation
commenced, a tail of 0(10 %) was observed which was artificially cut off.
Such a spurious tail of a smaller magnitude appeared in the next few time
steps, which was again cut off. As the computation proceeded, the tail did
not reappear. A similar situation was also encountered by Gazdag and
Canosa (1974). We computed the value of the constant t, which appears in
the solution (5.48), namely

to = (R — 1)%t,, (5.53)

from the computation of Reynolds numbers R, at consecutive times ¢ = t,.
Table 5.4 shows the convergence of t, to a definite finite value before ¢ =~ 2.
This signalled the end of the ‘embryonic shock’ regime and emergence of the
shock with Taylor structure. At this stage, the exact solution (5.48) becomes
applicable. Table 5.5 shows that the numerical solution agrees with exact
solution to five decimal places. Table 5.6 shows the values of the Reynolds
number, both numerical and analytic as obtained from the formula

R=In[1 +(to/1)"'?], (5.54)

from t =2 to t = 15. They agree to four decimal places. At about ¢ x 6, the
Taylor shock becomes thick of order /,/4 so that the predictor—corrector
implicit scheme was switched on to avoid expensive computation. This
scheme gives good results for an initial profile with sufficiently smooth



Table 5.5. Comparison of numerical solutions of Burgers’ equation,
computed by PS* and IMP* methods, with exact solution at t=13
(smooth initial profile at t =2 was obtained from the discontinuous one at
t =1 using PS method).

Difference
X Ump Upg Exact
(1) 2 3) (4) 24 (3)-4)
0.01 0.00333 0.00333 0.00333 00 00
0.11 0.03667 0.03667 0.03667 00 0.0
0.21 0.07 0.07 0.07 00 00
0.23 0.07667 0.07667 0.07667 0.0 0.0
0.25 0.08333 0.08333 0.08333 0.0 0.0
027 0.09 0.08999 0.08999 0.00001 0.0
0.29 0.09661 0.09658 0.09658 0.00003 0.0
0.31 0.10283 0.10263 0.10262 0.00021 0.0000t1
0.33 0.10479 0.10392 0.10392 0.00087 0.0
0.35 0.07413 0.07454 0.07455 0.00042 —0.00001
0.37 0.01630 0.01704 0.01707 —0.00077 —0.00003
0.39 0.00165 0.00163 0.00164 0.00001 —0.00001
041 0.00013 0.00012 0.00012 0.00001 00
043 0.00001 0.00001 0.00001 0.0 0.0

Table 5.5 (contd.). Solution of Burgers’ equation at t = 15 (smooth initial
profile at t = 14 was obtained from the discontinuous profile at t = 1 using
PS method).

Difference

X Upmp Upg Exact

(1) () (3) ) -4 (3)-(4)
0.03 0.002 0.002 0.002 0.0 0.0
0.33 0.022 0.022 0.022 0.0 0.0
0.63 0.04196 0.04196 0.04196 0.0 00
0.66 0.04386 0.04385 0.04385 0.00001 0.0
0.69 0.04543 0.04539 0.04539 0.00004 0.0
0.72 0.04562 0.04550 0.04550 0.00012 0.0
0.75 0.04049 0.04037 0.04037 0.00012 0.0
0.78 0.02453 0.02474 0.02474 0.00021 0.0
0.81 0.00833 0.00843 0.00843 —0.00010 0.0
0.84 0.00194 0.00192 0.00192 0.00002 0.0
0.87 0.00038 0.00037 0.00037 0.00001 0.0
09 0.00007 0.00007 0.00007 00 0.0

*PS stands for pseudo-spectral method while IMP denotes (predictor—corrector)
implicit scheme.
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Table 5.6. Comparison of the exact Reynolds numbers (eq. (5.54)) with
those obtained numerically using PS method for the plane Burgers
equation. The table also gives the slope u,(0,t).

Slope
t R (Num) R (Exact) Num Exact
20 21.19044 21.19044 0.50000 0.50000
30 20.98770 2098771 0.33334 0.33333
50 20.73229 20.73230 0.20000 0.20000
70 20.56402 20.56406 0.14286 0.14286
9.0 20.43838 20.43840 0.11111 0.11111
11.0 20.33804 20.33806 0.09091 0.09091
13.0 20.25451 20.25454 0.07692 0.07692
15.0 20.18295 20.18299 0.06667 0.06667

shocks. Table 5.5 confirms this accuracy by comparison with the exact
solution and the results of the pseudo-spectral approach at several time
instants. Table 5.5 shows that the implicit scheme at an early time, say ¢t = 3,
has an error O(9 x 10~ %} in the shock layer while the pseudo-spectral one
has an error O(3 x 10™°). As the profile becomes smoother, say at t = 6, the
error by the pseudo-spectral approach reduces to O(107%) while the
implicit scheme has still an error O(3 x 10™*) in the shock layer but a
smaller one O(10~ %) elsewhere. This inaccuracy in the implicit scheme in
the steep shock layer seems intrinsic to it, but, fortunately, the error does
not build up as time progresses, as evidenced by the solutions at ¢t = 3 and
t =15 (see Table 5.5) and those at much later times (see Table 5.7). These
tables show the accuracy of the implicit scheme in the large Reynolds
number régime. The smaller Reynolds number régime, say, of order 3 or less
is covered by the implicit scheme much more accurately (see Sachdev and
Seebass (1973)). It is interesting to note that refining the mesh size leads to a
much higher accuracy for the pseudo-spectral approach, but does not
improve the accuracy of the implicit scheme in the shock layer (see
Table 5.8). As the wave evolves, the non-vanishing part of the profile
occupies a larger domain. At ¢t = 100, for example, there are 1200 mesh
points in the non-zero part of the profile. To conserve the computational
expense, the mesh size was doubled several times to be able to do with 256
points only. The accuracy was, however, ensured by reference to the exact
solution. For non-planar cases for which no exact solution is available, the



Table 5.7. Numerical (IMP) and exact solutions of plane Burgers equation.

wix, 10) wx, 50) w(x. 100) i, 200) 400 x,500)

x MNum Exact = MNum Exact x MNum Exact x Num Exact x Num Exact x Mum Exact
) 00020 D000 [T L0020 DUO0OC LT OO0016 Q000G
0005 000050 000050 0.02 000040 0.00040 0.04 0.00040 0.00040 0 000120 000120 048 000120 00120 0EE 00073 0007
0.05 0.00500 0.00500 0.12 0.00240 0.00240 0.24 0.00240 0.00240 i m m SiEhEh = m 0.00336
.10 0.01000 0.01000 0.22 000440 0.00440 0.44 0.00440 0.00440 e Dot i m“m"’n e WM
0.20 0.02000 0.02000 032 0.00640 0.00640 0.64 0.00640 0.00640 T W“““m et 28 oosm mmm 92 W“"“",' e
0.40 0.04000 0.04000 0.42 000840 0.00840 0.84 0.00840 0.00840 124 00060 000620 248 000620 0006 400 0007 000735
0.5 0.05000 0.05000 0.52 0.01040 0.01040 104 001040 0.01040 14 000TH 00T 8 0KTH0 00070 B 00065 000699
0.55 0.05475 0.05475 0.62 0.01240 0.01240 1.24 001240 0.01240 164 000320 000320 ‘000817 0.00817 448 000133 000145
0.56 0.05555 0.05550 072 001440 0.01440 1.44 0.01440 001440 5 toea onies. | aer anomer o MeeEGEeS
0.57 005618 0.05611 092 001840 0.01840 1.64 001638 0.01635 M ontns prerre 0 0ness 000821
0.58 0.05650 0.05640 102 0.02040 0.02040 1.76 001734 0.01719 248 001211 001204 408 000050 L0056
0.59 005628 005615 1.12 002238 002238 180 001717 0.01740 pL) 001210 001201 448 0.00002 00002
0.60 0.05510 0.05494 122 0.02420 0.02418 1.82 001703 0.01673 S5 orer byriify
0.65 0.02076 0.02100 1.28 0.02466 0.02466 2.04 000325 0.00350 S5 0oz e
M 000001 000001

0.7 000112 000112 1.32 002377 0.02366 224 0.00007 0.00006




Finite difference solutions of nonplanar N waves 183

Table 5.8. Solution of plane Burgers equation at t = 3, obtained by using
different mesh sizes and different methods. Initial profile at t =2 was
taken to be smooth.

Ump tmp Ups Ups
X Ax =0.01 Ax=0005 Ax=001 Ax=0005 ug,,
(1) @) 3) ) (5) (6)
0.01 0.0033334  0.0033334  0.003333 0.0033334  0.0033333
0.03 00100002 00100002 00100007 0.0100002 0.01
0.05 0.0166670  0.0166670  0.0166678  0.0166669  0.0166667
0.07 0.0233338  0.0233338  0.0233350  0.0233337  0.0233333
0.09 0.0300006  0.0300006  0.0300021  0.0300005 0.03
0.11 0.0366674  0.0366675  0.0366693  0.0366673  0.0366667

0.13 0.0433342  0.0433343  0.0433365  0.0433341  0.0433333
0.15 0.0500010  0.0500010  0.0500037  0.0500009  0.05

0.17 0.0566678  0.0566679  0.0566710  0.0566677  0.0566667
0.19 0.0633347  0.0633348  0.0633383  0.0633345  0.0633333
0.21 0.0700015  0.0700016  0.0700057  0.0700013  0.0699999

0.23 0.0766683  0.0766684  0.0766730  0.0766679  0.0766663
0.25 0.0833348  0.0833343  0.0833390  0.0833331  0.0833312
0.27 0.0900003  0.0899947  0.0899963  0.0899895  0.0899869
0.29 0.0966602  0.0966128  0.0965877  0.0965800  0.0965760

0.31 0.1033360  0.1028331  0.1026357  0.1026284  0.1026216
0.33 0.1084517  0.1047879  0.1039273  0.1039248  0.1039148
0.35 00712843  0.0741339  0.0745553  0.0745409  0.0745504
0.37 00144973 00163013  0.0170474  0.0170449  0.0170647

0.39 00016943  0.0016499  0.0016279  0.001632F1  0.0016365

accuracy was confirmed by occasionally repeating the computations with
both refined and crude mesh sizes (see Table 5.9 for the cylindrical case).

