Numerical methods for dynamical systems

Alexandre Chapoutot

ENSTA Paris master CPS IP Paris

2020-2021

Part I

Multi-step methods for IVP-ODE

Initial Value Problem of Ordinary Differential Equations

Consider an IVP for ODE, over the time interval $[0, t_{end}]$

$$\dot{\mathbf{y}} = f(t, \mathbf{y})$$
 with $\mathbf{y}(0) = \mathbf{y}_0$

IVP has a unique solution $\mathbf{y}(t; \mathbf{y}_0)$ if $f: \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz in \mathbf{y}

$$\forall t, \forall \mathbf{y}_1, \mathbf{y}_2 \in \mathbb{R}^n, \exists L > 0, \quad \parallel f(t, \mathbf{y}_1) - f(t, \mathbf{y}_2) \parallel \leq L \parallel \mathbf{y}_1 - \mathbf{y}_2 \parallel .$$

Goal of numerical integration

- ullet Compute a sequence of time instants: $t_0 = 0 < t_1 < \cdots < t_n = t_{\mathsf{end}}$
- Compute a sequence of values: y_0, y_1, \dots, y_n such that

$$\forall \ell \in [0, n], \quad \mathbf{y}_{\ell} \approx \mathbf{y}(t_{\ell}; \mathbf{y}_{0}) .$$

- s.t. $\mathbf{y}_{\ell+1} \approx \mathbf{y}(t_{\ell} + h; \mathbf{y}_{\ell})$ with an error $\mathcal{O}(h^{p+1})$ where
 - h is the integration step-size
 - p is the order of the method

Simulation algorithm

with, the Euler's method defined by

$$\mathbf{y}_{n+1} = \mathbf{y}_n + hf(t_n, \mathbf{y}_n)$$
 and $t_{n+1} = t_n + h$.

Multi-step methods

Recall: single-step methods solve IVP using one value y_n and some values of f.

A multi-step method approximate solution \mathbf{y}_{n+1} of IVP using k previous values of the solution \mathbf{y}_n , \mathbf{y}_{n-1} , ..., \mathbf{y}_{n-k-1} .

Different methods implement this approach

- Adams-Bashforth method (explicit)
- Adams-Moulton method (implicit)
- Backward difference method (implicit)

The general form of such method is

$$\sum_{j=0}^k \alpha_j \mathbf{y}_{n+j} = h \sum_{j=0}^k \beta_j f(\mathbf{t}_{n+j}, \mathbf{y}_{n+j}) .$$

with α_j and β_j some constants and $\alpha_k = 1$ and $|\alpha_0| + |\beta_0| \neq 0$

Polynomial interpolation

- Polynomial interpolation
- Multi-step methods: Adams family
 - Building Adams-Bashforth's methods
 - Building Adams-Moulton's method
 - Predictor-Corrector methods
 - Implementation in Python
- Multi-step methods: BDF
- Order condition
- 5 Variable order and variable step-size multi-step methods

A quick remainder on polynomial interpolation

Starting point:

- a function f(t)
- a sequence of n time instants t_1, t_2, \ldots, t_n .
- a sequence of points $f_1 = f(t_1)$, $f_2 = f(t_2)$, ..., $f_n = f(t_n)$

Goal

• Find a polynomial p of order n approximating f and passes through the (n+1) function values

$$p(t_i) = f_i$$

Theorem (Uniqueness of the Interpolating Polynomial)

Given n unequal points x_1, x_2, \ldots, x_n and arbitrary values f_1, f_2, \ldots, f_n there is at most one polynomial p of degree less or equal to n-1 such that $p(x_i) = f_i$, $i = 1, \ldots, n$.

Note: different algorithms in function of the monomial basis

Polynomial interpolation: basis

Standard basis

We consider

$$p(x) = a_0 + a_1x_+a_2x^2 + a_3x^3 + \cdots + a_nx^n$$

we have to find a_i such that $p(x_i) = f(x_i)$ so the **Vandermond matrix**

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \dots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{pmatrix}$$

Lagrange basis

We consider

$$p(x) = f(x_0)\ell_0(x) + f(x_1)\ell_1(x) + \cdots + f(x_n)\ell_n(x)$$

such that

$$\ell_i(x) = \prod_{j=0, j\neq i}^n \frac{x - x_i}{x_i - x_j}$$

Polynomial interpolation: error

Interpolation error

If f is n+1 continuously differentiable on [a,b] then

$$E_n(x) = (x - x_0)(x - x_1) \dots (x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

with $\xi \in]a, b[$

Comments:

- Vandermond matrix is not use as it is ill-conditioned
- Lagrange interpolation is useful when f change but not x_i

Remark

For our purpose to define multi-step methods, **equidistant time instants** will be considered!

