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Abstract

Many physical processes involve heat conduction and materials undergoing a
change of phase. Examples include the safety studies of nuclear reactors, casting
of metals, semiconductor manufacturing, geophysics and industrial applications in-
volving metals, oil, and plastics. Due to their wide range of applications the phase
change problems have drawn considerable attention of mathematicians, engineers
and scientists. These problems are often called Stefan’s or moving boundary value
problems. One common feature of phase change problems is that the location of the
solid-liquid or solid-solid interface is not known a priori and must be determined
during the course of analysis. Mathematically, the interface motion is expressed
implicitly in an equation for the conservation of thermal energy at the interface
(Stefan’s conditions). This introduces a non-linear character to the system which
treats each problem somewhat uniquely. The exact solution of phase change prob-
lems is limited exclusively to the cases in which e.g. the heat transfer regions are
infinite or semi-infinite one dimensional-spaces. Therefore, solution is obtained ei-
ther by approximate analytical solution or by numerical methods. Finite-difference
methods and finite-element techniques have been used extensively for numerical
solutions of moving boundary problems. Recenty, the numerical methods have fo-
cused on the idea of using a meshless methodology for the numerical solution of
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partial differential equations based on radial basis functions. One of the common
characteristics of all meshless methods is their ability to construct functional ap-
proximation or interpolation entirely based on the information given at a set of
scattered nodes. In our case we will study solid state phase transformation problem
in binary metallic alloys. The numerical solutions will be compared with analytical
solutions. Actually, in our work we will examine usefulness of radial basis functions
for one-dimensional Stefan’s problems. The position of the moving boundary will
be simulated by moving grid method.

Key words: Moving-boundary problems, Meshless method, Radial basis functions,
Stefan’s problems, Moving grid method

1 Introduction

A large number of important physical processes involve heat conduction and
materials undergoing a change of phase. Examples include nuclear reactors,
casting of metals, semiconductor manufacturing, geophysics, and industrial ap-
plications involving metals, oil, and plastics. These problems often are called
Stefan’s or moving boundary value problems. Analytical solutions are only
available for a limited number of model examples and hence the solution of
most practical cases requires the use of numerical techniques. The exact solu-
tion of phase change problems is limited exclusively to the cases in which e.g.
the heat transfer regions are infinite or semi-infinite one dimensional-spaces.

Several numerical methods have been developed to solve various Stefan’s prob-
lems. Crank [1] provides a good introduction to the Stefan’s problems and
presents an elaborate collection of numerical methods for these problems. Ac-
cording to Crank the numerical methods for moving boundary problems can be
classified in three categories: front-tracking methods, front-capturing methods
and hybrid methods. We follow front-tracking methods (moving grid method)
which use an explicit representation of the interface, given by a set of points
lying on the interface location, which must be updated at each time step.

The meshless method has been widely investigated in the past and emerged
as a new category of computational methods. One of its advantages is that
no mesh generation is required to solve differential equations numerically. It is
well known that in the traditional numerical methods, such as finite element
methods, finite difference methods, boundary element methods, it is usually
difficult and takes considerable effort to generate proper meshes for computa-
tional purposes. This is especially true for three–dimensional problems with
complicated geometry in engineering applications.

Heat treatment of metals is often used to optimize mechanical properties. Dur-
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ing heat treatment, the metallurgical state of the alloy changes. This change
can involve the phase present at a given location or the morphology of the
various phases. Whereas equilibrium phases can be predicted quite accuratly
from thermodynamic models, there are no general models for microstructural
changes nor for the kinetics of these changes. One of these processes, which
is both of large industrial and scientific interest and amenable to modeling, is
the dissolution of the second–phase particles in a matrix with a uniform initial
composition.

In our case we will study solid state phase transformation problem in binary
metallic alloys. The numerical solutions will be compared with analytical solu-
tions. Actually, in our work we will examine usefulness of radial basis functions
for one–dimensional Stefan’s problems. The position of the moving boundary
will be simulated by moving grid method.

2 The Meshless Method

The meshless method is currently at the stage of development. Various ap-
proaches and computational procedures have been proposed in the literature.
Not every method that is claimed to be meshless is really meshless. The true
meshless method must provides a computational procedure without relating
to any mesh point connectivity.

Three different approaches to develop meshless methods have been successfully
proposed. The first one is based on the spirit of the finite element method and
employs Petrov–Galerkin weak formulation. Detailed theories and formulation
can be found in the book by Atluri and Shen [2].

The second approach is of boundary element type. It attempted to discretize
boundary integral formulation without employing a mesh. Grid points in this
approach are all on the boundaries. Several procedures [3] have been proposed
with different discretization concepts.

