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ABSTRACT 

Stefan problems are described by a parabolic partial-differential equation, along 

with two boundary conditions on a moving boundary, which is to be determined as 

part of the solution. The purpose of this paper is to develop a finite-element method 

for the solution of a one-dimensional Stefan problem. First, a coordinate transforma- 

tion is used to transform the changing physical domain into a fixed computational 
domain. Then, the weak or Gale&n formulation of the initial boundary value problem 
is used to reduce it to a system of initial-value problems in ordinary differential 

equations. Several finite-difference marching methods are used to solve the resulting 

initial-value problems. The method is developed and illustrated using the Stefan 

problem concerning the heat transfer in an ice-water medium. The computational 

results are in very good agreement with the results produced earlier by several 

authors. 

1. INTRODUCTION 

A variety of transient problems arising in engineering and science involve a 
domain whose boundary changes its shape and size in time. For example, see 
Ockendon and Hodgkins [15], Furzerland [8], and Crank [4]. These problems 
are commonly referred to as moving boundary problems (MBPs). In particu- 
lar, the MBPs arising in heat conduction and diffusion are called Stefan 
problems. The existence and uniqueness of the solution of Stefan problems 
have been studied in detail by Rubinstein [17]. The presence of the moving 
boundary makes these problems nonlinear (see Carslaw and Jaeger [3]), and 
hence, their analytical solution is difficult. Approximate analytical methods, 

APPLIEDMATHEMATZCSANDCOMPUTATZON 52:239-250(1992) 

0 Elsevier Science Publishing Co., Inc., 1992 

239 

655 Avenue of the Americas, New York, NY 10010 0096.3003/92/$5.00 



240 N. S. ASAITHAMBI 

which yield solutions to Stefan problems in simple closed forms, have been 
investigated by Goodman [9], Reynolds and Dolton [16], and Gupta and 
Banik [lo]. However, there is neither a check on the accuracy of these 
solutions, nor a systematic approach to improving the accuracy, if desired. 
The most commonly used numerical methods are based on finite-differences. 
Several of these methods may be found in Landau [13], Crank [ 51, Murray 
and Landis [14], Crank and Gupta [6], Gupta and Kumar [ll], and Asaithambi 
[l, 21. A finite-element solution was proposed by Finn and Voroglu [7], who 
solved a sequence of two-point boundary-value problems for each time level. 
The basic approach of their method was to guess the position of the moving 
boundary, and impose the boundary conditions at the approximate location. 
In this paper, we present a method which will eliminate this uncertainty by 
first mapping the changing physical domain into a fixed computational 
domain. The direct weak or Gale&n formulation of the resulting problem 
yields a system of initial-value problems in ordinary differential equations, 
which may be solved by finite-difference marching procedures. 

2. STATEMENT OF PROBLEM 

We consider the heat transfer in an ice-water medium in the region 
0 Q x < 1. The portion 0 < s,(t) < x < s,(t) < 1 of this region is occupied 
by the water that undergoes phase change, and the remaining portion by ice. 
The initial temperature distribution in ice is linear in X, and symmetric about 
x = 0.5. The temperature of the water is assumed to be zero, which is the 
critical temperature of phase change. The temperature at the fixed surfaces 
x = 0 and x = 1 is assumed to be - 1 for all time. The problem is to 
determine s,(t) and s,(t) along with the temperature distribution, starting 
with s,(O) = 0.25, and ~~(0) = 0.75. Since the problem is entirely symmetric 
about x = 0.5, it suffices to consider only the region 0 < x < 0.5. We denote 
by u(x, t) the temperature at a distance x from the fixed surface x = 0 at 
time t, and s(t) the position of the moving boundary as time progresses. In 
terms of these variables, the mathematical problem in the dimensionless form 
corresponding to the above physical process may be described by the heat 
equation 

au d2U 
-= - on0 <x <s(t), t > 0, 
at axI2 (2.1) 

subject to the boundary conditions 

u= -l,x=O,t>O, (2.2) 



u = 0, x = s(t), t > 0, (23 
au a!s 

ax = dt’ x = s(t), i! > 0, 

along with the initial conditions 

- u(x,O) for O < x d = (. 4x 1, 0.25, 
0 for 0.25 < x d 0.5, 

(2.4) 

(2.5) 

s(O) = 0.25. (2.6) 

We wish to determine s(t) for t > 0, and u(x, t) for 0 < x < s(t) and t > 0. 