Multi-step methods: Adams family

- Polynomial interpolation
- 2 Multi-step methods: Adams family
 - Building Adams-Bashforth's methods
 - Building Adams-Moulton's method
 - Predictor-Corrector methods
 - Implementation in Python
- 3 Multi-step methods: BDF
- Order condition
- 5 Variable order and variable step-size multi-step methods

Integral form of IVP

$$\dot{\mathbf{y}} = f(t, \mathbf{y}) \quad \mathbf{y}(t_0) = \mathbf{y}_0 \Leftrightarrow$$

$$\mathbf{y}(t) = \mathbf{y}_0 + \int_{t_0}^t f(s, \mathbf{y}(s)) ds \Rightarrow \mathbf{y}_{n+1} = \mathbf{y}_n + \int_{t_n}^{t_{n+1}} f(s, \mathbf{y}(s)) ds$$

Ingredients:

- We denote by $t_i = t_n + ih$ the grid of points in time
- We assume given numerical approximations: \mathbf{y}_n , \mathbf{y}_{n-1} , ..., \mathbf{y}_{n-k+1} of the exact solution.

we can use \mathbf{y}_i , $i=n-k+1,\ldots,n$, to approximate $f(t,\mathbf{y}(t))$ using $f(t_i,\mathbf{y}_i)\equiv\mathbf{f}_i$.

We can use polynomial interpolation with points:

$$\{(t_i, f_i): i = n - k + 1, \ldots, n\}$$

to approximate integral.

Adams-Bashforth method - 2

We have n + 1 distinct (equidistant) points

$$(t_0, \mathbf{f}_0), (t_1, \mathbf{f}_1), \cdots, (t_n, \mathbf{f}_n)$$

with $\mathbf{f}_i = f(t_i, \mathbf{y}_i)$

Adams-Bashforth method is defined by

$$\mathbf{y}_{n+1} = \mathbf{y}_n + \int_{t_n}^{t_{n+1}} \sum_{i=0}^{n} \mathbf{f}_i \ell_i(s) ds = \mathbf{y}_n + \sum_{i=0}^{n} \mathbf{f}_i \int_{t_n}^{t_{n+1}} \ell_i(s) ds$$

Example of first Adams-Bashforth methods of order k:

- k = 1: $\mathbf{y}_{n+1} = \mathbf{y}_n + \mathbf{hf}_n$ (explicit Euler method)
- k = 2: $\mathbf{y}_{n+1} = \mathbf{y}_n + h\left(\frac{3}{2}\mathbf{f}_n \frac{1}{2}\mathbf{f}_{n-1}\right)$
- k = 3: $\mathbf{y}_{n+1} = \mathbf{y}_n + h\left(\frac{23}{12}\mathbf{f}_n \frac{16}{12}\mathbf{f}_{n-1} + \frac{5}{12}\mathbf{f}_{n-2}\right)$
- k = 4: $\mathbf{y}_{n+1} = \mathbf{y}_n + h\left(\frac{55}{24}\mathbf{f}_n \frac{59}{24}\mathbf{f}_{n-1} + \frac{37}{24}\mathbf{f}_{n-2} \frac{9}{24}\mathbf{f}_{n-3}\right)$

```
from sympy import *
t = Symbol('t', real=True, positive=True)
h = Symbol('h'. real=True. positive=True)
tn = Symbol('t_n', real=True', positive=True)
tnm3 = tn - 3*h
tnm2 = tn - 2*h
tnm1 = tn - h
tnp1 = tn + h
fnm3 = Symbol('f_{n-3}', real=True)
fnm2 = Symbol('f_{-}\{n-2\}', real=True)
fnm1 = Symbol('f_{-}\{n-1\}', real=True)
fn = Symbol('f_n', real=True)
yn = Symbol('y_n', real=True)
vnp1 = Symbol('v_{n+1}', real=True)
points\_order\_1 = [(tn, fn)]
points_order_4 = (tnm3, fnm3), (tnm2, fnm2), (tnm1, fnm1), (tn, fn)
```

```
def lagrange_basis (time, points):
    acc = 1
    for point in points:
        if (time != point[0]):
           acc = acc * (t - point[0])/(time - point[0])
        else ·
            acc = point[1]*acc
    return acc
def lagrange (points):
    acc = 0
    for point in points:
        acc = acc + lagrange_basis (point[0], points)
    return acc
def build_adams (points):
    pl = lagrange(points)
    return simplify(integrate(pl, (t, tn, tnp1)))
print ("##_Order_1")
formula1 = build_adams (points_order_1)
print (latex(Eq(ynp1, yn + formula1)))
```