The third approach employs radial basis functions (RBFs). The base of this ap-
proach is its employment of high-order interpolating functions to approximate
solutions of differential equations. All RBFs possess the property that their
values are determined only by distance and have nothing to do with directions.
Kansa [4]–[5] introduced multiquadric functions to solve hyperbolic, parabolic
and elliptic differential equations with collocation methods. This method is
an asymmetric collocation set–up in which boundary conditions are treated
separately from the interior problem. He found that they had quite good con-
vergence properties and achieved outstanding computational efficiency. One
of the most powerful RBF method is based on multiquadric basis functions
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(MQ), first used by R. L. Hardy [6]. It is important to mentioned that the
MQ was till now efficiently used in transport modelling [7]–[8]. In our case we
focused on using RBFs with collocation methods.

3 Radial Basis Function Methods

Radial basis function methods have been praised for their simplicity and ease
of implementation in multivariate scattered data approximation [9], and they
are becoming a viable choice as a method for the numerical solution of par-
tial differential equations [4]–[5]. Compared to low–order methods such as
finite differences, finite volumes and finite elements, RBF–based methods of-
fer numerous advantages, such as no need for a mesh or triangulation, simple
implementation and dimensional indenpendence, and no staircasing or poly-
gonization for boundaries.

A radial basis function is a function φj(x) = φ(‖x − xj‖), which depends
only on the distance between x ∈ Rd and a fixed point xj ∈ Rd. Here, φ is
continuous and bounded on any bounded sub-domain Ω ⊆ Rd. Let r denote
by the Euclidean distance between any pair of points in the domain Ω.

The commonly used radial basis functions are:

φ(r) = r, linear,

φ(r) = r3, cubic,

φ(r) = r2 log r, thin-plate spline,

φ(r) = e−cr2

, Gaussian,

φ(r) = (r2 + c2)
1
2 , multiquadric,

φ(r) = (r2 + c2)−
1
2 , inverse multiquadric.

To introduce RBF collocation methods, we consider a PDE in the form of

Lu = f(x) in Ω ⊂ Rd, (1)

B u = g(x) on ∂Ω, (2)

where u is concentration, d is the dimension, ∂Ω denotes the boundary of the
domain Ω, L is the differential operator on the interior, and B is an operator
that specifies the boundary conditions of the Dirichlet, Neumann or mixed
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type. Both, f and g, are given functions mapping Rd → R.

The solution, u, to the PDE is approximated by linear combination of RBFs
and polynomials:

u ≈ U(x) =
N∑

j=1

αjφj(x) +
M∑
l=1

γlvl(x), (3)

where φj(x) = φ(‖x − xj‖), and φ can be any radial basis function from the

list, v1, . . . , vM ∈ Πd
m is a polynomial of degree m or less, M :=

(
m−1+d

d

)
[10]

and ‖ · ‖ indicates the Euclidean norm. Let {(xj)}N
j=1 be the N = NI + NB

collocation points in Ω ∪ ∂Ω. We assume the collocation points are arranged
in such a way that the first NI points are in Ω, whereas the last NB points
are on ∂Ω. To solve for the N + M unknown coefficients, N + M linearly
independent equations are needed. By choosing N distinct collocation points
XI = {x1, . . . ,xNI

} ⊂ Ω and XB = {xNI+1, . . . ,xN} ⊂ ∂Ω and ensuring
that U(x) satisfies (1) and (2) at the collocation points results in a good
approximation of the solution u. The first N equations are given by

N∑
j=1

αj Lφj(xi) +
M∑
l=1

γl Lvl(xi) = f(xi) for i = 1, . . . , NI

N∑
j=1

αj B φj(xi) +
M∑
l=1

γl B vl(xi) = g(xi) for i = NI + 1, . . . , N (4)

The last M equations could be obtained by imposing some extra condition on
v(·):

N∑
j=1

αjvk(xj) = 0, k = 1, . . . ,M. (5)

This leads to the equivalent matrix form: Ax = b or


WL vL

WB vB

vT 0


 α

γ

 =


f

g

0

 , (6)

where

WL = Lφj(xi), xi ∈ XI (7)
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vL = Lvl(xi), xi ∈ XI (8)

WB = B φj(xi), xi ∈ XB (9)

vB = B vl(xi), xi ∈ XB (10)

The choice of basis function is another flexible features of RBF methods. RBFs
can be globally supported, infinitely differentiable, and contain a free param-
eter, c, called the shape parameter. This leads to a full coefficient matrix or
a dense interpolation matrix. In addition, in solving simultaneous algebraic
equations, they easily result in poor conditioned coefficient matrices. Global,
infinitely differentiable RBFs typically interpolate smooth data with spectral
accuracy [9].

