Alexandre Chapoutot

ENSTA Paris
master CPS IP Paris

2020-2021

Part |

2/43

Initial Value Problem of Ordinary Differential Equations

Consider an IVP for ODE, over the time interval [0, tend]
y=f(t,y) with y(0) =yo
IVP has a unique solution y(t;yo) if f : R” — R" is Lipschitz in y

Vt,Vy1,y2 € R", 3L >0, | f(t,y1) = F(t,y2) IS L[yr—y2 |

Goal of numerical integration
o Compute a sequence of time instants: to =0 < t1 < - < tp = tend

o Compute a sequence of values: yo,y1,...,Yn such that
Ve e [0,n], yemy(teiyo) -
@ s.t. yer1 ~ y(te + h;ye) with an error (’)(h"“) where

o h is the integration step-size
o p is the order of the method

3/43

Simulation algorithm

Data: f the flow, yo initial condition, tp starting time, tend end time, h
integration step-size

t < to;

Y < Yo,

while t < teng do

Print(t, y);

y <« Euler(f,t,y,h);

t<t+ h;

end

with, the Euler's method defined by

Yn+1 = Yn + hf(tmyn) and th41 = th + h .

4/43

Multi-step methods

Recall: single-step methods solve IVP using one value y, and some values of f.

A multi-step method approximate solution y,11 of IVP using k previous
values of the solution y,, Yn—1, - .., Yn—k—1-

Different methods implement this approach
o Adams-Bashforth method (explicit)
@ Adams-Moulton method (implicit)
o Backward difference method (implicit)

The general form of such method is

k k
> iy =h Y Bif(tass, i) -
j=0 j=0

with «; and 8; some constants and ax = 1 and |ao| + |Bo] # O

5/43

Polynomial interpolation J

o Polynomial interpolation

e Multi-step methods: Adams family
@ Building Adams-Bashforth’'s methods
@ Building Adams-Moulton’s method
@ Predictor-Corrector methods
@ Implementation in Python

o Multi-step methods: BDF

o Order condition

o Variable order and variable step-size multi-step methods

6/43

A quick remainder on polynomial interpolation

Starting point:
@ a function f(t)

@ a sequence of n time instants t1, to, ..., tn.
@ a sequence of points fi = f(t1), o = f(t2), ..., fn = f(tn)
Goal

@ Find a polynomial p of order n approximating f and passes through the
(n+ 1) function values

p(ti) =f;

Theorem (Uniqueness of the Interpolating Polynomial)

Given n unequal points x1, x2, ..., x, and arbitrary values fi, f, ..., f, there is
at most one polynomial p of degree less or equal to n — 1 such that p(x;) = f;,
i=1,...,n.

Note: different algorithms in function of the monomial basis

7/43

Polynomial interpolation: basis

Standard basis

We consider
p(x) = a0 + aixy axx® + azx® + - - - + ax”

we have to find a; such that p(x;) = f(x;) so the Vandermond matrix

1 xo xg ceeoXg ao f(xo)
1 xx x2 ... xI a f(x1)
1 x2 x2 ... xP an f(xn)

Lagrange basis
We consider
p(x) = f(x0)lo(x) + F(a)ba(x) + - + () ln(x)

such that

n

X — Xj
a) =11 =
i G

J=0,j#i

8/43

Polynomial interpolation: error

Interpolation error
If f is n+ 1 continuously differentiable on [a, b] then

Fo(e)

En(x) = (x = x0)(x — x1) ... (x — xn) (n+1)!

with & €]a, b[

Comments:
@ Vandermond matrix is not use as it is ill-conditioned

@ Lagrange interpolation is useful when f change but not x;

For our purpose to define multi-step methods, equidistant time instants will
be considered!