Explicit Adams-Bashforth formulae

- This is an explicit ODE solver
- Each integration step involves only one evaluation of f
- Using past values of f for order n we use n-1 past values
- Adams-Bashforth algorithm of order n can only be used after n 1
 previous steps (not self starting method)

We have n + 2 distinct (equidistant) points

$$(t_0, \mathbf{f}_0), (t_1, \mathbf{f}_1), \cdots, (t_n, \mathbf{f}_n), (t_{n+1}, \mathbf{f}_{n+1})$$

with $\mathbf{f}_i = f(t_i, \mathbf{y}_i)$

Adams-Moulton method is defined by

$$\mathbf{y}_{n+1} = \mathbf{y}_n + \int_{t_n}^{t_{n+1}} \sum_{i=0}^{n+1} \mathbf{f}_i \ell_i(s) ds = \mathbf{y}_n + \sum_{i=0}^{n+1} \mathbf{f}_i \int_{t_n}^{t_{n+1}} \ell_i(s) ds$$

Example of first Adams-Moulton methods of order k:

- k = 1: $\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{f}_{n+1}$ (implicit Euler method)
- k = 2: $\mathbf{y}_{n+1} = \frac{h}{2} (\mathbf{f}_n + \mathbf{f}_{n+1}) + \mathbf{y}_n$
- k = 3: $\mathbf{y}_{n+1} = \frac{h}{12} \left(8\mathbf{f}_n + 5\mathbf{f}_{n+1} \mathbf{f}_{n-1} \right) + \mathbf{y}_n$
- k = 4: $\mathbf{y}_{n+1} = \frac{h}{24} \left(19\mathbf{f}_n + 9\mathbf{f}_{n+1} 5\mathbf{f}_{n-1} + \mathbf{f}_{n-2} \right) + \mathbf{y}_n$

```
from sympy import *
```

```
t = Symbol('t', real=True, positive=True)
h = Symbol('h', real=True, positive=True)
tn = Symbol('t_n', real=True, positive=True)
tnm2 = tn - 2*h
tnm1 = tn - h
tnp1 = tn + h
\begin{array}{lll} fnm2 &=& Symbol (\ 'f_{-}\{n-2\}\ ', & real=True) \\ fnm1 &=& Symbol (\ 'f_{-}\{n-1\}\ ', & real=True) \end{array}
fn = Symbol('f_n', real=True)
fnp1 = Symbol('f_{n+1}', real=True)
yn = Symbol('y_n', real=True)
ynp1 = Symbol('y_{1}+1)', real=True
points\_order\_1 = [(tnp1, fnp1)]
points\_order\_2 = [(tn, fn), (tnp1, fnp1)]
points_order_3 = [(tnm1, fnm1), (tn, fn), (tnp1, fnp1)]
points_order_4 = [(tnm2, fnm2), (tnm1, fnm1), (tn, fn), (tnp1, fnp1)]
```

```
def lagrange_basis (time, points):
    acc = 1
    for point in points:
        if (time != point [0]):
           acc = acc * (t - point[0])/(time - point[0])
        else ·
            acc = point[1]*acc
    return acc
def lagrange (points):
    acc = 0
    for point in points:
        acc = acc + lagrange_basis (point[0], points)
    return acc
def build_adams (points):
    pl = lagrange(points)
    return simplify (integrate (pl, (t, tn, tnp1)))
print ("##_Order_1")
formula1 = build_adams (points_order_1)
print (latex(Eq(ynp1,yn + formula1)))
```