To compare the two numerical schemes, we also treated the evolution of
the discontinuous initial profile by the implicit scheme. It was observed that
the error in the numerical solution was O(10 ~3); besides, the value of the
parameter t, would oscillate and not converge for a long time.

The position of the shock centre X, according to Crighton and Scott
(1979), is

lox=X=1,TY*(1 —¢ln T) (5.55)
where

i
T=1+22

Uolt — t)/lg, &=06/(y + DUol,, (5.56)
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Table 5.9. Effect of change of mesh size on the
solution for the cylindrical Burgers equation. The
table shows the solutions at t = 100, obtained by
using Ax =0.005 and Ax =0.02. The initial
profile at t = 1 was taken to be discontinuous.

u(x, 100) *u(x, 100) Difference
x Ax =0.005 Ax =0.02 2)-(3)
mn @ 3) 4)

0.08  0.000356 0.000356 0.0
0.16  0.000700 0.000700 0.0
0.24  0.001017 0.001017 0.0
0.32  0.001290 0.001291 ~— 0.000001
040 0.001500 0.001497 0.000003
048 0.001612 0.001612 0.0
0.56  0.001613 0.001613 0.0
0.64 0.001492 0.001492 0.0
0.72  0.001266 0.001265 0.000001
0.80  0.000980 0.000978 0.000002
0.88  0.000689 0.000688 0.000001
096  0.000442 0.000441 0.000001
1.04  0.000259 0.000258 0.000001
1.12  0.000140 0.000139 0.000001
1.20  0.000070 0.000070 0.0

*The initial mesh size Ax =0.005 was doubled twice.

and y = 1.4 (see sec. 3.4 for definitions of Uy, I, etc.). The numerical shock
centre (see Lighthill (1956)) is approximated by

X=(X,+X)/2 (5.57)

where X, and X, are spatial co-ordinates of the points with u =0.95u,,,,
and u = 0.054,,,,, respectively, and u,,, is the maximum amplitude of the
wave. The values of the shock centre thus obtained differ from eq. (5.55) by
less than 7% up to ¢t~ 30. Table 5.10 compares these results and also
contains the shock width

S=X,-X,. (5.58)

The shock width at t = 500 is about 2.9 times the initial (half} length of the
wave profile. Table 5.10 also includes the maximum of the difference
between the numerical shock structure and the Taylor shock structure
given by eq.(5.47).
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Table 5.10. Shock details for plane Burgers equation, t;= 1, & = 0.0099
(see eq. (5.55)).
Xmax = location of the point of maximum amplitude u,,,,.
ug = maximum of the difference between Taylor-shock structure
and numerical shock structure.
CS - Crighton and Scott (1979).

Shock centre

Shock Difference
t Xmax  Umax  Width Numerical CS (5)—(6) g Ug/Upax
(t) (2) 3 @ (3) (6) (7) @) ©)
1.1 02 0.180 0.020 0.218 0.217 0.001 0.027 0.151
1.3 0216 0.162 0027 0.238 0.238 0.0 0.014 0.088
1.5 0232 0.150 0.033 0.254 0258 —0.004 0.025 0.169
20 0267 0.126 0.039 0.292 0302 -0.01 004  0.309
25 0296 0.115 004 0.328 0.340 —-0.012 0.045 0.392
30 0324 0.105 0.045 0358 0373 —-0.015 0.046 0.442
35 035 0.097 0.048 0385 0404 —0.018 0046 0478
40 0373 0091 0051 0413 0433 -0.02 0.045 0.501
50 0416 0081 0.056 0460 0485 —0.025 0044 054
100 0582 0057 0.08 0.646 0.687 —0.041 0.034 0.601
150 0708 0.046 0.099 0.787 0.840 —0.053 0.028 0.618
200 08t 004 0.114 0906 0.969 —0.063 0.025 0.623
300 0992 0032 0.14 1.104 1.183  —0.079 0.021 0.638
500 1273 0025 0.18 1415 1.521 -0.106 0016 0.644

Table 5.11. Reynolds numbers for plane Burgers
equation at different times as obtained from numerical
(IMP) and exact solutions. This table also gives u, (0, ).

R u (0, )

t Numerical Exact Numerical Exact

20  21.19044 21.19044 0.50000 0.50000
30 2098770 20.98771 0.33334 0.33333
50  20.73211 20.73230 0.20000 0.20000
100  20.38545 20.38572 0.10000 0.10000
150  20.18287 20.18299 0.06667 0.06667
200  20.03925 20.03915 0.05000 0.05000
500  19.58110 19.58100 0.02000 0.02000
1000  19.23382 19.23444 0.01000 0.01000
2000  18.88652 18.88785 0.00500 0.00500
3000  18.68374 18.68512 0.00333 0.00333
4000  18.53919 18.54127 0.00250 0.00250
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The small discrepancy here confirms that, in this high Reynolds number
régime, the shock evolves according to Taylor structure. The values of the
Reynolds number, analytic and numerical, agree to five significant places
(see Table 5.11). The slope u,(0, t) is also given in Table 5.11 and agrees very
closely with that according to the inviscid solution u = x/t.

The plane N wave decays very slowly; the value of the lobe Reynolds
number changes from 21 at ¢t =1 to 18.1 at ¢t = 500. The verification of the
numerical results in the high Reynolds number régime was terminated at
this stage. The diffusion of the plane N wave is shown in figs. 5.8 and 5.9.

0.22 4
0.27

-0.2

Fig. 5.10. N wave solution of cylindrical Burgers equation: embryo
shock to Taylor shock.
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Table 5.12. Shock details for cylindrical Burgers equation, Ty = 1.2,
£=0.0165 (see eq. (5.60)); abbreviations are explained in Table 5.10

Shock centre

Shock Difference
t Xmax  Wmax ~ Width Numerical CS (5)-(6) U, Uy tax
(1) (2) 3) (4) (5) (6) ) (8) 9)
1.0 0221 0.108 0.035 0.249 0250 —0.001 0013 0.118
20 0255 0061 0057 0.297 0301 —-0.004 0011 0.176
30 0275 0044 0073 0.330 0.334 —-0004 0.008 0.182
40 0291 0034 0087 0355 0359 —0.004 0006 0.184
50 0305 0028 0.1 0.377 0.380 —0.003 0005 0.184
60 0314 0024 0.113 0395 0.397 -0.002 0004 0.184
7.0 0323 0.021 0125 0411 0412 -0.001 0.004 0.185
8.0 0330 0019 0.135 0426 0.426 0.0 0004 0.185
9.0 0337 0017 0.145 0440 0.438 0.002 0003 0.186
100 0343 0015 0154 0452 0.449 0.003 0.003 0.197
150 0.368 0011 0.196 0506 0.493 0.013 0.003 0.239
20.0 0387 0.008 0232 0.548 0.526 0.022 0.002 0.267
300 0414 0006 0293 0615 0.575 0.041 0.002 031t
40.0 0436 0004 0346 0670 0.610 0.060 0.001 0.341
50.0 0437 0.003 0391 0.717 0.639 0.078 0.001 0.354
100.0 0.521 0002 0.570 0.898 0.762 0.171 0.001 0412
1500 0573 0001 0705 1.03 0.775 0.26 0.0004 0.427

Cylindrical Burgers equation

The initial discontinuous profile for this case was taken to be the inviscid
solution

X/zti, |X|<lo,} (5 59)

ux, ) = {0, x| > o,

where t; =0.5, [, = 0.205 and R(t;} = 21.0125. The transition of this profile
to one with Taylor shock via embryonic shock stage is shown in fig. 5.10.

Table 5.12 gives the shock details including the shock centre as provided
by Crighton and Scott (1979), namely

tox=X=10T1/2{1—§[T—1+(T0—1)1n Tj}, (5.60)
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where
£E= 25/(? + I)UoloTo,
T=1+(y+ DUy(t}*t'? = t)/ly
and
1
T,="F U,
ly

We take U, =1, and é = 0.001 for j = 1,2 just as for j = 0. The numerical
shock centre agrees with eq. (5.60) up to ¢t = 25, with an error less than 5%,
This is the stage when the shock becomes rather thick, approximately 1.4/,
long after the assumption of a thin shock underlying the analysis of
matched asymptotic expansions has broken down. It is interesting that the
matched asymptotic expansion gives good results thus far. The comput-
ations were carried from ¢t=0.5 to r=2000. Figs. 5.10-5.12 show the
evolution of the wave in three typical time régimes — embryo/Taylor shock,
thick shock and old age. The Reynolds numbers — numerical, analytic (see

10%u
1.0 4

t=20
0.8+

0.4 t=50

0.24

—1.5

Fig. 5.11. N wavesolution of cylindrical Burgers equation: thick shock
régime.
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eq.(5.61) below) and by eq.(5.44) are given in Table 5.13. This table also
contains the slope u,(0, t) = 1/2t as calculated from the inviscid solution as
well as from the numerical solution. The two agree to three decimal
places up to t ~ 100 when R ~ 1. Over this duration, the numerical value of
the Reynolds number also agrees with that by eq.(5.44). After this time,
eq. (5.44) begins to fail so that at t ~ 1000, eq. (5.44) gives a negative value of
the Reynolds number! Thus, the validity of eq.(5.44) is limited to higher
Reynolds numbers R > 1 only.

