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a b s t r a c t

This paper presents two techniques for the determination of modal weights for the design of robust input
shapers for multi-mode systems. The weights for the first technique are derived based on the scaling
factor for the potential energy in each mode, such that the modal displacement is the same. The second
technique exploits the modal cost analysis which uses the angle between the right eigenvectors and the
row vectors of the outputmatrix to determine the contribution of eachmode to the output. Two examples
are used to illustrate the improvement in performance of themodalweightedminimax shapers compared
to the traditional minimax shaper which equally weights all the modes.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Parasitic vibrations can decrease the performance ofmaneuver-
ing structures such as cherry pickers, flexible arm robot (Remote
Manipulator System of the Space Shuttle), cranes (Singhose, Kim,
&Kenison, 2008; Sorensen&Singhose, 2008), etc.,where the goal is
to move from one position of rest to another position of rest. There
is a large body of work which deals with shaping the reference in-
put to these dynamical systems so as to minimize residual vibra-
tions. The posicast controller (Smith, 1957), Input Shaper (Singer
& Seering, 1990) and Time-Delay filter (Singh & Vadali, 1993), use
a superposition idea to cancel oscillations. Input Shaping refers to
the process of convolving a series of impulseswith a reference pro-
file to generate a shaped input. Time-Delay filtering refers to the
process of modifying the reference input by combining a weighted
set of delayed reference input. The Input shaper and time-delay
filter are essentially identical and will be used interchangeably
in this paper. The design of Input Shaper and Time-Delay filters
has been extended to exploit knowledge of the domain of uncer-
tainty to arrive at shaped profiles which generate reasonable per-
formance over the entire domain of uncertainty. Here, the terminal
constraints are not equality constraints, rather they are inequality
constraints that require the terminal states to liewithin a setwhich
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include the desired final position. For a multi-mode system, the
traditional approach has been to cascade input shapers/time-delay
filter designed for each mode to satisfy terminal constraints. For
problems which include worst case design (minimax time-delay
filter (Singh, 2002)), residual energy which incorporates all the
modes has been used to design the filter to shape the reference
input. The Specified Insensitivity (SI) (Kenison & Singhose, 1999)
Input Shaper for the multi-mode case can be designed by includ-
ing SI constraints for each of the modes. This can be represented
as:

V (ωi, ζi) = e−ζiωitn
√

C2 + S2 (1)

C =
n∑
j=1

Ajeζiωitj cos(ωi
√
1− ζ 2i tj) (2)

S =
n∑
j=1

Ajeζiωitj sin(ωi
√
1− ζ 2i tj) (3)

whereAj and tj are themagnitude and time of application of the im-
pulses of the input shaper. However, if the goal is to target a specific
output which has non-equal contribution of various modes, the
Varying-Amplitude-Contribution SI (Manning & Singhose, 2008)
differentially weights each of the V (ωi, ζi) in the design process.
For a two-mode example, the constraints are represented as:

αV 1tol + (1− α)V
2
tol < Vtol, α ∈

[
0 1

]
(4)

V (ω1, ζ1) < V 1tol, ω1 ∈
[
ωlb1 ωub1

]
(5)

V (ω2, ζ2) < V 2tol, ω2 ∈
[
ωlb2 ωub2

]
(6)

where α is selected based on the contribution of each mode and
ωlbi and ω

ub
i correspond to the lower and upper bounds of ωi
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respectively. Vtol represents the threshold for the permitted resid-
ual energy. V 1tol is arbitrarily selected to be some fraction of Vtol and
V 2tol is consequently calculated as:

V 2tol =
Vtol − αV 1tol
1− α

. (7)