Implicit Adams-Moulton formulae

- This is an implicit ODE solver
- Each integration step involves only one evaluation of f but requires solution of algebraic equations
- Using past values of f for order n we use n-1 past values
- Adams-Moulton algorithm of order n can only be used after n-1 previous steps (not self starting method)

Predictor-Corrector methods, example of third order:

predictor:
$$\begin{aligned} \mathbf{f}_{k} &= f(t_{k}, \mathbf{y}_{k}) \\ \mathbf{y}_{k+1}^{P} &= \mathbf{y}_{k} + \frac{h}{12} \left(23f_{k} - 16\mathbf{f}_{k-1} + 5\mathbf{f}_{k-2} \right) \\ \text{corrector:} & \mathbf{f}_{k+1}^{P} &= f(t_{k+1}, \mathbf{y}_{k+1}^{P}) \\ \mathbf{y}_{k+1}^{P} &= \mathbf{y}_{k} + \frac{h}{12} \left(5\mathbf{f}_{k+1}^{P} + 8\mathbf{f}_{k} - \mathbf{f}_{k-1} \right) \end{aligned}$$

Note: this algorithm is explicit.

Note: we need two evaluations of f per step.

Adams-Bashforth-Moulton formulae - 2

Predictor-Corrector methods, two general forms

- P(EC)^m
- P(EC)^mE

Note that:

- the corrector methods (usually implicit) can be iterated a few number of times to increase accuracy
- in $P(EC)^m E$, the last evaluation

In that case, instead using Newton method for the implicit method we use a functional iteration approach.

Adams-Bashforth or Adams-Moulton methods are defined from a polynomial interpolation.

Recall, for Adams-Bashforth we have

$$\mathbf{y}_{n+1} = \mathbf{y}_n + \int_{t_n}^{t_{n+1}} \sum_{i=0}^n \mathbf{f}_i \ell_i(s) ds = \mathbf{y}_n + \sum_{i=0}^n \mathbf{f}_i \int_{t_n}^{t_{n+1}} \ell_i(s) ds$$

In consequence, it is possible to compute the remainder of the integral, for example

Example of first Adams-Bashforth methods of order k:

$$ullet$$
 $k=1$: $\mathbf{y}_{n+1}=\mathbf{y}_n+hf_n,$ LTE is $rac{h^2}{2}\ddot{\mathbf{y}}(\xi)$

•
$$k = 2$$
: $\mathbf{y}_{n+1} = \mathbf{y}_n + h\left(\frac{3}{2}f_n - \frac{1}{2}f_{n-1}\right)$, LTE is $\frac{5h^3}{12}\mathbf{y}^{(3)}(\xi)$

•
$$k = 3$$
: $\mathbf{y}_{n+1} = \mathbf{y}_n + h\left(\frac{23}{12}f_n - \frac{16}{12}f_{n-1} + \frac{5}{12}f_{n-2}\right)$, LTE is $\frac{3h^4}{8}\mathbf{y}^{(4)}(\xi)$

We can do the same for Adams-Moulton methods

Estimation of the Local truncation error

In case of Predictor-Corrector, we can estimate the local truncation error *i.e.*, the distance between the true solution and the numerical one. For example, PC with AB3 and AM3 we get:

$$\mathbf{y}(t_{n+2}) - \tilde{\mathbf{y}}_{n+2} = \frac{5}{12} h^3 \mathbf{y}^{(3)}(\xi_{\mathsf{AB3}})$$

 $\mathbf{y}(t_{n+2}) - \mathbf{y}_{n+2} = -\frac{1}{12} h^3 \mathbf{y}^{(3)}(\xi_{\mathsf{AM3}})$

Assuming $\mathbf{y}^{(3)}(\xi_{\text{AM3}}) \approx \mathbf{y}^{(3)}(\xi_{\text{AB3}})$ on the time interval, we get

$$\mathbf{y}_{n+2} - \tilde{\mathbf{y}}_{n+2} pprox rac{1}{2} h^3 \mathbf{y}^{(3)}(\xi) \Longrightarrow$$

$$\mid \mathbf{y}(t_{n+2}) - \mathbf{y}_{n+2} \mid pprox rac{1}{12} h^3 \mathbf{y}^{(3)}(\xi_{\mathsf{AM3}}) pprox rac{1}{6} \mid \mathbf{y}_{n+2} - \tilde{\mathbf{y}}_{n+2} \mid$$

Once this value is obtained, we can control the step-size as for embedded Runge-Kutta methods.