The generalised similarity solution of the ‘inverse function’ in sec. 3.7 led
to the following expression for Reynolds number:

R = (@02 +(1/tb3) 2In (¢ + /b2 (V2 + 1/bY). (5.61)

Table 5.13 shows that eq.(5.61) gives good results for ¢ > 300 and the
accuracy improves with time, confirming its asymptotic nature. The values
of the constants in eq.(5.61) were determined by matching it with the
numerical solution at ¢t =500 and ¢= 1600. These were found to be

10%u
1.04
t = 1000
0.8+
0.6 = 1400
0.4+
t=2000
0.2
S B
T T > X
0 2 4 6
--0.2
~-0.4
-—-0.6
-—-0.8
—1.0

Fig. 5.12. N wave solution of cylindrical Burgers equation: old-age
régime.
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Table 5.13. Reynolds numbers for cylindrical Burgers equation at different
times: numerical, and analytic according to eqs. (5.44} and (5.61) with t, =
692.08, &'/ = — 4.716 and b3 '/? = 26.44. Numerical and analytic

(eq. (5.42)) values of u(0,t) are also given.

R 1,(0,¢t)

t Numerical eq. (5.44) eq.(5.61)  Numerical Analytic
50 6.52471 6.52365 5.61662 0.10039 0.10000
10.0 4.46658 4.46647 3.84512 0.05014 0.05000
200 3.01153 301183 2.59951 0.02502 0.02500
50.0 1.72225 1.72107 1.50794 0.00976 0.01000
100.0 1.08011 1.07054 0.97085 0.00447 0.00500
150.0 0.80369 0.78234 0.73931 0.00269 0.00333
200.0 0.64448 0.61054 0.60448 0.00182 0.00250
250.0 0.53965 0.49329 0.51440 0.00132 0.00200
350.0 0.40882 0.33949 0.39940 0.00080 0.00143
450.0 0.32989 0.24036 0.32781 0.00053 0.00111
550.0 0.27683 0.16968 0.27831 0.00038 0.00051
650.0 0.23854 0.11602 0.24178 0.00029 0.00077
750.0 0.20969 0.07348 0.21357 0.00022 0.00067
850.0 0.18711 0.03869 0.19106 0.00018 0.00059
950.0 0.16885 0.00955 0.17264 0.00015 0.00053
1050.0 0.15374 —0.01582 0.15726 0.00012 0.00048
1150.0 0.14132 —0.03687 0.14420 0.00010 0.00043
1250.0 0.13072 — 0.05579 0.13297 0.00009 0.00040
1350.0 0.12160 —0.07255 0.12320 0.00008 0.00037
1450.0 0.11367 —0.08756 0.11462 0.00007 0.00034
1550.0 0.10671 —0.10108 0.10702 0.00006 0.00032
1650.0 0.10055 —0.11336 0.10024 0.00005 0.00030
1700.0 0.09773 —0.11909 0.09712 0.00005 0.00029
1800.01 0.09254 —0.12982 0.09133 0.00005 0.00028
1900.0 0.08787 —0.13969 0.08610 0.00004 0.00026
2000.01 0.08364 —0.14882 0.08133 0.00004 0.00025

by 2 =26.44 and &'/2 = — 4.716. At a later stage of the evolution of the N
wave, the linear (old-age) solution

u=c,xt Ze x4 (5.62)

holds. Here, ¢, was again found by matching with the numerical solution to
be about 161.02. Table 5.14 shows the analytic and numerical values of u,,,,



192 Numerical solution of nonlinear diffusion equations

Table 5.14. ‘Old-age’ solution for cylindrical Burgers equation: numerical,
and analytic according to eq. (5.62) with ¢, = 161.02.

10%u,,,, Reynolds numbers
Difference

t Numerical Old-age (3)-(2) Numerical  Old-age
) ) (3) @) 5) (6)
1550 0.504 0.502 —0.002 0.1067 0.1067
1600 0.482 0.480 —0.002 0.1035 0.1034
1650 0.462 0.459 —0.003 0.1005 0.1002
1700 0.442 0.440 —0.002 0.0977 0.0972
1800 0.408 0.402 —0.006 0.0925 0.0919
1850 0.392 0.387 —0.005 0.0901 0.0890
1900 0.378 0.372 —0.006 0.0879 0.0871
1950 0.364 0.358 —0.006 0.0857 0.0848
2000 0.350 0.343 —0.007 0.0836 0.0827

and Reynolds number in the old-age régime. The agreement is quite
satisfactory, in spite of the long time interval over which the computation
was carried out.

Spherical Burgers equation

In this case, the initial discontinuous profile is again the inviscid solution

x/tllntl, le <lo,}

03 Ix' > IO, (5.63)

“(x’ ti) = {

where t,=1.76, I;=0.2, and R(t)=20. This profile evolves through
embryonic shock stage to one with a Taylor shock as shown in fig. 5.13.
Table 5.15 shows the shock details in the manner discussed earlier for the
cylindrical case. The Crighton—Scott formula for the centre of the shock,

lox =X = 1,TV?{1 — ¢[Ei(T/T,) — Ei{(1/T,)1} (5.64)

where
g=d8e " YTo/(y + HU,l,,

Ei(x) = f t-1etde,
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+1
T=1+ }’T (Uoti/lo) In(¢/t),

y+1

To=731,

Uot,

gives an accurate description of the Taylor shock up to ¢ ~ 16 with an error
less than 5%. At about this time the shock width is O(l,). Figs. 5.13-5.15
display the typical form of the N wave when it has an embryo/Taylor
shock structure, a thick shock, and is in its old age, respectively. The
Reynolds number as given by the numerical solution, eq. (5.44), and by

024
=176
0.15+
0.17
0.05+
—-0.55 —0i4 -0.2
0
1
-—0.05
1
-—0.1
-—0.15
—0.2

Fig. 5.13. N wave solution of spherical Burgers equation: embryo
shock to Taylor shock.
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Table 5.15. Shock details for spherical Burgers equation: Ty =2.12,
& = 0.0065 (see eq.(5.64}); abbreviations are explained in Table 5.10.

Shock centre

Shock Difference
t Xmex  Umax  Width Numerical CS (3)—(6) Ug Ug/Umax
m @ 0 4 4 © ® (9)
20 0204 0.144 0028 0225 0.225 0.0 0012 0.086
30 0245 0072 0049 0.285 0.280 —0.004 0013 0.185
40 0270 0046 0.068 0.321 0326 —0.005 0.009 0.196
50 0284 0033 0.085 0347 0351 —-0.004 0.007 0.197
6.0 0295 0.025 0.1 0.367 0370 —0.003 0005 02
70 0302 002 0.114 0385 0.385 0.0 0.004 0.205
8.0 0.308 0.0i17 0.128 0.399 0.398 0.001 0.004 0.21
90 0312 0014 0.141 0412 0.408 0.004 0.003 0.232
100 0316 0.012 0.153 0424 0.417 0.007 0.003 0253
150 0328 0.007 0205 0470 0.448 0.022 0.002 0322
200 0335 0.005 0.249 0.505 0.467 0.038 0.002 0.354
30,0 0345 0.002 032 0.560 0.488 0.072 0.001 0.406
500 0363 0.001 0428 0.644 0.506 0.138 0.0005 0.44
100.0 0412 00004 0.611 0.806 0.506 0.299 0.0002 045
150.0 0462 0.0002 0.742 0.936 0.488 0.448 0.0001 0458

a ‘reasonable’ stringing together of inviscid and asymptotic solutions (see
sec. 3.7), namely
¢ 1 dy

i —X 6
t 2t),Iny+agyd*’ (5.65)

is given in Table 5.16. This table also gives the inviscid expression of (0, t)
= 1/tInt. As for the cylindrical case, eq. (5.44) gives a good estimate of the
Reynolds number for t 2 30 when R ~ 1 and becomes inaccurate thereafter,
It assumes negative values after some time, The expression (5.65), on the
other hand, gives good results in the entire time régime from about t = 5 to
t = 900, with the values of constants, a, = 0.0028 and ¢ = 35.50, obtained by
matching with the numerical solution. At ¢t = 900, the wave practically dies
out. The maximum error in eq.(5.65) is 2%, at t ~ 50 (see sec. 3.7 for the
assumptions in the derivation of eq.(5.65)). The old-age formula

u=cyxt S12e x4 (5.66)

with ¢, =263.92 obtained from matching with the numerical solution,
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Fig. 5.14. N wave solution of spherical Burgers equation: thick shock
régime.
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Fig. 5.15. N wave solution of spherical Burgers equation: old age
régime.



196 Numerical solution of nonlinear diffusion equations

Table 5.16. Reynolds numbers for spherical Burgers equation at different
times: numerical, and analytic according to (5.44) and (5.65) with ¢ =
35.50 and a, = 0.0028. Numerical and analytic (eq.(5.42)) values of
u,(0,1) are also shown.

R u (0, t)

t Numerical eq. (5.44) eq. (5.65)  Numerical Analytic
5.0 6.95788 6.94885 6.95113 0.12442 0.12414
10.0 3.35331 3.34906 3.35361 0.04348 0.04341
15.0 2.16937 2.16666 2.17273 0.02463 0.02461
200 1.58335 1.58133 1.58876 0.01666 0.01669
30.0 1.00411 1.00233 1.01228 0.00961 0.00980
40.0 0.71909 0.71656 0.72888 0.00642 0.00678
50.0 0.55095 0.54697 0.56154 0.00461 0.00511
100.0 0.23003 0.21521 0.23932 0.00143 0.00217
150.0 0.13371 0.10889 0.14022 0.00065 0.00133
200.0 0.08992 0.05744 0.09428 0.00035 0.00094
250.0 0.06563 0.02747 0.06861 0.00022 0.00072
350.0 0.04047 —0.00546 0.04179 0.00010 0.00049
450.0 0.02808 —0.02281 0.02851 0.00005 0.00036
550.0 0.02090 —0.03331 0.02085 0.00003 0.00029
650.0 0.01628 —0.04023 0.01598 0.00002 0.00024
750.0 0.01311 —0.04505 0.01268 0.00001 0.00020
850.02  0.01083 —0.04857 0.01032 0.00001 0.00017
948.0 0.00914 —0.05116 0.00860 0.00001 0.00015

gives satisfactory wave profile and Reynolds number, as shown in
Table 5.17.