9/43

Multi-step methods: Adams family)

o Polynomial interpolation

e Multi-step methods: Adams family
@ Building Adams-Bashforth’'s methods
@ Building Adams-Moulton’s method
@ Predictor-Corrector methods
@ Implementation in Python

0 Multi-step methods: BDF

o Order condition

o Variable order and variable step-size multi-step methods

10/43

Adams-Bashforth method — 1

Integral form of IVP

y=f(t,y) y(to)=yo <

t thil
W) =vot [s = yoa =yt [(s
to th

Ingredients:

o We denote by t; = t, + ih the grid of points in time

@ We assume given numerical approximations: y,, Yn—1, ..., Yn—k+1 Of the

exact solution.

we can usey;, i =n—k+1,...,n, to approximate f(t,y(t)) using
f(ti, y,') =f.

We can use polynomial interpolation with points:
{(ti,f;):i=n—k+1,...,n}
to approximate integral.

11/43

Adams-Bashforth method — 2

We have distinct (equidistant) points

(t07 f0)7 (t17 f1)7) (tlh fﬂ)
with f; = f(t,-,y,-)

Adams-Bashforth method is defined by

th1 thy1
Yne1 = Yo+ / > fili(s)ds =ya+ Y _f; / ti(s)ds
tn i=0 i=0 tn

Example of first Adams-Bashforth methods of order k:
@ k=1: yoi1 =yn+ hf, (explicit Euler method)
o k=2: Ynt+1 = ¥Yn + h (%fn - %fn—l)
k=3: Yn+1 = Yn + h (%fn - %fnfl + %fn72)
k = 4: Ynt+1 = Yn + h (%fn - %fn—l + %fn—2 - %fn—3)

12/43

Adams-Bashforth's method — 3

from sympy import x

t = Symbol('t

h = Symbol('h",
tn = Symbol('t
tnm3 = tn — 3xh
thm2 = tn — 2xh
tnml = tn — h

tnpl = tn + h

fam3 = Symbol ('
fanm2 = Symbol ("’
farml = Symbol ('’
fn = Symbol('f_
yn = Symbol('y-
ynpl = Symbol ("’

points_order_1
points_order_2
points_order_3
points_order_4

real=True,
real=True,

positive=True)
positive=True)

", real=True, positive=True)
_{n-3} real=True)
,{n—2}' real=True)
_{n—1}", real=True)
, reaI_True)
, reaI_True)
_{n+1}", real=True)
[(tn, fn)]
[(tnml fam1l), (tn, fn)]
[(tnm2, fAm2), (tnml, fnml),
[(tnm3, fArm3), (tnm2, fAm2),

(tn,

(tnm1,

fn)]

faml),

(tn,

fn) 1]

13/43

Adams-Bashforth's method — 4

def

def

def

lagrange_basis (time, points):

acc =1
for point in points:
if (time != point[0]):
acc = acc * (t — point[0])/(time — point[0])
else:

acc = point[l]*acc
return acc

lagrange (points):
acc =0
for point in points:
acc = acc + lagrange_basis (point[0], points)
return acc

build_adams (points):
pl = lagrange(points)
return simplify (integrate(pl, (t, tn, tnpl)))

print ("##_-Order_1")
formulal = build_adams (points_order_1)
print (latex(Eq(ynpl, yn + formulal)))

14/43

Explicit Adams-Bashforth formulae

This is an explicit ODE solver

Each integration step involves only one evaluation of f
@ Using past values of f for order n we use n — 1 past values

o Adams-Bashforth algorithm of order n can only be used after n — 1
previous steps (not self starting method)

15/43

Adams-Moulton method — 1

We have distinct (equidistant) points

(to,fo), (t17f1)7) (t'h fn)7 (tn+1, fn+1)
with f; = f(t,-,y;)

Adams-Moulton method is defined by

thi1 tht1
Ynt1 = Yo+ / Z fiti(s)ds = yn + Z f,-/ Li(s)ds
tn i=0 i=0 tn

Example of first Adams-Moulton methods of order k:
® k=1 Yoy1 = ¥Yn + hfor1 (implicit Euler method)
0 k=2 Ypi1 = g (Fr + frv1) + ¥
0 k=3 Ypt1 = % (8fn 4+ 5Fni1 — fo1) + yn