Summary on Adams Family

- These methods are of almost arbitrary order
- Very efficient for non-stiff problem once the starting problem is solved.
- These formula cannot be used to solve stiff problem!
 Except for AM1 and AM2

Adams-Bashforth's method – Implementation

```
def heun_one_step (f, t, y, h):
    y1 = y + h * f(t, y)
    return y + h * 0.5 * (f(t, y) + f(t+h, v1))
def solve (f, t0, y0, tend, nsteps):
    h = (tend - t0) / nsteps; y = []
    ynm2 = y0
    ynm1 = heun_one_step (f, t0+h, ynm2, h)
    yn = heun\_one\_step (f, t0+2*h, ynm1, h)
    fnm2 = f(t0, ynm2)
    fnm1 = f(t0+h, ynm1)
    y.append(ynm2); y.append(ynm1)
    time = np.linspace(t0+2*h, tend, nsteps -2)
    for t in time:
        y.append(yn)
        fn = f(t, yn)
        yn = yn + h / 12.0 * (23.0 * fn - 16.0 * fnm1 + 5.0 * fnm2)
        fnm2 = fnm1
        fnm1 = fn
    return [ np.linspace(t0, tend, nsteps), y]
def dynamic (t, y):
    return np.array([-y[1], y[0]])
[t, y] = solve (dynamic, 0.0, np.array([1., 0.]), 2*np.pi*10, 500)
```

Multi-step methods: BDF

- Polynomial interpolation
- 2 Multi-step methods: Adams family
 - Building Adams-Bashforth's methods
 - Building Adams-Moulton's method
 - Predictor-Corrector methods
 - Implementation in Python
- 3 Multi-step methods: BDF
- Order condition
- 5 Variable order and variable step-size multi-step methods

Backward Differentiation Formula - 1

We have n + 2 distinct (equidistant) points

$$(t_0, \mathbf{y}_0), (t_1, \mathbf{y}_1), \cdots, (t_n, \mathbf{y}_n), (t_{n+1}, \mathbf{y}_{n+1})$$

We can interpolate the solution y(t) of IVP ODE from these points:

$$\mathbf{p}(t) = \sum_{i=0}^{n+1} \mathbf{y}_i \ell_i(t)$$

We can differentiate this polynomial in order to be equal to f

$$\dot{\mathbf{p}}(t) = f(t, \mathbf{y})$$

We evaluate this a time $t_{n+1} = t_n + h$ that is

$$\dot{\mathbf{p}}(t_{n+1})=f(t_{n+1},\mathbf{y}_{n+1})$$

Backward Differentiation Formula - 1

All the methods

•
$$f(t_{n+1}, \mathbf{y}_{n+1}) = \frac{1}{h}(-\mathbf{y}_n + \mathbf{y}_{n+1})$$
 (implicit Euler method)

•
$$f(t_{n+1}, \mathbf{y}_{n+1}) = \frac{1}{2h} (-4\mathbf{y}_n + 3\mathbf{y}_{n+1} + \mathbf{y}_{n-1})$$

•
$$f(t_{n+1}, \mathbf{y}_{n+1}) = \frac{1}{6h} (-18\mathbf{y}_n + 11\mathbf{y}_{n+1} + 9\mathbf{y}_{n-1} - 2\mathbf{y}_{n-2})$$

•
$$f(t_{n+1}, \mathbf{y}_{n+1}) = \frac{1}{12h} (-48\mathbf{y}_n + 25\mathbf{y}_{n+1} + 36\mathbf{y}_{n-1} - 16\mathbf{y}_{n-2} + 3\mathbf{y}_{n-3})$$