Since the computations for the solution of eq. (5.40) were carried out for a
long time to obtain the constants in the old-age behaviours (5.62) and (5.66)
for J =1,2, respectively, and since the determination of the constants
required matching of the numerical and analytic solutions at the maximum
or in the integral sense, there is a possibility of some error entering in the
evaluation of these asymptotic constants. To obviate this difficulty, the
equation

Vr+ VPx=¢g(T)Vyx, (3.118)

with g(T)=3(T+ T,—1), ™™ for J=1, 2, respectively, having a
variable coefficient of viscosity, was solved (see sec. 3.4 for the transform-
ations connecting egs. (3.118) and (5.40)). Crighton and Scott (1979) found
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Table 5.17. ‘Old-age’ solution for spherical Burgers equation: numerical,
and analytic according to eq. (5.66) with ¢, =263.92.

10%u,,,, Reynolds number
Difference

t Numerical Old age (3)-(2) Numerical Old age
(1) ) ) (4) &) (6)

550 0.167 0.167 0.0 0.0204 0.0209
622 0.132 0.131 ~0.001 0.0174 0.0174
650 0.121 0.120 —0.001 0.0163 0.0163
700 0.105 0.103 —0.002 0.0146 0.0146
750 0.092 0.090 —0.002 0.0131 0.0131
800 0.080 0.079 —0.001 0.0119 0.0119
850 0.072 0.070 —0.002 0.0108 0.0109
900 0.064 0.062 —0.002 0.0099 0.0100
948 0.058 0.056 -0.002 0.0091 0.0092

that the old-age solution for eq.(3.118) is given by

- X 2672
V=cC e X7y, (5.62a)

c£2T3 ’

vV ! T2 X ex X?
6Jn 2 (eToeT oy P\ ™ 2gT e |
or

- |

V=C T X e X*
IR NS e”“’)"’z"xp 4cTyeT'To
J=2 (5.66a)

(see sec. 3.4 for definition of parameters). The following initial data were
assumed:

J=1, Ty=12, ¢=0017;, J=2, T,=212, &£=0.0065;
Ax=0.005 AT =0.0001;

number of mesh points in the initial N wave = 400, total mesh points = 512.

The discontinuous profile (3.119) was tackled initially by PS method with
a very small time mesh size, but as soon as the profile smoothed, IMP was
resorted to. The mesh sizes in the latter case were increased to Ax = 0.01
and AT =0.005 as the N wave broadened and assumed relatively small
gradients everywhere. Unlike the solution for eq.(5.40), the solution for



198 Numerical solution of nonlinear diffusion equations

eq.(3.118) required th¢ inversion of a very large order (1000-2500) matrix
in the thick shock régime. This cost considerable computer time. The details
of the old-age solution were found to be as follows:

Approximate

old-age Asymptotic Maximum
J onset time T constants amplitude, V.
1 99(t = 3417) C.=034 0(7 x 107 3)
2 11(t = 4160) C,=0.67 03 x 1073)

The onset times here are small in comparison with those for eq. (5.40); the
latter have been shown alongside in round brackets. Both eq.(5.62a) and
eq. (5.66a) give excellent descriptions of the old-age evolution of the wave,
which agrees with the numerical solution very closely — almost to six decimal
places. It may be noted that the constant T, in (5.66a) heralds the onset of
old age and is a root of the equation ¢T, 'e"¥To=1 (see eq.(3.47) of
Crighton and Scott (1979)). It is found to be approximately 9.2. At this time,
the shock width ¢'/2 /27270 j5 almost equal to the scale T,/ of the main N
wave, its value being 3.0331 at T, = 9.2 (see again eq. (3.47) of Crighton and
Scott). The old age sets in at T, ~ 11, showing that the preceding (non-
Taylor) evolutionary shock régime persists for a rather short time.

5.7 Generalised Burgers equation with damping

We now consider the GBE
o
u, + ufu, + At = 7 (5.67)

where f and a are real constants; the additional term Au* represents
damping, positive or negative. A special case of this equation with f=1,
o = 1 was studied by Lardner and Arya (1980) (see sec. 3.2) using matched
asymptotic expansions. This particular case, and its extensions, describe
motions of a continuous medium for which the stress—strain relation
contains a large linear term proportional to the strain, a small term which is
quadratic (and/or cubic) in the strain and a small dissipative term
proportional to the strain-rate. The Au term arises in such a system if the
equation of motion includes a small viscous damping term proportional to
the velocity (see also Crighton (1979)).

In what follows, we shall compare our results with a related study
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(Murray, 1970a) of an inviscid form of eq.(5.67) with more general
convective and damping terms, namely

t, + (W), + Ah(u) =0,
A>0,g,(4) > 0,h)>0, u>0. (5.68)

This equation includes models describing stress wave propagation in a
nonlinear Maxwell rod with damping, ion exchange in fixed columns and a
realistic model equation which has been suggested to explain the Gunn
effect in semi-conductors. In general, 4 >0, and the term Ah(u) >0 is
dissipative, but there can be interesting cases for which 4 is negative (see
Murray (1970b)). We summarise Murray’s (large time) asymptotic results,
derived under the assumptions that h(u) = O(¥*) and 0 < u « 1. Choosing
initial single hump profile (continuous or discontinuous at the front), he
arrived at the following results which depend only on a and are independent
of the form of g(u) except for the requirement that g (u) >0 for u > 0:

(i) 1f0<a< 1, the solution is unique under certain conditions and
decays in a finite time and a finite distance,
(i) ifa=1,the solution decays in a finite distance but in an infinite
time exponentially,
(i) if 1 <o <3, the solution decays in an infinite distance and
infinite time like O(t~ /1=~ 1),
(iv) if @ > 3, the solution decays like O(t~'/?).

Murray used the characteristic solution of eq.(5.68) to arrive at these
results.

We shall also make a qualitative comparison of our results for the case
p=1,a=1 of eq.(5.67) with those of Leibovich and Randall (1979) for the
modified K-dV equation with a damping term,

U= pul, — Uy, — AU, p>0,
u(x,0)= f(x), (5.69)
u(x,t)—0as|x|— o0, forallt<co.

Here, 1 and 4 are constants; the damping coefficient A may again be
positive or negative.

We first study the self-similar solutions of eq.(5.67) which go to zero as
| x| = oo and discuss which of these constitute intermediate asymptotics for
the solutions of the initial value problem for eq. (5.67) vanishing as | x| = 0.
(The parameter o will play a crucial role here as in the study of Murray
1970a). For this purpose, we shall solve the initial value problem for
eq.(5.67), using the pseudo-spectral finite difference approach when the
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initial profile is discontinuous at the front and the implicit finite difference
scheme when it is smooth (or it has evolved to become smooth). The present
study will further enhance our understanding of self-similar phenomena for
nonlinear diffusion equations. The present account is due to Sachdev, Nair
and Tikekar (1986). A preliminary study of this problem was carried out by
Sachdev (1979).

As we have discussed in detail in sec. 2.6, the Burgers equation (with
p=1,A=01n eq.(5.67)) has the single hump solution

S\1/2 1
- (?) J2mf(EeR — 1y-e¥ + J(m/2) e erfcé (5.70)

5 1/2 1

“\t 71
(t) Hy()’ (5.71)
where
X

-= (260)1/% (5.72)

Whitham (1974) has shown that the solution (5.70) arises from the singular
initial condition u(x,0)=u, + Ad(x) where u, and 4 are constants. A
change of variables, u = u, + @i, x = uyt + %, leaves the Burgers equation
invariant and changes the initial condition to 4J(X) (self-similar solutions
are typically born of this kind of singular initial conditions). We, therefore,
assume that the initial condition that gives rise to the solution (5.70) is
Ad(x). The solution (5.70) describes a single pulse (a hump) whose length
increases with time but whose Reynolds number R =(1/8) [, udx is
constant for all time (see sec. 2.6).

The solution (5.70) suggests that we seek for eq.(5.67) a self-similar
solution of the form

u=1t"f([26] Y2 xeb) (5.73)
where a; and b, are real constants. Substitution of (5.73) into eq. (5.67)
immediately gives a, = 1/(1 — «), b, = — 3 so that the former becomes
u=t"1-9f(§), (5.74)
provided
o—1
= . 5.7
p=—3 (575)

Eq. (5.67) then reduces to a nonlinear ordinary differential equation in f:

fr+2Ef -I"Ta f—aQ0) " VAfEm D2 _4)fe=0.  (5.76)
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This equation, in general, involves fractional powers of f. The form (5.74)
shows that the similarity solution decays explicitly with time if « > 1 and
grows if & < 1. In order to remove the fractional powers in eq.(5.76) and
generalise the ‘reciprocal’ function H g defined by eq. (5.71), we introduce the
transformation

H =512 fa-ay (5.77)
so that eq.(5.76) changes into

HH" = 2(1 + o )H'? + 26 HH' — 2H?