The shape parameter affects both the accuracy of the approximation and the
conditioning of the interpolation matrix. In general, for a fixed number of cen-
ters N , smaller shape parameters produce the more accurate approximations,
but also are associated with a poorly conditioned matrix. The condition num-
ber also grows with N for fixed values of the shape parameter c. In practice,
the shape parameter must be adjusted with the number of centers in order
to produce an interpolation matrix which is well conditioned enough to be
inverted in finite precision arithemetic. Many researchers (e.g. [11]–[12]) have
attempted to develop algorithms for selecting optimal values of the shape pa-
rameter c. The optimal shape parameter c is still an open question. In our
case we used an iterative mode by monitoring the spatial distribution of the
residual errors in Ω and ∂Ω as a function of c. The iterations are terminated
when errors are smaller then a specified bound. This map is then used to
guide the search of the optimal shape parameter c that the best approximate
the solution. In our study we used in general multiquadric (MQ) RBF. The

generalized form of the MQ basis function is φj(x) = [(x− xi)
2 + c2i ]

β
, where

x, xi ∈ Rd, and β is a non integer ≥ −1/2.

Our intent is also to use anti–differentiation upon gradients of dependent vari-
ables. Mai–Duy and Tran–Cong [15] obtained very impressive computational
results with singly or doubly integrated MQ RBFs.

The methodology of the integral formulation is similar, except that we inte-
grate the MQ:

ψj(x) =
√

(x− xj)2 + c2 (11)
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with respect to x twice to obtain the new basis functions:

Φj(x) =
1

6

(
(x− xj)

2 − 2c2
)
ψj(x) +

1

2
(x− xj)

(
c2

)
ln

(
(x− xj) + ψj(x)

)
(12)

whose derivatives are

∂Φj(x)

∂x
=

1

2
(x− xj)ψj(x) +

1

2

(
c2

)
ln

(
(x− xj) + ψj(x)

)
, (13)

∂2Φj(x)

∂x2
= ψj(x). (14)

The expansion of the unknown function is now of the form:

u(x) =
N∑

j=1

αjΦj(x) +
M∑
l=1

γlvl(x). (15)

4 The problem

4.1 The physical model

In this study we consider classical Stefan’s problem: the solid state phase
transformation problem in binary metallic alloys which is described in [13]. In
that problem a volume of constant composition is surrounded by a diffusive
phase. In the interface between the particle and the diffusive phase a constant
concentration is assumed, and the gradient of the concentration causes the
movement of the interface. This problem is also called solid–solid transforma-
tion.

4.2 The mathematical model

We consider the domain Ω containing a diffusive phase Ωdp and the part where
the material characteristic Ωpart remain of constant composition cpart. The par-
ticle dissolves due to Fickian diffusion in the diffusive phase. The concentration
at the interface Γ, separating Ωpart and Ωdp, is assumed to be given by the
constant value csol. The concentration gradient on the side of Ωdp at Γ causes
its displacement. The governing equations and boundary conditions of this
problem are:

7



∂u

∂t
(x, t) = D∆u(x, t), x ∈ Ωdp(t), t > 0, (16)

u(x, t) = upart, x ∈ Ωpart(t), t ≥ 0, (17)

u(x, t) = usol, x ∈ Γ(t), t ≥ 0, (18)

(upart − usol)vn(x, t) = D
∂u

∂n
(x, t), x ∈ Γ(t), t > 0, (19)

where x is coordinate vector of a point in Ω, D means the diffusivity constant,
n is the unit normal vector on the interface pointing outward with respect to
Ωpart(t) and vn is the normal component of the velocity of the interface. The
initial concentration u(x, 0) inside the diffusive phase is given. We assume no
flux of the concentration through the boundary:

∂u

∂n
(x, t) = 0, x ∈ ∂Ωdp(t)\Γ(t), t > 0, (20)

hence mass is conserved.

5 The numerical solution methods

In our model the motion of the interface is determined by the gradient of con-
centration, which can be computed from the solution of the diffusion equation.
Our interest is to give an accurate discretization of the moving boundary con-
ditions. Here we present an interpolative moving grid method, in which the
grid is computed for each time step and the solution is interpolated from the
old grid to the new. The equations are solved with collocation methods using
RBFs. A characteristic feature of a front–tracking method is that the interface
positions are nodal points in every time–step. Therefore, the position of the
grid points depend on time. An outline of the algorithm is:

• Compute the concentrations profiles solving equations (16), (17), (18) and
(20).