% (19F, + 9f 1 — 5F—1 + fo2) + yn

o k=4 Yn+1

16/43

Adams-Moulton method — 3

from sympy import x

t = Symbol('t’, real=True, positive=True)

h = Symbol('h’, real=True, positive=True)

tn = Symbol(n', real=True, positive=True)
thm2 = tn — 2xh

tnml = tn — h

tnpl = tn + h

fam2 Symbol

{n=2}", real=True)
{n—1}", real=True)
", real=True)
{n+1}', real=True)
", real=True)
{n+1}"', real=True)

Tl
fe
-n
Tl
yn = Symbol(-n
"y-
points_order_1
points_order_2

points_order_3
points_order_4

[(tnpl, fnpl)]

[(tn, fn), (tnpl, fnpl)]

[(tnml, faml), (tn, fn), (tnpl, fnpl)]

[(tnm2, fAm2), (tnml, faml), (tn, fn), (tnpl, fnpl)]

17/43

Adams-Moulton method — 4

def

def

def

lagrange_basis (time, points):

acc =1
for point in points:
if (time != point[0]):
acc = acc * (t — point[0])/(time — point[0])
else:

acc = point[l]*acc
return acc

lagrange (points):
acc =0
for point in points:

acc = acc + lagrange_basis (point[0], points)
return acc

build_adams (points):
pl = lagrange(points)
return simplify (integrate(pl, (t, tn, tnpl)))

print ("##_Order_1")
formulal = build_adams (points_order_1)
print (latex(Eq(ynpl,yn + formulal)))

18/43

Implicit Adams-Moulton formulae

This is an implicit ODE solver

Each integration step involves only one evaluation of f but requires
solution of algebraic equations

@ Using past values of f for order n we use n — 1 past values

@ Adams-Moulton algorithm of order n can only be used after n — 1 previous
steps (not self starting method)

19/43

Adams-Bashforth-Moulton formulae

Predictor-Corrector methods, example of third order:
predictor: f, = f(tk7yk)
Yk+1 = Yk + (23fk — 16fx—1 + 5fk_2)
corrector: ffﬂ = f(tk+1,yk+1)

h
Yir1 = Y+ 7 (5Fcs1 + 8f — fi)

2 (
Note: this algorithm is explicit.

Note: we need two evaluations of f per step.

20/43

Adams-Bashforth-Moulton formulae - 2

Predictor-Corrector methods, two general forms
e P(EC)™
e P(EC)"E

Note that:

@ the corrector methods (usually implicit) can be iterated a few number of
times to increase accuracy

@ in P(EC)™E, the last evaluation

In that case, instead using Newton method for the implicit method we use a
functional iteration approach.

21/43

Estimation of the Local Truncation Error

Adams-Bashforth or Adams-Moulton methods are defined from a polynomial
interpolation.
Recall, for Adams-Bashforth we have

yn+1=yn+/tn“2fé s)ds—yﬁ—Z /

tn

In consequence, it is possible to compute the remainder of the integral, for

example
Example of first Adams-Bashforth methods of order k:
 k=1: you1 =Yyn+ hfy, LTE is —y(f)
° k=2 yn1 =y, +h(3f— 3fi1), LTE is 32yC >(§)
o k=3 yp1=yo+h(Bfi—2fi1+ 3f2), LTE is 2y®(¢)

We can do the same for Adams-Moulton methods

22/43

Estimation of the Local truncation error

In case of Predictor-Corrector, we can estimate the local truncation error i.e.,
the distance between the true solution and the numerical one.
For example, PC with AB3 and AM3 we get:

- 5
Y(tns2) = §nez = 75 h°y (Enes)
1
Y(tot2) — Yoi2 = _Eh3y(3)(§AM3)
Assuming y' (§AM3) ~ yl (§AB3) on the time interval, we get

- 1
Yni2 — Yni2 R §h3y(3) (§) =

Q

1 1 -
| y(tn+2) — Yn+2 ‘ *h3y(3)(fAM3) ~ 6 | Yni+2 — Ynt2 |

12

Once this value is obtained, we can control the step-size as for embedded
Runge-Kutta methods.