—2\/2-H’—2A1 =0 (5.78)
where
33—«

MESE =y

Ay = A8(1 — ). (5.79)

For the Burgers equation (« = 3,4 = 0), eq.(5.78) reduces to
HH"—2H?*+2(HH' —2H*-2,/2H' =0 (5.80)

whose solution Hpg(¢) given by (5.71) is expressible in terms of
exponential function and erfc. In fact, we conjecture that the GBEs may be
characterised by ordinary differential equations of the form

w' +ay?+ JEyy +FEy* +by +c¢=0, (5.81)

where f(&)and §(&) are sufficiently smooth arbitrary functionsand a, band ¢
are real constants, in the same manner as the K—dV type equations are by
Painlevé transcendents. The latter are governed by six of fifty nonlinear
ordinary differential equations of second order whose only movable
singularities are poles (see Hille (1969)). Eq.(5.78) is a special case of
eq.(5.81) with a= —2(1 +a,)=(1 +a)/(1 —a), f(£)=2L§(E)=—2,b=
~2,/2,e = — 24,. Actually, eq.(5.81) generalises the equation

yy" +ay? + JQyy +§iy* =0, (5.82)
studied by Euler and Painlevé (see Kamke (1943, eq. 6.129, p. 574)) and is
readily linearised by writing y = v"/“*1 g0 that it becomes

v+ Jv +(a+ 1)jv=0. (5.83)

Eq.(5.81) has two additional terms, by’ and c, besides those in eq. (5.82). We
refer to the solutions of eq.(5.81) as Euler-Painlevé transcendents.
Eq.(5.78) corresponding to the GBE (5.67) differs from eq.(5.80) for the
Burgers equation in two ‘simple’ ways: the numerical coefficient of H'? is
now —2(1+a,) instead of —2 and an additional constant term 4, is
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present. But, in the context of nonlinear differential equations, these ‘simple’
changes make a drastic difference. Indeed, eq. (5.78) does not, in general,
seem to be integrable in terms of known functions. This equation is included
in eq. (5.81) as a special case — hence the name Euler—Painelevé transcend-
ents for the solutions of the former. Actually, it may be easily verified that
the solutions of the non-planar GBE

g, L J4_9 P
u,+u u’°+2t 2ux,,, j=12, (5.84)

has a similarity form u =t~ Y22 F(£). The function

H=3"2[F@]* (5.85)
is again found to satisfy a special case of eq.(5.81), namely
HH" — %H'z +2(HH’
-2(1-jpH*-2,/2-H' =0. (5.86)

Indeed, this equation differs from eq. (5.80) for the Burgers equation merely
in some of the constant coefficients being different; yet it does not seem to
be generally integrable. We emphasise that the class of equations (5.81) is
much nicer than the Painlevé equations and displays smoother structure in
the physically realistic cases.

We now return to the self-similar solutions of eq. (5.67), as represented by
eqs. (5.74)—(5.76). The linearised form of eq. (5.76) is

4
T2 = mf= 0. (5.87)
Its solution is
f=Ae " CH(E)~Ae Y26 as E— + o, (5.88)
where
J—«o
v=2q, = p—

Here, H, denotes the Hermite function and A is the amplitude parameter.
The solution of (5.87) has the asymptotic form

f~O0E ™Y asé-s — 0. (5.89)

Now, we pose a boundary value or connection problem for eq. (5.76) (see
Hastings and McLeod (1980) for a related problem for second Painlevé
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transcendent). we seek its solution over — o0 < ¢ < oo, satisfying (5.88)
as ¢ - + oo and tending to zero as £ - — co in accordance with (5.89). It
is clear from (5.88) and (5.89) that the solution decays exponentially as
& — + oo, and algebraically as £ - — oo provided 2o, + 1 >0, that is, « > 1.
Before solving this connection problem, we note that there are two exact
solutions of eq.(5.76). The first is a constant solution

f=[Ma—1]"M 2= f,, say. (5.90)

It is easy to check that f,,, is also the maximum value of f that the maxima
of the single hump solutions can attain. This follows from eq.(5.76) by
noting that, at the maximum, f' =0, f” <0 etc.

The second exact solution of eq.(5.76) is

(4,8/5")P079, £,
- {(A_|é|/5”2)2'“-=’, 2o .

where

‘/2 (“_ 1){[1 +A8(1 +a)]V2 + 1},

(5.92)
‘/2 (“ V2D s+ 01 - 1,

f&)
4
4= 612 300

Exact (constant) 62 2‘4] i
solution

60000
50000

/ — Exact (singular) solution

90
-3 -2 0.0 2 a

) J

Fig. 5.16. Solution of eq. (5.76) for various values of A for a= 1.5,
A= 1. Singular solution (5.91) for £ > 0 and the constant solution (5.90)
are also shown.
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The corresponding solution for eq.(5.78) is

AL, é>0,}

—-A4.¢ ¢<0. (5:93)

H(&)= {
The solution (5.91) is singular at £ =0 for « > 1 and can be embedded in a
two-parameter family of solutions about & = oo (see Hille (1970) for kindred
embedding theorems for the singular solution of the Thomas-Fermi
equation; see also Bender and Orszag (1978) for a discussion of the
numerical solution of a boundary value problem for the Thomas—Fermi
equation).

We integrated eq.(5.76) numerically, starting from &~ 4 with initial
conditions from (5.88). The amplitude parameter A was chosen rather
arbitrarily. The integration was carried out in the direction of decreasing &
until / was essentially zero. Figs. 5.16-5.19 show the solution for a set of
values of «=1.5,2.0,2.5 and 3.0 (in the similarity range of «), and the
corresponding values of g = (« — 1)/2=10.25, 0.5, 0.75 and 1.0, respectively.
For each such pair («, f) there is a value of A = A,,,, for which the integral
curve does not decrease to zero as £ = — oo but, instead, continues to rise
to asymptote to a constant. This constant is just the solution f,,, given by
eq.(5.90). It is interesting to note that f%_! is equal to B, a constant which
occurs prominently in the discussion of the asymptotic solution in Murray’s

f®

A
1 780 840.0
4 =790000.0

Exact (constant)

solution 720000 \‘

0.75{

—

0.54

//0.25-

I

-2.5 (0]

Fig. 5.17. Same as in Fig. 5.16, a = 20,1 = 1.
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f&
4
1971260 A =2000000
|
0.8 .
] L Exact (constant) solution
1 900 000 0.64 L Exact (singular) solution
0.4
.
N
Q!
1 000 000 \06
0.2
1000
500000
33 0.0 2 i
Fig. 5.18. Same as in Fig. 5.16, x =25,A=1.
i3]
4
2975300
4 =3200000
0.8 |
Exact (constant)
solution
Exact (singular) sotution
0.4+
L / L — N ——p £
-2.0 0.0 2.0 4.0

Fig. 5.19. Same as in Fig. 5.16, a =3.0,A = 1.
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Table 5.18. Critical values of the amplitude
parameter A and f,.,, for different choices of o
and [ in the similarity range for A1 =1 (see egs.

(5.88) and (5.90)).

J max
o B Aax Numerical Exact
1.5 025 62242 40 40
20 05 780840 10 1.0

25 075 1971260 0.763143  0.763143
30 10 2975300 0.707128  0.707107

(1970a) study. For 4> A,,,, the integral curves grow monotonically to
infinity as £ - — oo (cf. Bender and Orszag (1978, fig. 4.10) for the Thomas—
Fermi equation). Table 5.18 gives the values of A,,,, for different (, 8) pairs.
Figs. 5.16-5.19 also include the singular solution (5.91)—(5.92). The present
study is similar to Miles’ (1978) for the second Painlevé transcendent.

We carried out the numerical study for eq. (5.76) for f. Since the solutions
decay as || — oo, the reciprocal function H described by eq. (5.78) would
show growth in this limit. However, this equation, being free from fractional
powers, would be more amenable to analysis. For example, the function H
easily generalises Hy for the Burgers equation, which is expressed in terms
of exponential function and erfc (see eq.(5.71)). These functions can be
expanded in Taylor series about ¢ = 0, with infinite radii of convergence.
Thus, it is natural to write

H= ) a¢" (5.94)

n=0

Substitution of (5.94) into eq. (5.78) etc., gives the following relations for
the coefficients a;

1
a,= a_;[(ag +./2a; +ad) + 4, + 2,02,

1
as= g[(aoth +2%%a, + 3a,a,) + 49, a,4,],
0
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2a, 2a; 4
= 2
Y2 =0T+ 2) | k+ 2 (V2 +aa, +ay)
+ 2 L[ e+ 1—ik+2-1)
(k+1)(k+2)a0,-=1 ) {2 F1/ Py

+(+a)@+Dk+1—Da;, a5,
+aiak_i—(k+l—i)ai_lak+1_ii|, k=1,2, (595)

Thus, we have a two-parameter ay,a, family of series solutions. The
convergence of this series by direct computation seems difficult to establish.
For the Burgers equation with 4 =0, « =3, the function Hy defined by
eq.(5.71) follows from eq.(5.94) if we choose a, = —./2. (Here the
expansion

2 & 2"
_ _ =1__ —z2 2n+1
erffcz=1—erfz \/ne ,.Zo 1:3-2n+1)

o.1f
02040608101.2141618 2 22 24

Q9
-0.1
~0.2p
-0.3

-0.4
—0.5—
-0.6
-0.7
—0.8
-0.9
—1.0—
-1L1r
-1.2F

T

-1.3F
—-1.4
-1.5

L]

Fig. 5.20. a, versus g, for 0< A < A,,,, (see eq. (594)) fora=3,f=1and A=1.
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Table 5.19. Coefficients ay and a, in
the series (5.94) for the permissible
(similarity) range of the amplitude
parameter A corresponding to different
values of o and f and for A =1,

0 =0.01.