•
$$f(t_{n+1}, \mathbf{y}_{n+1}) = \frac{1}{60h} (-300\mathbf{y}_n + 137\mathbf{y}_{n+1} + 300\mathbf{y}_{n-1} - 200\mathbf{y}_{n-2} + 75\mathbf{y}_{n-3} - 12\mathbf{y}_{n-4})$$

•
$$f(t_{n+1}, \mathbf{y}_{n+1}) = \frac{1}{60h} (-360\mathbf{y}_n + 147\mathbf{y}_{n+1} + 450\mathbf{y}_{n-1} - 400\mathbf{y}_{n-2} + 225\mathbf{y}_{n-3} - 72\mathbf{y}_{n-4} + 10\mathbf{y}_{n-5})$$

```
from sympy import *
t = Symbol('t', real=True, positive=True)
h = Symbol('h', real=True, positive=True)
tn = Symbol('t_n', real=True, positive=True)
tnm5 = tn - 5*h
tnm4 = tn - 4*h
tnm3 = tn - 3*h
tnm2 = tn - 2*h
tnm1 = tn - h
tnp1 = tn + h
ynm5 = Symbol('y_{n-5}', real=True)
vnm4 = Symbol('v_{n-4}', real=True)
vnm3 = Svmbol('y_{-}\{n-3\}', real=True)
vnm2 = Symbol('v_{-}(n-2)', real=True)
ynm1 = Symbol('y_{-}\{n-1\}', real=True)
yn = Symbol('y_n', real=True)
vnp1 = Symbol('v_{n+1}', real=True)
fnp1 = Svmbol('f_{-}\{n+1\}', real=True)
points\_order\_1 = [(tn, yn), (tnp1, ynp1)]
points\_order\_2 = [(tnm1, ynm1), (tn, yn), (tnp1, ynp1)]
points_order_3 = [(tnm2, ynm2), (tnm1, ynm1), (tn, yn), (tnp1, ynp1)]
```

```
def lagrange_basis (time, points):
    acc = 1
    for point in points:
        if (time != point [0]):
           acc = acc * (t - point[0])/(time - point[0])
        else ·
            acc = point[1]*acc
    return acc
def lagrange (points):
    acc = 0
    for point in points:
        acc = acc + lagrange_basis (point[0], points)
    return acc
def build_bdf (points):
    pl = lagrange(points)
    return simplify(pl.diff(t).subs(t, tnp1))
print ("##_Order_1")
formula1 = build_bdf (points_order_1)
print (latex(Eq(fnp1, formula1)))
```

Solving implicit equation - 1

BDF can be write:

$$\mathbf{y}_{k+1} = \alpha_i h f_{k+1} + \sum_{j=1}^{\infty} i \beta_{ij} \mathbf{y}_{k-j+1}$$

Functional iteration

$$\mathbf{y}_{k+1}^{\ell+1} = \mathbf{y}_k + \alpha_i hf(t_{k+1}, y_{k+1}^{\ell}) + cst$$

Note:

- initial estimate of \mathbf{y}_{k+1}^0 can be given by a predictor method.
- Functional iteration converges is

$$\begin{aligned} \mathbf{y}_{k+1}^{\ell+1} - \mathbf{y}_{k+1}^{\ell} &= \alpha_i h \left(f(t_{k+1}, \mathbf{y}_{k+1}^{\ell}) - f(t_{k+1}, \mathbf{y}_{k+1}^{\ell-1}) \right) \\ &= \alpha_i h \mathcal{J}_f() (\mathbf{y}_{k+1}^{\ell} - \mathbf{y}_{k+1}^{\ell-1}) \end{aligned}$$

that is if $\mid \alpha_i h \mathcal{J}_f \mid < 1$

In some problems (e.g., stiff) we have $|\mathcal{J}_f| \gg 1$ so $h < |(\alpha_i \mathcal{J}_f)^{-1}| \ll 1$.