23/43

Summary on Adams Family

@ These methods are of almost arbitrary order
o Very efficient for non-stiff problem once the starting problem is solved.

@ These formula cannot be used to solve stiff problem !
Except for AM1 and AM2

24/43

Adams-Bashforth's method — Implementation

def heun_one_step (f, t, y, h):
yL =y +h x f(t, y)
return y + h = 0.5 = (f(t, y) + f(t+h, y1))

def solve (f, t0O, y0O, tend, nsteps):
h = (tend — t0) / nsteps; y = []
ynm2 = y0
ynml = heun_one_step (f, tO+h, ynm2, h)
yn = heun_one_step (f, tO+2xh, ynml, h)
fam2 = f(t0, ynm2)
faml = f(t0+h, ynml)
y.append(ynm2); y.append(ynml)
time = np.linspace (t0+2xh, tend, nsteps—2)
for t in time:
y.append (yn)
fn = f(t, yn)
yn =yn + h / 12.0 % (23.0 * fn — 16.0 * fArml + 5.0 * fAm2)
fAam2 = faml
faml = fn
return [np.linspace(t0, tend, nsteps), y]

def dynamic (t, y):
return np.array([—y[1], y[0]])

[t, y] = solve (dynamic, 0.0, np.array([l., 0.]), 2*np.pi*10, 500)

25/43

Multi-step methods: BDF J

o Polynomial interpolation

e Multi-step methods: Adams family
@ Building Adams-Bashforth’'s methods
@ Building Adams-Moulton’s method
@ Predictor-Corrector methods
@ Implementation in Python

o Multi-step methods: BDF

o Order condition

o Variable order and variable step-size multi-step methods

26/43

Backward Differentiation Formula — 1

We have n + 2 distinct (equidistant) points

(t07 y0)7 (t17 yl)a Tty (t"a y")7 (tn+17 Yn+1)
We can interpolate the solution y(t) of IVP ODE from these points:

n+1

p(t) = Zy,-é,-(t)
i=0
We can differentiate this polynomial in order to be equal to f

p(t) = f(t,y)
We evaluate this a time t,11 = t, + h that is

p(tn+1) = f(tn+1»y"+1)

27/43

Backward Differentiation Formula — 1

All the methods

® f(tns1,Yn+1) = 7 (—=¥n+yns1) (implicit Euler method)

@ f(trt1,Yn+1) = ﬁ (—4yn + 3Ynt1 + Yn—-1)

o f(tni1,Ynt1) = 6%1 (—18y, + 11yni1 + 9yn—1 — 2yn—2)

o f(tnt1,Ynt1) = L,, (—48y, + 25yn11 + 36yn—1 — 16yn—2 + 3yn—_3)

° (t,,+1, Ynt1) =
L (=300y, + 137y,:1 + 300y,—1 — 200y, + 75yn—3 — 12y,_4)

° f(tn+1, Ynt1) =
o (—360y, + 147yns1 + 450y,_1 — 400yn_2 + 225y,_3 — 72y,—4 + 10ys_s)