No. A a, a,

o
1 0.0 0.0 0.0

2 2095 1.2182 —1.1953
3 325 14233 —1.3305
4 1000.0 0.70023 —0.36571
5 100000.0 0.44529 —0.13077
6 2500000.0 0.16709 —0.00555
7 2953000.0 0.141414 0.0

a
1 0.0 0.0 0.0

2 500000.0 0.49037 —0.17083
3 1000000.0 0.24186 —0.03108
4 1800000.0 0.13462 —0.0022
5 1900000.0 0.12728 —0.00085
6 1971256.0 0.12248 0.0

a=2 =05
1 2000000  0.32406 —0.07034
2 4000000  0.16960 —0.01336
3 6000000  0.12276 —0.00359
4 7200000  0.10651 — 0.00095
5 7808410 0.1 0.0

has been made use of). The free parameter a, gives a single parameter family
of solutions. This parameter corresponds to the (constant) value of the
Reynolds number, which fixes a definite (single hump) profile. For the series
solution (5.94) of eq. (5.78), it does not seem possible to fix a priori the ranges
of parameters a, and a, such that it converges over — co < £ < c0. To this
end, we make use of our numerical solution described above to identify the
relevant ranges of a, and a,. These coefficients are the values of H and its
derivative at £ = 0. The function H is related to f by eq. (5.77). Therefore, for
each value of 4,0 < 4 < A,,,,, we can find from the numerical solution of f
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Table 5.20. Comparison of series solution (5.94)
and numerical solution of eq.{5.76) for o =3,
B=1,A=1and 6 =001. The g, in eq.(5.94) from
i=0toi=13 are 1.2182, — 1.1957, 0.98736,
—0.60357, 0.34600, — 0.14134, 0.05471,
—0.00713,- 0.00259, 0.00537, — 0.00297, 0.00155,

—0.00044, 0.00007.
Series solution Numerical
solution
H() G Q)
=30 36.77590 0.0027192 0.0027192
=25 29.15179 0.0034303 0.0034303
—-20 19.82509 0.0050441 0.0050441
—1.5 10.26901 0.0097380 0.0097380
—-1.0 4.541242  0.0220204 0.0220204
-05 2.165305  0.0461829 0.0461829
0.0 1.218223  0.0820868 0.0820867
0.5 0.8097551 0.1234941 0.1234941
1.0 0.6595272 0.1516237 0.1516237
1.5 08547518 0.1169930 0.1169928
2.0 2.926066  0.0341755 0.0341754
2.5 24.9906 0.0040015 0.0040015
3.0 387.044 0.0002583 0.0002584
35 9993.162 0.0000100 0.0000100
4.0 366869.9 0.0000003  0.0000003

the value of f(0) and f'(0) and hence H(0) and H'(0). Table 5.19 contains the
relevant values of a, and a, for 0 < 4 < A,,,, while fig. 5.20 shows a, versus
ag, fora=3, f=1 and A= 1. With g, and g, thus determined, the series
(5.94) was summed up and compared with the exact numerical solution
of f, using eq. (5.77) again. The series converged up to some value of
and then its convergence slowed down. However, analytic continuation
of the series at a couple of £ points yields excellent results over a large
finite range of £. The discrepancy from the exact numerical solution was
found to be O(1077) in single precision (see Table 5.20).

It is clear from the asymptotic form (5.88)-(5.89) (and has been
numerically checked by us) that the solution of the connection problem for
eq.(5.76) exists for all & > 1. However, the similarity solution (5.74) of
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eq.(5.67)is significant only in the range 1 < « < 3 since, as we shall presently
discuss, the solutions of the partial differential eq.(5.67) with ‘suitable’
initial conditions vanishing at + co asymptote to the self-similar form only
in this range of a. The reason for this is the physically unrealistic decay
predicted by the similarity form (5.74) for a > 3. Nevertheless, eq. (5.76) has
single hump solutions vanishing at £ = + oo for all positive 4 and « > 1.
Correspondingly, eq.(5.78) has ‘inverted hump’ solutions growing to
infinity at £ = + oo for positive 4 and o > 1. The left end limit of the range
1 <o <3, namely o = 1, gives § = 0 according to eq. (5.75) and the solution
form (5.74) does not exist in this case. However, eq.(5.67) now becomes
linear, so that

U, +u, +Au= guxx. (5.96)

It has an exact single hump solution

A 1
u=Wexp{—[ﬁ(x—t)z+lt]} (5.97)

which decays exponentially with time (and distance). The form of this
solution is quite different from (5.74).

When 4 is negative, the asymptotic form (5.88)—(5.89) is still valid for
o > 1, but the constant solution (5.90) ceases to exist. This suggests that, in
this case, there is probably no upper limit 4,,, to the amplitude that the
linear solution can possess. Our numerical study of egs. (5.76), (5.88)—(5.89)
with A <0 and a > 1 confirms this conclusion (see fig. 5.21). However, we
shall find, as we solve the partial differential eq.(5.67) numerically, that
these self-similar solutions do not constitute intermediate asymptotics. We
therefore conclude that even though eq. (5.76) has a solution for the
connection problem for o > 1 and all 4, it forms an intermediate asymptotic
for eq. (5.67) only for 1 < <3 and 4 >0.

An interesting feature that emerges from our numerical solution for & > 3
and 4 < — 1 is the appearance of a shelf on the left end tail of the self-similar
profile (see fig. 5.21). The solution decays in an extremely slow manner —
characteristic of a shelf. Eq. (5.67) shares this feature with the modified K~
dV equation (5.69) when A<0 (see Leibovich and Randall (1979)).
However,if A « — 1, the shelf at the left-end tail has a tendency to disappear.

It does not seem possible to solve an initial value problem for eq.(5.67)
analytically. A special case of eq.(5.67),

u,+uu, + Au= gum (5.98)



rf(E)

(d)
Fig. 5.21. Solution of eq. (5.76) for various values of 4 for & >3 and
A<0. (@) a=4, A=—1(b) a=5 A=—1. (c) a=5 A= —5. (d)
a=4, A= —35.
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was considered by Lardner and Arya (1980). The matched asymptotic
expansion found by them fails to hold as soon as the shock becomes thick or
loses its Taylor structure. This happens quite early in the evolution of the
initial profile. We now describe the numerical solution of eq. (5.67) subject
to any of the three initial conditions shown in fig. (5.22). They have the form

0, X < Xo,
u(x,t)=< f(x), Xxo<x<x 1,} (5.99)

0, X>Xx,.

We shall again use the pseudo-spectral approach if f(x) is discontinuous
at the front x=x, (fig. 5.22(a)-(b)), and the Douglas—Jones implicit
predictor—corrector scheme if it is smooth. Since we have discussed these
numerical schemes in detail in secs. 5.2—5.3, we shall not dilate upon them
here.

The difference analogue of eq.(5.67) is

2(Ax)?
Uirr,j+12 — 2|:1 +W]“i.j+ 2t Ui-y 12

24x)3*(, 2 Ax
= T(iuu - Eui‘j) + T“fu Uiy, — Uio1,j)

(predictor), (5.100)

Ax 2(AX)2
(1—7u5j+1/2)ui+].j+1+2|:1+ 5(At) uivj+l

Ax ! Ax P
+ 1+Tui,j+1/2 Ui—1,j+1 = —5‘ui.j+1/2—1 Uit 1,j

2AAx)? Ax
+2[1 — (cSAt) :|ui,j_ (1 +Tuﬁj+ 1/2)“i—1.j

2
+ M%u?_ j+1/2 (corrector). (5.101)

and

Here, u; ;= u(iAx,jAt), and Ax and At are space and time mesh sizes,
respectively. The accuracy and convergence of this scheme have been
discussed in sec. 5.2. For a discontinuous initial profile, the scheme (5.100)-
(5.101) introduces inaccuracies of 0(10~2) in the steep shock region, which
tend to vitiate subsequent computations. We therefore use a pseudo-
spectral finite difference approach in the early embryonic shock régime (see
sec. 5.6). The solution u(x, t + At) at the new time level is obtained from the
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uix, t)
0.24

0.14

0.0 0.16
(a)

u(x,r)
b
0.2+

L 1 1 l

-0.5 -0.3 -0.1 (()b(; 0.1 0.2 01.3 64 OTS

ux, )
[

.. L e rh A b - X
-0.5 -03 —0.1 (()(; 0.1 02 03 04 0.5
¢

Fig. 5.22. Initial profiles for the solution of eq.(5.67).
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Table 5.21. Evolution of the initial
discontinuous profile under Burgers
equation to the self-similar form as
evidenced by the convergence of the
area A, under the profile to a fixed
constant value. Here, f=1, A=0

and 6 =10.001.

Time A,

1.0 0.013067
1.01 0.013078
1.02 0.013151
1.03 0.013196
1.04 0.013209
1.05 0.013211
1.06 0.01321t
1.07 0.013211
1.08 0.013210
1.09 0.013210
1.10 0.013209
1.11 0.013209
1.15 0.013209
1.20 0.013209
1.25 0.013209
1.3 0.013209

truncated Taylor series

@Agy (A

2| u" + 3' ul" + O(At)q.’