• Predict the position of boundary s1 at the new time–step: s1(t+ ∆t) using
boundary condition (19).

• Once the boundary is moved, the concentration u can be computed in the
new region using Eq. (16). The solution is interpolated from the old grid to
the new.
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6 Analytical solutions

In numerical experiments we will compare our numerical solutions with the
analytical solutions that exist for the problem presented above. These solutions
are expressed as functions of x−s0√

t
as proved in [14], and the domain Ω = [0, l]

has to be infinite or semi–infinite. The interface position is given by s(t) =
s0 +2α

√
t, where the constant α is obtained by solving the following equation:

α =
u0 − usol

upart − usol

√
D

π

exp(−α2

D
)

erfc( α√
D

)
. (21)

When α is known, the concentration is given by

u(x, t) =


upart if x < s(t),

u0 +
(usol−u0)erfc(

x−s0
2
√

Dt
)

erfc( α√
D

)
, if x ≥ s(t),

where upart is the concentration inside the particle, usol is the concentration
on the interface and u0 is the initial concentration of the diffusive phase. s0 is
the initial position of the interface.

We assume a piecewise initial concentrations as follows:

u(x, 0) =


upart if x ∈ Ωpart = [0, s0),

usol if x = s0,

u0 if x ∈ Ωdb = (s0, l).

7 Numerical examples

For the simulations we used data from [13]: the concentration inside the part
where the material characteristics remain constant upart = 0.53, the concen-
tration on the interface usol = 0, the initial concentration of the diffusive phase
u0 = 0.1, the diffusivity constant D = 1, the domain length l = 1 and the
initial position of the interface s0 = 0.2.

Let N be the total number of grid intervals, r of those lie inside constant
composition and N − r lie inside the diffusive phase. The grid is uniform in
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each phase and the interface is always located in the rth node. Due to the
movement of the interface, the grid is adapted at each time step.

7.1 MQ, β = 0.5

In numerical experiments we will also include MQ exponent, β as additional
parameter to be optimized. First, the MQ exponent, β had the value 0.5. In
figure 1 the movement of the interface positions calculated with MQ exponent,
β = 0.5 is presented. On the upper side of the figure 1 we show the results
obtained by shape parameter c based on residual error calculated at collocation
points, and on the lower side of the figure 1 we show the results obtained by
shape parameter c based on residual error calculated at other points (those
lie between collocation points). During the time simulation steps the shape
parameter c had values about 0.01. The tolerance for residual error, ε was
between 1.e− 5 and 1.e− 15.

Figure 1: Interface position vs. time simulated with MQ (β = 0.5)
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7.2 MQ, β = 1.5

Second, the MQ exponent parameter, β had the value 1.5. In figure 2 the
movement of the interface positions is shown. On the upper side of the figure
2 we show the results obtained by shape parameter c based on residual error
calculated at collocation points, and on the lower side of the figure 2 we show
the results obtained by shape parameter c based on residual error calculated
at other points. During the time simulation steps the shape parameter c had
values between 0.01 and 0.09. In the case of the collocation points the tolerance
for residual error was ε = 1.81e − 16. But in the case of other points the
tolerance for residual error was ε = 0.4.

Figure 2: Interface position vs. time simulated with MQ (β = 1.5)

The movement of the interface where the residual error was determined at
interior points is presented in figure 3.
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Figure 3: Interface position vs. time simulated with MQ (β = 1.5)–residual errors
determined at interior points

7.3 Integral MQ scheme

In the last cases we present a collocation method based on multiquadric func-
tions with integral formulation for calculation of the movement of the interface
positions. The movement of the interface calculated by integral MQ scheme
is shown in figure 4. The shape parameter c was obtained by residual error
procedure.

Figure 4: Interface position vs. time simulated with integral MQ scheme

8 Discussion

Comparison of positions of the moving boundary calculated with MQ (β =
0.5) and MQ (β = 1.5) (Figure 1 and Figure 2) shows that MQ (β = 1.5)
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determines the position of the interfaces much more accurately than MQ (β =
0.5). The simulations have also show that the value of the shape parameter c
which was computed by residual error procedure was in range between 0.01–
0.09. This confirm the fact that for a fixed number of centers N , smaller
shape parameters produce the more accurate approximations. The results have
shown that β should be greater than 0.5 if we want to get reasonable results.
The shape parameter c determined at collocation points better fulfill equation
than the shape parameter c determined at the other points. Probably reasons
for bad results in figure 1 could be found in the facts that some centers were
clustered (too close to each other).