Solving implicit equation - 2

BDF can be write:

$$\mathbf{y}_{k+1} = \alpha_i h f_{k+1} + \sum_{j=1} i \beta_{ij} \mathbf{y}_{k-j+1}$$

at each step we try to solve:

$$\mathcal{F}(\mathbf{y}_{k+1}) = \alpha_i h f_{k+1} - \mathbf{y}_{k+1} + \sum_{j=1}^{r} \beta_{ij} \mathbf{y}_{k-j+1} = 0$$

Newton operator

$$\mathbf{y}_{k+1}^{\ell+1} = \mathbf{y}_{k+1}^{\ell} - \mathcal{H}^{-1}\mathcal{F}(\mathbf{y}_{k+1}^{\ell})$$

with \mathcal{H} is a matrix defined by:

$$\mathcal{H} = \mathcal{I} - \alpha_i \mathcal{J}_i \cdot \mathbf{h}$$

with \mathcal{J} the Jacobian of f evaluated at point \mathbf{y}_{k+1}^{ℓ} .

Solving implicit equation - 3

- Industrial code does not reevaluate the Jacobian at each step (use the error evaluation as indicator)
- Industrial code has options to deal with Jacobian:
 - providing analytically expression
 - numerical approximations

speed and range of convergence are influenced by the quality of the $\mbox{\it Jacobian}$

The full Jacobian can be approximate by (for each state variable)

$$\frac{\partial f(t,\mathbf{y})}{\partial y_i} pprox \frac{f_{\mathsf{pert}} - f}{\delta y_i}$$

Note: Usually a **quasi-Newton** method is used *i.e.*, the Jacobian is only computed at the begin of the Newton iteration.

Note: strategies to update this computation are usually present in industrial code solver.

Order condition

- Polynomial interpolation
- 2 Multi-step methods: Adams family
 - Building Adams-Bashforth's methods
 - Building Adams-Moulton's method
 - Predictor-Corrector methods
 - Implementation in Python
- Multi-step methods: BDF
- Order condition
- 5 Variable order and variable step-size multi-step methods

Theoretical definition of the method order

A general linear multi-step method can be written as

$$\sum_{j=0}^{k} \alpha_j \mathbf{y}_{n+j} = h \sum_{j=0}^{k} \beta_j f_{n+j}$$

with

- $\bullet \ f_{n+j} = f(t_{n+j}, \mathbf{y}_{n+j})$
- $\alpha_k = 1$ (normalization)
- $|\alpha_0| + |\beta_0| \neq 0$

The first and second characteristic polynomial of a linear multi-step method are defined by

$$\rho(\zeta) = \sum_{i=0}^{k} \alpha_{i} \zeta^{j}, \qquad \sigma(\zeta) = \sum_{i=0}^{k} \beta_{i} \zeta^{j}$$

with $\zeta \in \mathbb{C}$

Linear difference operator

$$\mathcal{L}[z(x);h] = \sum_{j=0}^{k} [\alpha_j z(x+jh) - \beta_j z'(x+jh)]$$
 with $z(x) \in C^1$

After expansion around x we can write

$$\mathcal{L}[z(x); h] = C_0 z(x) + C_1 h z^{(1)}(x) + \cdots + C_q h^q z^{(q)}(x) + \cdots$$

where C_i are constants

Theorem

A linear multi-step and its associated linear difference operator are of order p if $C_0=C_1=\cdots=C_p=0$ and $C_{p+1}\neq 0$.

We know the values of
$$C_i$$
 e.g., $C_0 = \sum_{j=0}^k \alpha_j$, $C_1 = \sum_{j=0}^k (j\alpha_j - \beta_j)$, and $C_q = \sum_{j=0}^k \left[\frac{1}{q!} j^q \alpha_j - \frac{1}{(q-1)!} j^{q-1} \beta_j \right]$

Variable order and variable step-size multi-step methods

- Polynomial interpolation
- 2 Multi-step methods: Adams family
 - Building Adams-Bashforth's methods
 - Building Adams-Moulton's method
 - Predictor-Corrector methods
 - Implementation in Python
- Multi-step methods: BDF
- Order condition
- 5 Variable order and variable step-size multi-step methods

Step-size control

Problem: Interpolation polynomial for multi-step methods uses equidistant values

Changing the step-size break the equidistant assumption

But from interpolation polynomial we can compute approximation of successive derivative of \mathbf{y} at time t_n