(5.102)

u(x,t + At) = u(x, t) + Atu, +

wherein the time derivatives u,, u,, etc. are replaced by spatial derivatives,
using eq. (5.67): .

u, = —ubu, — Au* + 7o
g-1 8 z-1 0
u, = — pu’ " uu, — ufu,, — Aou® ™ Tu, + i(ur)xx’

» (5.103)
U = — B(ﬁ - l)uﬂ_ zurzux - zﬁuﬂ— l(ut)xur

- )Buﬂ - luacutt - uﬂ(uu)x

o
— oo — DAu® " 2u? — adu® " tu, + i(u,,)xx.
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Table 5.22. Comparison of numerical
(pseudo-spectral and implicit finite
difference) solutions and the exact analytic
solution for Burgers’ equation, with smooth
initial data at t;=1. Here, A=0, § =1

and 6 = 0.001.
u(x,2)
X Implicit Pseudo- Exact

spectral

—0.10 0.000742 0.000742  0.000742
—0.08 0.001869 0.001870 0.001870
—0.06 0.003983 0.003985  0.003985
~0.04 0007341 0.007342 0.007342
—0.02 0012000 0.012000 0.012000
0.00 0.017843 0.017841 0.017841
0.02 0.024660 0.024657  0.024657
004 0032232 0.032227  0.032227
0.06 0.040367 0.040362  0.040362
0.08 0.048918 0.048913  0.048913
0.10 0.057774 0.057767  0.057767
0.12 0.066840 0.066826  0.066826
0.14 0075986 0.075934  0.075934
0.16 0.084648  0.084423  0.084423
0.18 0.088732 0.088036  0.088034
0.20 0.065779 0.066041  0.066041
0.22 0017660 0.018405 0.018405
0.24 0.002151  0.002161  0.002161
0.26  0.000190  0.000180  0.000180
0.28 0.000015 0000012 0.000012
0.30 0.000001  0.000001  0.000001

The spatial derivatives are found in the manner explained in sec. 5.6.
The (normalised) spatial interval (0, 27) was divided into 128 mesh points.
The initial (discontinuous) non-zero profile occupied 64 points and was
placed in the middle of the interval so as to allow it to grow due to diffusion
as it evolves. In eq. (5.99), the function f(x) was chosen to be x, and x, = 0,
x, =0.2and t; = 1. As the computation commenced, a tail (10~ ) on either
side of the non-zero part of the profile was noticed. Being spurious, it was
artificially cut off. It was not found to persist later in any significant way.
We first considered the Burgers equation itself corresponding to =1,
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Table 5.23. Comparison of the exact and numerical (IMP)
solutions for the special (linear) PDE with f =0, a =1,
A=1 and 6 =0.001 (see egs. (5.96)—(5.97)).

u(x, 2) u(x,4)
X Numerical Exact Numerical Exact
—-0.11 0.0005t 0.00057 0.0 0.0
0.37 0.00529 0.00546 0.0 0.0

0.85 0.02886 0.02897 0.00003 0.00003
1.33  0.08656 0.08633 0.00016 0.00017
1.81  0.14487 0.14463 0.00071 0.00072
229 0.13598 0.13621 0.00231 0.00233
277 007186 0.07211 0.00563 0.00562
325 002143 0.02146 0.01023 0.01019
3.73  0.00357 0.00359 0.01387 0.01383
421 0.00032 0.00034 0.01407 0.01409
4.69 0.0000t 0.00002 0.01070 0.01075

517 00 0.0 0.00612 0.00615
565 00 0.0 0.00264 0.00264
6.13 0.0 0.0 0.00086 0.00085

A=0 in eq.(5.67). After a short time, the Reynolds number R=
(1/5)j‘fwu(x, t)dx was found to settle down to a constant value 13.209 and
the profile was found to be in excellent agreement with (5.70) with this
value of R (see Table 5.21). We also checked the case witha=8=1,4#0in
eq. (5.67). An integration of eq. (5.67) with respect to x shows that the area
under the profile A=["_u(x,r)dx decays exponentially with time:
A= Aq,e™* where 4, is the area under the profile after it has evolved to
acquire a smooth structure. The numerical solution was found to accord to
this decay law. Also smooth initial profiles were chosen — the single hump
(5.70) and the exact (linear) solution (5.97) — and the implicit finite difference
scheme (5.100)—(5.101) was used to continue the solution in time. The
agreement of the numerical solution with these exact solutions was again
found to be very good (see Tables 5.22 and 5.23). Now we summarise the
numerical results. We find that, for 1> 0, 1 <a <3, the initial profile,
discontinuous or continuous at the front, soon evolves into a self-similar
form discussed earlier. Fig, 5.23 shows a typical evolution of the profile to
its self-similar form for the case « = 3, § = 1, both when the initial amplitude
U, 1 less than 1 and when it is greater than 1; only u(x, t;) is required to
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]

t‘l‘u(x, t)

0.2

0.18

0.16

t=1
t=14

—1 =2.0
Self-similar form

~0.4 0.2 0.0 0.2 0.4
x/(260)%
(@)
t*u(x,t)
[
0.5|
0.4}
0.3
t=0.06
0.2
t=0.5
0.1 =250
/ Self-similar form
203 —02 —o.1 0 01 02 03 04 05 06
x/(280)%
(k)

Fig. 5.23. Evolution of the solution of eq. (5.67) to self-similar form for
a =3, =1and 1 = 1. Thefunction t"/?u(x, t) is shown at various times
fOI' (a) umax(xa ti) < 1’ (b) umax(x’ ti) > 1.
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Table 5.24. Approximate time t,
when the self-similar régime for

GBE (5.67) sets in for different values
of « and B. The initial time is t;= 1.

o B t,

1.5 0.25 61
20 0.50 16
2.5 0.75 4
30 1.00 3

vanish at x = + o0 in a ‘reasonably’ smooth way. The self-similar régime
was identified by matching the maxima of the numerical solutions of egs.
(5.67) and (5.76) and ensuring that the difference between the two solutions
in the entire interval — oo < x < co was uniformly less than 5 x 10~ 3, This
required a proper choice of the amplitude parameter A (see eq. (5.88)).
Table 5.24 gives the times t, at which the self-similarity comes about for
different (o, B) pairs. These terminal solutions are fully nonlinear and hold
for all ¢ > t.. Their decay law is given by u_,, = O(t'!* %), which is the
same as found by Murray (1970a) for eq. (5.68) for the range 1 <a <3
subject to the conditions, u « 1 and g,(u) #0, u>0. We note that the
condition g,(u) # 0 does not seem to play any role in our case.

For a >3, 1> 0, the numerical solution of eq.(5.67) does not obey the
asymptotic decay law u,,,, = O(¢*™ ~*); instead u,,,, decays somewhat like
O(t ™~ Y/?), in agreement with Murray (1970a). This is plausible since, in the
present case the final (old-age) regime of the wave is essentially linear,
nonlinear convection and damping playing no significant role. The single
hump in this case has the form u= Ct~Y/2¢~%, The self-similar decay law
O(t'11~9), on the other hand, predicts a rate slower than ¢~ '/2 for a > 3.
Thus, for a > 3, even though the self-similar form of eq.(5.67) exists and
satisfies boundary conditions at + oo, it is physically unrealistic.

Now we turn to the case 0 < & < 1 for which the self-similar form does not
exist (see below eq. (5.89)). If A >0, the initial profile shrinks, decays and
becomes extinct in a finite distance and finite time in agreement with
Murray’s (1970a) analysis.

The case of negative damping, 1 <0, unfolds several fascinating features.
The nature of the solution again depends crucially on the parameter «. The
special values =1, 2 seem to demarcate distinct behaviours of the
solution. We assumed 4 to be — 1 in all cases. For 0 <o <1 (fig. 5.24), the
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Fig. 5.25. Solution of eq.(5.67) for a=1. (a) f=051=—1
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solution grows to a peak somewhere in the middle in a short time, and
shows some small persisting wiggles when f>1. When 1<a<?2
(figs. 5.25(a)—(b) and 5.26), the solution grows and breaks at the front in a
short time. For the case a = 2 (fig. 5.27), the solution first decays (implying
the dominance of nonlinear convection and diffusion in the early stages)
and then grows to break at the front. For a > 2 (figs. 5.28-5.30), the negative
damping is too small and the solution continuously decays with time.

It is of some interest to compare the special case (5.98) (Lardner and Arya,

0.6 0.0 l.4
(b)

Fig. 5.26. Solution of eq.(5.67) for l<a<2, A=-~1. (a) a= 15,
f=05 (b)a=15 =1
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1980) with the corresponding modified K-dV eq.(5.69). Both have the same
form of convective and damping terms. Leibovich and Randall have
numerically studied an initial value problem for eq. (5.69). They treated a
whole class of initial conditions, which give rise to a variety of solitons,
differing in number and amplifying or decaying depending on whether A < 0

u(x, 1
[}

0.2+

—_ 1 » X
—1 2

u(x,t)

A
029,21 t=125
t=4
t=17

0_1-‘ t=8 f=12
L L% IL 1 L 1 1 \ 1 L > X
-1 0 1 2 3 4 5 6 7 8

)

Fig. 5.27. Solution of eq.(5.67) for a=2, A=-—1. (a) =1L
(b) f=0.5.
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0.1+

-1 )
(b)

Fig. 5.28. Solution of eq.(5.67) for 2<a<3, A=—1. (a) a=25,
=05 (b)a=25 =1

ux, )

-1
Fig. 5.29. Solution of eq.(5.67) fora =3,f=1,A= — 1.
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Fig. 5.30. Solution of eq.(5.67) for a >3, A= —~1. (a) a=4, f=1.
(b) a=4,=15.(c) a=5=2
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or 4> 0. They discovered three integrals for the entities

A = J u(x, )dx,
L~
E= 3 u(x,t)dx, (5.104)
xX= l xudx,
Ar bl ¢}

which represent area under the wave or its momentum, its energy and
centre of gravity, respectively. It is easily checked by direct integration of
eq.(5.69) and integration after multiplication by u and x, respectively, that
A,, E and x satisfy the following relations:

A, =Age™ ¥,

E=E,e ¥, (5.105)
_ o~ uEy, _
_xO=H§'(e Ato_e ll)'

The subscript O refers to the value of the relevant quantity at t =t,. It is
straightforward to check that the integrals (5.105) with ¢ = — 1 exist for the
modified Burgers equation (5.98) as well. The main features in the solitary
wave study of Leibovich and Randall is the appearance of a trailing shelf
and ampilification or decay of the wave depending on the sign of . They also
found a terminal similarity solution for eq.(5.69) for each soliton in
isolation. While this solution confirmed the major features (dominant
soliton plus shelf), it was not a uniformly valid solution since it failed to
satisfy the boundary conditions at x = co. Eq. (5.98) does not possess a self-
similar solution. It shows amplification or decay of the initial profile
depending on whether 4 <0 or 4 > 0 (see figs 5.25(b)—(c)). These numerical
solutions satisfy the relations (5.105).