3. NUMERICAL SOLUTION 

The development of the numerical method consists mainly of three major 
steps. They are, (i) coordinate transformation, (ii) weak or Gale&in formula- 
tion, and (iii) solution of the resulting initial-value problems. 

Coordinate transformation 
In order to facilitate easy implementation of finite-difference and finite- 

element methods for free and moving boundary problems, it has become 
common practice to first transform the changing physical domain to a fixed 
computational domain. For the present problem, the simple transformation 

5 = r/s(t), r= t, (3.1) 

will transform the changing domain 0 < x < s(t), t > 0 into the fixed domain 
0 < (’ < 1, 7 > 0. We will perform all computations in the 5 - r domain, 
still considering s(r) as an unknown. For convenience, we will henceforth 
abbreviate s(r) by s. Under the transformation (3.1), the governing mathe- 
matical problem (2.1)-(2.6) takes the form 

dU (ds du 1 d2U 
_~_--+-- 
a7 s dr a[ s2 a(2 

on0 < .$< 1, 7> 0, (3.2) 

subject to the boundary conditions 

u= -1,e=o,7>0, 

u = 0, 5 = 1, 7 > 0, 

ldu ds 
--= - 
s ac$ dr ’ 

t= 1, T> 0, 

(3.3) 
(3.4) 

(3.5) 
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along with the initial conditions 

for0 Q 59 1, 

otherwise, (3.6) 

s(O) = 0.25. (3.7) 

We wish to determine s(r), and U( 5, r) on 0 < 5 < 1 for r > 0. Next, we 
consider the weak or Galerkin formulation of the problem described by 
(3.2)-(3.7). 

Weak or Galerkin Formulation 
If u satisfies (3.2), then it also satisfies 

td.9 au 1 d”u 
- - --- - -- 

s dr a[ s2 a52 
w(5)d5= 0, (3.8) 

for any continuous w( [), called a weight function. Thus, (3.8) is a necessary 
condition for u to be a solution of (3.1). It is well known that, under suitable 
smoothness assumptions on u, (3.8) will also be a sufficient condition. If the 
weight function w( 5) also satisfies w(O) = ~(1) = 0, then (3.8) is equivalent 
to 

which is obtained by using integration by parts on the last term in the 
integrands in (3.8). Thus, we will solve (3.2) by solving its weak or Gale&n 
form given by (3.9). 

For obtaining a finite-element approximation to the solution u of (3.9) we 
begin by subdividing the region 0 < 5 Q 1, using the uniformly spaced grid 
points 5 =jh, where h = l/N is called the mesh size, and N the number of 
subintervals. Then, we proceed to determine approximations of the form 

u”( 5, ‘> = f uj(T)4j( S>> (3.10) 
j=o 
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where ($$5 >b% 0 are the hat functions defined by 

otherwise. 

(3.11) 

Letting U,,(T) = - 1 and ~~(7) = 0 in (3.10) yields an approximation 
~“(5, 7) that satisfies the boundary conditions (3.3) and (3.4). The computa- 
tional problem is to obtain the time-dependent coefficients uj(r) for j = 
1,2;**, N - 1. This may be accomplished by using N - 1 appropriate weight 
functions W( 5). The usual practice is to take w( 5) = c#I~( 5 > for i = 

1,2;*., N - 1. Thus, the use of (3.10) and (3.11) in (3.9) yields the system of 
equations given by 

du,_l du, du,+l 
a.- + bid7 + ci 

’ dr 
- = P,u~_~ + 9pi + ~-~‘iu~+~, i = 1,2;.*, N - 1, 

dr 

(3.12) 

where 

1 
ui = -, 

6 

hi=;, 1 

I 

Ids 2 
9i=; -3z--$ 

(1+3i) 

u”( 5, T) ._,4,-,(t) +uN&(t)for5E [l-kllT 
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and uN = 0, the boundary condition (3.5) becomes 

ds 
- = Auw_I&1(1) = --&,,. 
dr s 

(3.14) 

Thus the initial-boundary problem described by (3.2)-(3.7) has been changed 
to the system of initial-value problems described by (3.12)-(3.14), subject to 
the initial conditions 

~~(0) = ih - 1, i = 1,2;.*, N - 1, s(O) = 0.25. (3.15) 

Next, we consider the solution of (3.12)-(3.15). 