For example starting from the set of points

$$(t_0, \mathbf{y}_0), (t_1, \mathbf{y}_1), \cdots, (t_n, \mathbf{y}_n),$$

We have

$$\dot{\mathbf{y}}_{n} = \frac{1}{6h} \left(11y_{n} - 18y_{n-1} + 9y_{n-2} - 2y_{n-3} \right)$$

$$\ddot{\mathbf{y}}_{n} = \frac{1}{h^{2}} \left(2y_{n} - 5y_{n-1} + 4y_{n-2} - y_{n-3} \right)$$

$$\mathbf{y}_{n}^{(3)} = \frac{1}{h^{3}} \left(y_{n} - 3y_{n-1} + 3y_{n-2} - y_{n-3} \right)$$

Truncating after the cubic term and evaluation at $t = t_k$ (i.e., s = 0.0)

$$\begin{pmatrix} \mathbf{y}_n \\ h\dot{\mathbf{y}}_n \\ \frac{h^2}{2}\ddot{\mathbf{y}}_n \\ \frac{h^3}{6}\mathbf{y}_n^{(3)} \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 6 & 0 & 0 & 0 \\ 11 & -18 & 9 & -2 \\ 6 & -15 & 12 & -3 \\ 1 & -3 & 3 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{y}_n \\ \mathbf{y}_{n-1} \\ \mathbf{y}_{n-2} \\ \mathbf{y}_{n-3} \end{pmatrix}$$

We call **Nordsieck vector** of 3 order the one of the left.

Expressing the derivatives in function of h_{new} we get:

$$\begin{pmatrix} \mathbf{y}_{n} \\ h_{\text{new}} \dot{\mathbf{y}}_{n} \\ \frac{h_{\text{new}}^{2}}{2} \ddot{\mathbf{y}}_{n} \\ \frac{h_{\text{new}}^{3}}{6} \mathbf{y}_{n}^{(3)} \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{h_{\text{new}}}{h_{\text{old}}} & 0 & 0 \\ 0 & 0 & \left(\frac{h_{\text{new}}}{h_{\text{old}}}\right)^{2} & 0 \\ 0 & 0 & 0 & \left(\frac{h_{\text{new}}}{h_{\text{old}}}\right)^{3} \end{pmatrix} \begin{pmatrix} \mathbf{y}_{k} \\ h_{\text{old}} \dot{\mathbf{y}}_{n} \\ \frac{h_{\text{old}}^{2}}{\log \mathbf{y}} \ddot{\mathbf{y}}_{n} \\ \frac{h_{\text{old}}^{3}}{\log \mathbf{y}} \mathbf{y}_{n}^{(3)} \end{pmatrix}$$

In consequence,

$$\begin{pmatrix} \mathbf{y}_n \\ \mathbf{y}_{n-1} \\ \mathbf{y}_{n-2} \\ \mathbf{y}_{n-3} \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & -1 & 1 & -1 \\ 1 & -2 & 4 & -8 \\ 1 & -3 & 9 & -27 \end{pmatrix} \begin{pmatrix} \mathbf{y}_n \\ h_{\text{new}} \dot{\mathbf{y}}_n \\ \frac{h_{\text{new}}^2}{2} \ddot{\mathbf{y}}_n \\ \frac{h_{\text{new}}^3}{6} \dot{\mathbf{y}}_n^3 \end{pmatrix}$$

Hence we can compute a new equidistant sequence of state values using the new step-size h_{new} .

- Three matrix multiplications are used to change the step-size
- In consequence, multi-step methods use a more conservative step size than RK methods

Order control of multi-step methods

- order control is cheap in linear multi-step methods
 - decrease the order by one, forget one element of the history
 - increasing the order by one, add one element
- In consequence, we can make multi-step method self starting.

but the numerical precision of the previous steps is very important for the stability of the method

we can also use Runge-Kutta methods to accurately compute the \emph{m} first steps.

Start-up difficulties

It is easy to change order: increase or decrease the state history vector. A basic algorithm would be:

- start with order 1 method
- use order 2 method during the second step
- in the next step use order 3 method
- etc. until the appropriate order is reached

Drawback:

• low orders produce low accurate value

Other idea: use ERK methods as starting point but what about stiff problems and the initial step-size?

Conclusion

Multi-step methods are interesting because

- they are computationally cheaper than Runge-Kutta methods
- they can vary in order

but

- variation of the step-size is possibly more computationally involve
- the properties of stability are weaker than Runge-Kutta methods (may be sufficient for most of the problems)