28/43

BDF -2

from sympy import x*

t = Symbol('t’, real=True, positive=True)
= Symbol('h', real=True, positive=True)

tn = Symbol('t_n', real=True, positive=True)

tnm5 = tn — 5xh

thm4 = tn — 4xh

tnm3 = tn — 3xh

tnm2 = tn — 2xh

tnml = tn — h

tnpl = tn + h

ynm5 = Symbol (' n—5}", real=True)

ynm4 = Symbol('y_{n—4}", real=True)

ynm3 = Symbol ('

ynm2

('y-{
('yA{
("y-{n=3}", real=True)
('y-{
ynml = Symbol({
y
(
(

Y-

y

y

"y-{n—2}", real=True)

y-{n—=1}", real=True)
yn = Symbol('y_n", reaI_True)
ynpl = Symbol('y-
f-

= n+1}', real=True)
fnpl = Symbol

E +1}', real=True)

points_order_1
points_order_2
points_order_3

(tn, yn), (tnpl, ynpl)]
[(tnml, ynml), (tn, yn), (tnpl, ynpl)]
[(tnm2, ynm2), (tnml, ynml), (tn, yn), (tnpl, ynpl)]

29/43

BDF -3

def

def

def

lagrange_basis (time, points):

acc =1
for point in points:
if (time != point[0]):
acc acc * (t — point[0])/(time — point[0])
else:

acc = point[l]*acc
return acc

lagrange (points):
acc =0
for point in points:

acc = acc + lagrange_basis (point[0], points)
return acc

build_bdf (points):
pl = lagrange(points)
return simplify (pl.diff(t).subs(t, tnpl))

print ("##_Order_1")
formulal = build_bdf (points_order_1)
print (latex(Eq(fnpl, formulal)))

30/43

Solving implicit equation - 1

BDF can be write:
Yi+1 = aihfiir + Z iBijyk—j+1

Jj=1

Functional iteration

yifl = yi + aihf (tes1, yia1) + cst

Note:
@ initial estimate of y2+1 can be given by a predictor method.
o Functional iteration converges is

Yiﬂ ~ Yip1 = aih (f(tk+17 Yir1) — f (i, Yijri))

= aihTr () (Yi1 — Yii1)

that is if | aihJr |< 1

In some problems (e.g., stiff) we have | 77 |>> 1 so0 h <| (i Jr) 7 |< 1.

31/43

Solving implicit equation - 2

BDF can be write:
Yi+1 = aihfip1 + Z iBiiYk—j+1

j=1

at each step we try to solve:

F(Yrr1) = aihfirs — Y1 + Z Biiyk—j+1 =10

j=1

Newton operator

Vit = Y — M F(Yis)
with H is a matrix defined by:

HII—CY,"Z""I

with J the Jacobian of f evaluated at point yﬁﬂ.

32/43

Solving implicit equation - 3

@ Industrial code does not reevaluate the Jacobian at each step (use the
error evaluation as indicator)
@ Industrial code has options to deal with Jacobian:
e providing analytically expression
e numerical approximations

speed and range of convergence are influenced by the quality of the
Jacobian

The full Jacobian can be approximate by (for each state variable)

OF(t,y) _ foen—

~

(9}/,‘ 5}/,'

Note: Usually a quasi-Newton method is used i.e., the Jacobian is only
computed at the begin of the Newton iteration.

Note: strategies to update this computation are usually present in industrial
code solver.

33/43

Order condition J

o Polynomial interpolation

e Multi-step methods: Adams family
@ Building Adams-Bashforth's methods
@ Building Adams-Moulton’s method
@ Predictor-Corrector methods
@ Implementation in Python

e Multi-step methods: BDF
o Order condition

° Variable order and variable step-size multi-step methods

34/43

Theoretical definition of the method order

A general linear multi-step method can be written as

k k
Z Qjyntj =h Z Bifot
=0 =0

with
o forj = f(tnij; Ynij)
@ ay = 1 (normalization)

o |ao| + |Bo| #0

The first and second characteristic polynomial of a linear multi-step method are
defined by

k k
P =D o, o(Q) =D B¢
j=0 j=0

with ¢ € C

35/43

Theoretical definition of the method order

Linear difference operator

Llz(x); b = layz(x + jh) — BiZ'(x + jh)] with z(x) € C*

After expansion around x we can write
Llz(x); h] = Goz(x) + ChzV(x) + -+ + Coh"Z' D (x) + - - -
where C; are constants

Theorem

A linear multi-step and its associated linear difference operator are of order p if
C():Cl:“': p:Oand Cp+17£0.