Solution of the Initial-Value Problems 

Starting with the initial values given in (3.151, we wish to obtain uj(rk) 
where rk = kbr) for k = 1,2, *** for a chosen step size Ar. By adding the 
differential equations du,/dr = 0 and du,/dr = 0 to (3.12), we obtain the 
matrix form 

M$ = A(s)u, (3.16) 

where M and A(s) are the (N + 1) x (N + 1) matrices and u is the 
(N + l&vector given by 

A(s) = tridiag [pi qi ri], 

UT = [u. **- UN]. (3.17) 

Note that the first and the last row of M consist of the only nonzero entry 1 
on the main diagonal, and the first and the last rows of A(s) are zero. In 
order to keep the notation uniform, we write (3.14) as 

o!.s 1 
-ZZ 
dr 

- xuNpl = g(r, s,u). (3.18) 

Traditional finite-difference methods may be used to solve (3.16) and (3.18). 
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For example, if we let uk denote an approximation to u(kAr) and sk denote 
an approximation to s(kA~), the forward-difference (or Euler’s) method for 
the solution of (3.16) and (3.18) amounts to solving the equations 

Muk+’ = Muk + ArA(sk)uk, (3.19a) 

sk+l = sk + AT&k, Sk,Uk). (3.19b) 

We had difficulty obtaining reasonable solutions for moderate values of the 
mesh size h and the step size Ar when (3.19a) and (3.19b) were used. The 
numerical results exhibited an oscillatory behavior even for moderate mesh 
sizes h. This is not surprising since (3.2) is actually a problem of the 
convection-diffusion type, and numerical methods are known to produce 
oscillatory solutions if the mesh size h is not chosen carefully. An accepted 
alternative in finite-difference methods is to use what are known as upwind 
difference schemes. For the finite-element method, the corresponding alter- 
native is to choose the weight functions w( 5 >, which are different from the 
$i( t), defined in (3.11). A n accepted set of weight functions (for example, 
see Hall and Porsching [ 121) { qoi( 5 )} is obtained by adding quadratic correc- 
tions to c/+( 5). We set cp,( 5 > = +& 5) + a@( 5 ), where the quadratic cor- 
rections pi(t) are given by 

Pi( 6) 3( 5- ti)( 5i+l - 5) (3.20) 

h2 ’ 
for 5, G 5 G 5i+l> 

0, otherwise, 

and (Y is some constant. Generally, (Y > 0 if the convective term has a 
positive coefficient, and (Y < 0 otherwise. With the use of these new weight 
functions, the initial-value problems are still of the same form as (3.12), with 

1 CX 
a,=-+--, +a! 

6 4 

(l- 6a(i - l)) 
sh2 

) 
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1 
ci = - 

6 
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(3.21) 

which may be used to define the matrices M and A(s) of (3.16), correspond- 
ingly. Note that putting CY = 0 in (3.21) results in (3.13). In addition to this 
modification of the weight functions, we used a 2-stage Runge-Kutta march- 
ing procedure instead of the Euler scheme defined by (3.19aFC3.19b) for the 
solution of (3.16) and (3.18). In order to describe the e-stage Runge-Kutta 
procedure, let us rewrite (3.16) as du/&- =f<~, s, u), where 

f( 7, s, u) = M-‘A( s)u. (3.22) 

The e-stage Runge-Kutta procedure sets 

f, = ATf(Tk, sk,uk), f, = ATf(7, + Ar, sk + g,,uk + fl), 

g, = ATg(Tk, sk,uk)> g, = ATg(Tk + As-, sk + g,,uk + fl), 
(3.23) 

and obtains uk+r and sk+’ using 

uk+l = uk + f(fl + f,), 

sk+l = Sk + ;(gl + g2). (3.24) 

Note that we do not have to invert the matrix M explicitly, since f may be 
obtained by solving the linear system Mf = A(s)u. 

Even though the oscillations in the numerical solutions were suppressed 
using (3.12), (3.21), and (3.24), the step size Ar had to be restricted for 
stability purposes. This is not surprising either, since we know that even for 
linear parabolic problems, explicit methods in general restrict the step size AT 
according to the relation AT/h2 < c for some constant c. In other words, any 
decrease in the mesh size h should be accompanied by a corresponding 
decrease in Ar. This happens to be a severe restriction. Thus, it is reasonable 
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to use an implicit marching procedure (such as the backward-difference 
scheme or the Crank-Nicolson scheme). We have used the backward-dif- 
ference scheme for the present work, which easily extends to the Crank- 
Nicolson scheme. For the derivation of the backward-difference method, we 
discretize (3.16) and (3.18) in the form 