Experimental results were used to determine V 1tol and V
2
tol and

the resulting input shaper was shown to have better perfor-
mance compared to the traditional two-mode SI shaper (Kenison &
Singhose, 1999). One can conjecture that as the number of modes
increases, the selection of theweights αi and the permitted V itol can
become cumbersome.
This paper endeavors to develop an analytical approach for

the determination of weighting factors for vibratory modes which
can subsequently be used to design robust input shapers which
minimize the worst case performance over the entire domain
of uncertainty. Consider the three mass–spring system shown in
Fig. 1 by the solid lines. The second order model of the system is:[1 0 0
0 1 0
0 0 1

]{ẍ1
ẍ2
ẍ3

}
+

[ 1 −1 0
−1 2 −1
0 −1 1

]{x1
x2
x3

}
=

[1
0
0

]
u. (8)

The three modes of this system{x1
x2
x3

}
=

{0.5774
0.5774
0.5774

}
,

{
−0.7071
0

0.7071

}
,

{ 0.4082
−0.8165
0.4082

}
(9)

are shown in the same figure by dashed lines. The frequencies
corresponding to the three modes are: ωi =

[
0 1

√
3
]
. If the

output of interest is the displacement of the third mass, the output
equation is:

z =
[
0 0 1

] {x1
x2
x3

}
. (10)

The system model and the output equation can be rewritten in
modal form as:[1 0 0
0 1 0
0 0 1

]{ÿ1
ÿ2
ÿ3

}
+

[0 0 0
0 1 0
0 0 3

]{y1
y2
y3

}
=

[
−0.5774
−0.7071
0.4082

]
u (11)

and

z =
[
−0.5774 0.7071 0.4082

] {y1
y2
y3

}
(12)

which clearly indicates that the second mode’s contribution is
the largest and the third mode’s is the smallest. These modal
contributions can be used to relatively weight the modal energies
to formulate a cost function whose maximum can be minimized
over the uncertain domain.

2. Minimax time-delay control

This section reviews the minimax time-delay input shaper
design proposed by Singh (2002). Here the goal is to design a
shaped reference profile such that the vibrations at the end of a
pre-specified maneuver are minimized. Consider the second order
linear mechanical system of the form

Mẍ+ C(p)ẋ+ K(p)x = Du (13)
yo = Cox (14)

where the n × n mass matrix M is positive definite, the n × n
damping and stiffness matrices C and K are positive semi-definite.
D is the n×m control influence matrix, x ∈ Rn is the configuration
Fig. 1. 3 mass–spring systems and mode shapes.

t0

U

Time delay filter/Input shaper

PlantA0 + A1e
–sT1 + A2e

–sT2 . . .

Fig. 2. Block diagram of input shaping based control.

vector, u ∈ Rm is control vector, Co is the output matrix and yo is
the output. p is a vector of uncertain parameters whose range of
uncertainty is:

plbi < pi < p
ub
i . (15)

For rest to rest maneuvers from some prescribed initial state to
final state, the time-delay filter is parameterizedwith the following
transfer function:

G(s) = A0 + A1e−sT1 + A2e−sT2 + · · · . (16)

Fig. 2 shows the block diagram implementing the point-to-
point maneuver. For designing a robust filter i.e., finding the
parametersAis and Tis in Eq. (16), theminimax optimization proce-
dure proposed in Singh (2002) uses residual energy of the system
at the end of maneuver defined as

Vres =
1
2
ẋTMẋ+

1
2
(x− xr)TK(x− xr) (17)

as the cost function where xr corresponds to the desired reference
position. The followingminimax optimization problem is solved to
find the unknown parameters

min
Ai,Ti
max
pi
Vres (18)

where the knowledge of the distribution of the parameter uncer-
tainties can be incorporated into Eq. (18) by weighting the cost
Vreswith the probability distribution function of the uncertain vari-
ables. It should be noted that the minimax optimization problem
results in different solutions for different maneuvers. A lookup ta-
ble of the solutions of the minimax problem as a function of the
maneuver can be used for real-time implementation.