5.8 Non-planar Burgers equation with general
nonlinearity

Now we treat the equation

ju_9 :
= =12 5.84
2£ 2uxx ) ] ’ ( )
in some detail; we had referred to it briefly in sec. 5.7. Since the analysis and
numerical results for eq. (5.84) are rather similar to those for eq. (5.67), we shall

u, + u'u, +
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not dilate upon them. Eq.(5.84), however, admits considerable analysis;
indeed we find here a single parameter family of exact solutions for j=1,2
for specific values of «. The chief purpose of the present section is to fortify
our claim that the Euler—Painlevé transcendents solving eq.(5.81) charac-
terise GBEs in the manner the Painlevé equations represent K-dV type of

equations.
It is easy to check that eq.(5.84) admits the self-similar form
u=t"Y2f(m), n=x(26r""2, (5.106)
resulting in the nonlinear ODE
f"—23/25‘”2f‘f’+2nf’+————2(1;aj)f=0 (5.107)

where the prime denotes differentiation with respect to 5. The trans-
formation
H=4§V3"" (5.108)

changes eq. (5.107) into

+1
HH" =2~ T H? 4 20HH = 2(1 — o) H* —PH' = 0. (5.109)

Eq. (5.109) is a special case of eq. (5.81) with a= — (a + 1)/e, f(&) = 2¢,
g(&)= — 2(1 — aj), b= — 2*? and ¢ = 0. The solution of eq.(5.109) can be
written in the form of a Taylor series:

o0

Hm= 3} an" (5.110)

n=0

where the coefficients a, can be found by substitution into eq. (5.109) as

1]Joa+1 ]
az=£|: 0 a%+(1—a])a3+21/2a1], (5.111)
2 o+ 1
_ k+1
G+2 (k+1)(k+2)ao{ 2y kT D

+(1 = o — K)aoa, + 22(k + Dag.
k

+ 2, [—%(k+2—'i)(k+ 1 —Dady ;-

i=1

+1 .
+Eﬂ“(i + Dk +1—i)a; 1041 + (1 — aa,

—(k-i)a,-ak_,-]}, k=1,2,.... (5.112)
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Thus, in general, we have a two-parameter a,,a, family of solutions.
However, for the special choice a = 1/(j + 1),j=0,1,2, and a, = — 2%/
(« + 1), the coefficient a, in eq. (5.111) depends only on a, and we have a single
parameter family of solutions. This series can in fact be summed and the
solution written in terms of exponential and erfc functions, as we shall show
directly (see eq.(5.120) below). The free parameter a, in this special case
could be either the amplitude or the Reynolds number R = *‘-_[‘fw udx of the
profile, as for the standard Burgers equation.

We find the asymptotic solution of eq.(5.107) for large |5| under the
conditions that f—0 as n— + 0.

The linearised form of eq. (5.107), namely

2(1 — o
f7+2nf + ( ” aj)f=0, (5.113)
has the solution
fm=Ae "H/n, n>0, (5.114a)
Brnl? .
fln) ~ () In}?~ 1= for large negative n, (5.114b)

provided aj < 1. Here, v = 1/o — (j + 1) and H () is the Hermite function of
order v; A and B are the amplitude parameters. Thus, the linear solution
decays exponentially as n — + co and algebraically as n - — o0.

We now pose the boundary value or connection problem for eq. (5.107):

2(1 — aj)

froPRETIRf + 2 f + ———f =0, (5.107)

f~A4e""H,@), ntoo, (5.115a)

f-0, nl-—c (5.115b)
and

Ifl<co, —o0<n<oo. (5.116)

The study of this connection problem is rendered easier by the following
analysis which gives some special exact solutions and identifies the ranges
of parameter « for which the solutions vanish eitherat = —» —~w orata
finite value of n = n,, say.

For a =1/(j + 1), €q.(5.107) can be written as

2 1/2
f+nf’+%f”=(5) e (5.117)

which can be immediately integrated. Using the conditions that f and f”
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tend to zero as n — + oo, we have

1 2 1/2
nf+%f’=—a+1 (3) fort (5.118)
Writing f~“= G in eq. (5.118), we have
2 2\Y?
G — 2unG = _a:1(5) . (5.119)

This equation can again be integrated so that we get

1/2 (fali2g
G=|:C—a_2|_ 1 (%“) J e"zdt]e“"z. (5.120)
0

The solution (5.120), for the original variable f, can be written as

R y) 20 1/2 fal/2y R -1/a
—a " _ = -t
fim=e [c a+1(6) L e dt:l . (5121

where C = f~%(0). The solution u=t"Y2%f(y) of eq. (5.84) with f as in
eq. (5.121), we believe, is new. It holds for a = 1/(j + 1), that is, for j=1,
a =1, and j = 2,a =1, and generalises the exact single hump solution of the
standard Burgers equation with j=0, x = 1. We further note that, for « =
1/j, j #0, f equal to an arbitrary constant ( # 0) is another solution of
eq.(5.107).

If we write f*=F in eq.(5.107), we have

i a—1_, - 2\,
1P~ L — a2+ qFF —(2) FF =0
20 o
(5.122)

Integrating eq. (5.122) with respect to 1 from — o0 to + o0 and assuming
that both F and F’ tend to zero as n tends to — o0 or + o0, we get

(Zaj—l)J F2dq=( a“) J F2dy. (5.123)

- ®

This equality yields the following results:
(i) j=0. The ratio

J F2dy
r=r"— = —(1=2a)a>0 ifa>1i (5.124)

f F/Z dﬂ
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Table 5.25. Single hump, monotonic and diverging solutions of (5.107) and
(5.115a)

Behaviour at left boundary j=0 j=1 j=2
Solutions vanishing at = — o a1 a=+% I<a<}
Solutions vanishing at =7, I<a<li — t<a<i
Solutions monotonically approa-

ching a constant at n = — o — a=1 a=3
Solutions diverging to infinity

atg=—w — a>1 a>4

Therefore, the single hump solutions vanishing at # = + oo exist only if
a >4 (see, however, the discussion following the case (iii)).

(ii) j= 1. The only valid choice in this case is « =% and this value
corresponds to the exact solution (5.121) noted earlier.

(i) j = 2.Inthis case, the ratior = (1 — 2a)/(doc — 1) > 0 if < & < 3. This
1s the range in which the single hump solutions vanishing at n = + oo exist.

If the solutions starting from # = + co according to eq.(5.115a) vanish
not at n = — co but at a finite # = #,, then the above results do not hold. At
n =1, f' > 0. Integrating eq.(5.107) from n =5, to n = oo, we find that

o

Since f > 0forny < n < c0,eq.(5.125)implies that « < 1/(j + 1). Thus, single
hump solutions vanishing at # = + oo and n = n,, a finite point on the left,
exist onlyifx < 1/(j + 1). Combining this result with those in (i)—(iii), we find
that single hump solutions vanishing at = + < and at either n = — o0 or
n=noexistif 1/(j+2)<a<1/(j+1),j=0,2. We note in passing that the
condition that a maximum exists for the single hump solution, requiring
=0, f” <0at n =n,,, say, leads to the inequality aj < 1 (see eq. (5.107)).
However, this condition is too lax in comparison with those which
naturally arise from the consideration of eqs. (5.123) and (5.125).

Table 5.25 summarises the nature of the solution for different values of j
and a, following from the above discussion and the numerical results.

The numerical solution of eq. (5.107) was carried out subject to
(5.115a), starting the integration from a large positive value of #n ~ 4
where the values of f and f” are O(10~%). We proceeded towards decreasing
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values of 5. This was done first for the ranges of parameters for which the
single hump solutions vanishing at # = + oo exist. From the numerical
solution the values of f(0) and f(0) were obtained, H(0} and H'(0) were then
found using eq.(5.108), and hence the Taylor series (5.110) was computed.
The series solution so obtained agreed very closely with the numerical
solution of the connection problem for eq.(5.107). It was found to be
accurate to seven decimal places in single precision arithmetic for all 5 lying
between — oo and + co. The series solution was analytically continued as
its convergence slowed down. We further confirmed the accuracy of the
series and numerical solutions by comparing them with the exact solutions
(5.121) for the special values a = 1/(j + 1). In the similarity range of the
parameter «, for various geometries, it was found that the solution of the
connection problem exists for all values of the amplitude parameter A.
Thus, it is the nonlinearity exponent a which determines the existence (or
otherwise) of the single hump solutions. This is in contrast to the case of the
damped GBE (5.67) for which the self-similar solutions, for given o in the
permissible range, are restricted by the magnitude of the amplitude
parameter.

The nature of the solution as given in Table 5.25 was fully verified
numerically.

The numerical solution of the PDE (5.84) was also carried out by pseudo-
spectral and implicit schemes to visualise the evolution of the self-similar
solutions from a class of ‘reasonable’ continuous and discontinuous initial
conditions vanishing at # = & co. This part of the programme is entirely
analogous to that for eq. (5.67). Since the latter has been discussed in great
detail in sec. 5.7, we skip the details relevant to eq. (5.84) and refer the reader
to the paper by Sachdev and Nair (1987).

We conclude this section with the hope that our conjecture regarding the
role of the Euler—Painleve equation (5.81) will be confirmed for other GBEs
besides eqgs. (5.67) and (5.84) which we have dealt with here.
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for cylindrically symmetric Burgers
equation, 137-40
simple waves, 8, 15
singular perturbation techniques, remarks
on, 42-4
stability
explicit finite difference schemes, 154-5
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implicit finite difference schemes, 155

pseudo-spectral finite difference scheme,
161

self-similar solutions, 109; cylindrically
symmetric Burgers equation, 140-7

separable solutions of the nonlinear
diffusion equation of plasma physics,
132-7

shock centre

for cylindrical N waves, 188
for planar N waves, 183
for spherical N waves, 192
numerical, 184
shock wave displacement due to diffusion,
31, 50

Waves — diffusive, dispersive and
hyperbolic — definition of, 1