In figure 5 the Gershgorin circles and eigenvalues for MQ (β = 1.5) and MQ
(β = 0.5) are presented. Gershgorin theorem states that each eigenvalue λ of
the matrix A satisfies at least one of the following inequalities |λ− akk| ≤ rk,
where rk is the sum of all off-diagonal entries in row k of the matrix |A|.

Figure 5: MQ (β = 1.5) and MQ (β = 0.5)

The eigenvalues of Kansa’s matrix are usually real since matrix is positive
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definite. The function of matrix is determined with the function of the eigen-
values. Therefore, the effect of the matrix on time dependence problem is
declared with eigenvalues of Kansa’s matrix. Comparison of Gershgorin cir-
cles and the eigenvalues also shows that MQ (β = 1.5) gives better results
than MQ (β = 0.5). At the same time it is being observed that at the same
conditions as above the distribution of eigenvalues are denser at the x axes.
Respectively, the eigenvalues lie inside certain maximal disk. Maximal disk
has the sum of row elements with mininal radious.

Gerschgorin theorem simplifies and optimizes the calculation of eingevalus of
a matrix, which can, otherwise, be quit time consuming work. The very task is
limited to summation of elements in a particular row, which gives the length
of an interval on which the appropriated eingenvalue lies; position of that
interval (or all n-of them) is determined with its centre point and calculated
from the diagonal element in row of an approximation matrix.

A space part matrix (approximation matrix) that governs time part of an
algorithm can be viewed as a function of a matrix. Function of a matrix can
be easily evaluated as function of its spectra, therefore its eingenvalues. This
fact makes the task of how approximation matrix works on time loop much
easier. It can be plausibly said that for numerical calculation only spectra of
approximation matrix must be known explicitly. Geometrically eingenvalues
are distributed on real axis along some maximal interval. Intervals, on which
eingevalues are positioned, can be studied for their geometrical properties.
They are all concentric and dense. Eigenvalues are all real therefore distributed
on real axis. The spectra of a matrix is the very data with which, call it
geometric solution, we can see the behaviour of loop, converging goodly or
badly. A result known as the Georshgorin theorem is of great benefit for easy
derivation of approximate of eingenvalues.

Comparison of positions of the moving boundary calculated with MQ (β =
0.5) and Integral MQ scheme (Figure 1 and Figure 4) shows that Integral MQ
scheme determine better the position of the interfaces than MQ (β = 0.5). It
is known that the integration is a smoothing operation.

Comparison of results calculated with MQ (β = 1.5) (Figure 2 and Figure 3)
also shows that the fulfilment of the equation is better in the interior points
(Figure 3) than in the boundary points (Figure 2). The reason could be in us-
ing the asymmetric RBF collocation method. Because we want to achieve high
accuracy, the resultant system of RBF–PDE problem usually becomes badly
conditioned. The solution can be improved by using an affine space decom-
positon [16] that decouples the influence between the interior and boundary
collocations.

It is being also observed that we had better fulfilment of the equation at
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collocations points (e.g. upper picture of Figure 2) than at other points (e.g.
lower picture of Figure 2). Several different strategies [17] have been somewhat
successful in reducing the ill–conditioning problem when using RBF methods
in PDE problems. The strategies include: variable shape parameters, domain
decomposition, preconditioning the interpolation matrix, and optimizing the
center locations.

9 Conclusions

This study presents modelling of moving boundary value problems using a
radial basis functions method (MQ, integral MQ). Simulations show that MQ
(β = 1.5) and integral MQ scheme give good results. In this case the method
of evaluation was verified by comparing results with the analytical solutions.

We explore the residual error from the equation as an indicator which provides
a road map to the optimal selection of the shape parameter value.

In that case of calculating the Stefan’s problems we can conclude that the ra-
dial basis function methods could be an appropriate alternative to the analytic
method due to its simpler implementation.

The choice of basis function is flexible feature of RBF methods. Basis func-
tions may have global or compact support and may have varying degrees of
smoothness. The results show that the exponent β need not to be restricted
to β = (2m− 1)/2, m = 0, 1, 2, 3, etc.

The Gershgorin circle theorem could be useful tool for choosing an appropriate
RBFs. For each value of shape parameter, eigenvalues and their distribution
can be studied, therefore obtaining knowledge concerning properties of an ap-
proximation matrix and their role being played in finding better approximation
of computed data to solution of equation.

The solutions can be improved by using an affine space decompositon that
decouples the influence between the interior and boundary collocations.

In our future work we employ a Lagrangian-Eulerian approach to track the
movement of the moving boundary and transform the problem to a time-
independent domain.
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