We know the values of C; e.g., Co = ZJ’,‘:O aj, G = Zf:o(jaj — B;), and
k . g
Cq = ZJ:O [%anj - (q_ll)qu lﬁj

36/43

Variable order and variable step-size multi-step
methods

o Polynomial interpolation

e Multi-step methods: Adams family
@ Building Adams-Bashforth's methods
@ Building Adams-Moulton’'s method
@ Predictor-Corrector methods
@ Implementation in Python

e Multi-step methods: BDF

o Order condition

e Variable order and variable step-size multi-step methods

37/43

Step-size control

Problem: Interpolation polynomial for multi-step methods uses equidistant
values
Changing the step-size break the equidistant assumption

But from interpolation polynomial we can compute approximation of successive
derivative of y at time t,

For example starting from the set of points

(t07 y0)7 (t17 Y1)7) (tm Yn)>

We have
. 1
Yo = 5 (L1yn = 18yn-1 4 9ya—2 = 2ya-3)
. 1
Yo = = (2Yn — 5Yn—1 + 4Yn—2 — yn—3)
1
y& = 75 =3y 1+ 3yn2 — yn3)

38/43

Step-size control

Truncating after the cubic term and evaluation at t = t, (i.e., s = 0.0)

Yn 6 0 0 0 ¥n
hy, | 1011 -18 9 -2 [yo
By [T6l 6 -15 12 -3 [y

Ey) 1 -3 3 -1/ \y»s

We call Nordsieck vector of 3 order the one of the left.

Expressing the derivatives in function of hpew we get:

y 1 0 0 0 y
" 0 lnew 0 0 .
hnean 1 hot 2 holdyn
2 = = hnew 2 -
hn2ew yn 6 0 0 m) 0 ho% Yn
3 3 h
ey 0 0 0 (—”;elg) Ty

39/43

Step-size control

In consequence,

Yo 1 0 0 O Yn
yor| _1[1 -1 1 -1 hnewyn
Yoo | 1 -2 4 -8 ""%y,,
Yn—3 1 -3 9 -27 Foew e

6 n

Hence we can compute a new equidistant sequence of state values using the
new step-size Anew.

@ Three matrix multiplications are used to change the step-size

@ In consequence, multi-step methods use a more conservative step size than
RK methods

20/43

Order control of multi-step methods

@ order control is cheap in linear multi-step methods
o decrease the order by one, forget one element of the history
o increasing the order by one, add one element
@ In consequence, we can make multi-step method self starting.
but the numerical precision of the previous steps is very important for
the stability of the method
we can also use Runge-Kutta methods to accurately compute the m
first steps.

41/43

Start-up difficulties

It is easy to change order: increase or decrease the state history vector. A basic
algorithm would be:

@ start with order 1 method
@ use order 2 method during the second step
@ in the next step use order 3 method

@ etc. until the appropriate order is reached

Drawback:

@ low orders produce low accurate value

Other idea: use ERK methods as starting point but what about stiff problems
and the initial step-size?

42/43

Conclusion

Multi-step methods are interesting because
@ they are computationally cheaper than Runge-Kutta methods
@ they can vary in order
but
@ variation of the step-size is possibly more computationally involve

@ the properties of stability are weaker than Runge-Kutta methods (may be
sufficient for most of the problems)

43/43

	Multi-step methods for IVP-ODE
	Polynomial interpolation
	Multi-step methods: Adams family
	Building Adams-Bashforth's methods
	Building Adams-Moulton's method
	Predictor-Corrector methods
	Implementation in Python

	Multi-step methods: BDF
	Order condition
	Variable order and variable step-size multi-step methods