M&+’ = Muk + ArA(sk+‘)&+i, (3.25a) 

sk+’ = sk + A~g(r~+~,s~+‘,u~+‘). (325b) 

Compare this with (3.19a) and (3.19b). It is apparent that while 
(3.19a)-(3.19b) involve only the solution of the linear system of equation 
(3.19a) for u k+ ‘, and a direct evaluation of (3.19b) for sk+ ‘, the backward- 
difference method requires the numerical solution of the nonlinear system of 
equations (3.25a)-(3.25b), h’ h w ic we solve iteratively. If we denote by uk+ ” ’ 
and sk+ ‘3 ’ iterates for uk+ ’ and sk+ ‘, respectively, then we begin the 
iterative process by setting 

(3.26) 

Then we solve 

(M - A~~(s~+~~‘))~k+l.‘+l = Muk, (3.27) 

and set 

Sk+l.l+l = sk + ATg(Tk+,, sk+l>l,Uk+ lJ+l), (3.28) 

for 1 = 0, 1, ..* until a prescribed error tolerance is met. The rls/dr term in 

A(s k+l,‘) is discretized as (s’+‘,’ - sk)/Ar. Note that the use of (3.27) 
amounts to an increase in the computational effort needed. However, this 
extra computational effort is justified since, in general, there is no restriction 
on the step size Ar any more. We summarize the numerical results in the 
next section. 

4. NUMERICAL RESULTS AND DISCUSSION 

An exact solution for the problem described by (2.1)-(2.6), provided by 
Rubinstein [I7], has been used for comparison by the many authors who have 



248 N. S. ASAITHAMBI 

computed the solution numerically. We will compare our results with the 
exact solution of Rubinstein [17] and the finite-element solution of Finn & 
Varoglu [7]. 

As we mentioned earlier, for the present method, an explicit marching 
procedure imposes severe restriction on the size of AT. For the 2-stage 
Runge-Kutta procedure, we obtained reasonable solutions for Ar = 0.0001, 
and N = 10. There were no obvious oscillations in the computed solutions. 
However, the accuracy of the solution was better when the quadratic correc- 
tions were used for the weight functions. We obtained excellent results for 
CY = -0.002. However, the choice of the parameter (Y was very difficult. 
Table 1 shows these results, along with the numerically evaluated exact 
solution of Rubinstein [17]. 

Shown in Table 2 are the results of the present method using the 
backward-difference or implicit marching the iterative solution of the result- 

TABLE 1 

EXPLICIT MARCHING 

t 

0.01 0.2813 0.2823 0.2817 

0.02 0.3079 0.3094 0.3082 

0.03 0.3321 0.3342 0.3324 

0.04 0.3545 0.3571 0.3548 

0.06 0.3955 0.3991 0.3958 

0.08 0.4326 0.4370 0.4329 

0.10 0.4668 0.4719 0.4671 

Rubinstein [4] Present ((u = 0) Present (cx = - 0.002) 

‘AT = 0.0001 N = 10 (h = 0.1). 

TABLE 2 

IMPLICIT MARCHING 

Present Present 

t Finn & Varo$u [ 161 N = 10, AT = 0.01 N = 20, Ar = 0.005 

0.01 0.2806 0.2803 0.2808 

0.02 0.3072 0.3069 0.3074 

0.03 0.3315 0.3312 0.3316 

0.04 0.3541 0.3537 0.3541 

0.06 0.3956 0.3951 0.3952 

0.08 0.4333 0.4326 0.4326 

0.10 0.4682 0.4671 0.4670 
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ing nonlinear system of algebraic equations, along with the finite-element 

solution of Finn and Varoglu [7] were produced using 20 elements (N = 20) 

with a step size of At = 0.005. The accuracy of the present results, obtained 

with explicit marching a quadratic corrections, (especially those correspond- 

ing to (Y = -0.002) is certainly superior to those of Finn and Varoglu [7]. 

However, the step size AT = 0.0001 is very small and hence requires more 

number of steps to march to a given time. 

On the other hand, as is evident from Table 2, the present method has 

produced more accurate results using an implicit marching process even with 

fewer number of elements (N = 10) and larger step size (AT = 0.01) than 

those required by Finn and Varoglu [7]. In addition, the present results 

(obtained using implicit marching) are also superior to the results of many 

other authors reported by Gupta and Banik [lo]. 
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