3. Robust filter design using weighting factors based on modal
displacement

In the approach presented in Section 2, the contribution to
the residual energy of all the modes of the system are weighted
equally. To better control the plant output, we can scale the
contributions of each mode to the residual energy based on their
contribution to the output. To determine these scaling factors, we
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transform the system described by Eq. (13) to the modal form by
introducing a coordinate transformation of the form

x(t) = Φy(t) (19)

where Φ is n × n similarity transformation matrix obtained by
solving the eigen value problem associated with the mass and the
stiffness matrices. The residual energy of the transformed system
can then be expressed as

V =
1
2
ẏT M̃ẏ+

1
2
(y− yr)T K̃(y− yr) (20)

where M̃ and K̃ are the transformed mass and stiffness matrices
given by

M̃ = ΦTMΦ = I (21)

K̃ = ΦTKΦ =


ω21 0 0 . . . 0
0 ω22 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . ω2n

 (22)

where ω1 = 0, for systems with rigid body modes. Transferring
the system from an initial position of x0 to a final position of rest
xr results in modal boundary constraints of:

y0 = ΦTx0 and yr = ΦTxr . (23)

For controlling the output with high precision, e.g., if the
displacement of the final mass of a series of nmass–spring systems
is the output, the output equation for the nth mass in modal space
is:

yo =

Co︷ ︸︸ ︷[
0 0 . . . 1

]
Φ︸ ︷︷ ︸

Cm

y. (24)

If one is interested in displacement precision, the residual energy
of each of the mode is weighted so as to correspond to the same
final displacement. For instance, if the contribution to the output
displacement of the first two modes are the same, we have the
constraint:

c1y1 = c2y2 (25)

where ci is the ith component of the modal output matrix Cm.
Eq. (25) can be transformed to the potential energy space resulting
in the equation:

c21
1
2
ω21y

2
1 = c

2
2
1
2
ω22y

2
2

(
ω21

ω22

)
(26)

which states that the potential energy of the second mode has to

be scaled by ω21
ω22
to satisfy the displacement precision constraint.

Furthermore, since the output is a linear combination of themodal
displacements, the potential energy of each of the modes has to be
rescaled by c2i to reflect the modal contribution of every mode.
We can now define indices αi as:

αi =
c2i ω

2
1

ω2i
(27)

to weight the contribution of each mode in the residual energy
equation. Themodified cost function forminimax optimization can
be written as:

V =
n∑
i=1

1
2

(
ẏ2i + ω

2
i (yi − y

f
i )
2
)
αi (28)

where yfi corresponds to the desired final state of the ith mode.
4. Robust filter design using weighting factors based on
observability measures

Another approach which can be used for determining the
scaling factors for the residual energy based cost described in
Section 3 is by using modal observability measures proposed by
Hamdan and Nayfeh (1989). These observability measures reflect
the contribution of respectivemodes in thedesired output and thus
can be used for relative scaling of residual energies of each mode.
In this scheme the residual modal energy of the system is scaled
using observability measures defined as follows:
For the linear system of the form
ẋ = Ax+ Bu, yo = Cox. (29)
Ameasure of observability of ithmode in the single output defined
by Co is given by

γi = cos(φi) =
〈Co.pi〉
‖Co‖‖pi‖

(30)

where pi is the ith right eigen vector of A and 〈a.b〉 is the inner
product of vectors a and b. φi is the angle between Co and pi. This
measure gives us the degree to which each mode influences the
output. So if the output matrix Co represents the position of the
mass which needs to be precisely controlled then using the above
measure, we can calculate the observable measure, which can be
used to scale the modal residual energies. For the linear system
described by Eq. (29), the cost function for optimization using the
normalized weighting factors can be written as

V =
n∑
i=1

1
2

(
ẏ2i + ω

2
i (yi − y

f
i )
2
)
γ 2i (31)

where yi is the configuration coordinate for ith mode and y
f
i

corresponds to its desired final state.

5. Systems with rigid body modes

For systems with rigid body modes, the technique described in
the previous section can be applied after designing a collocated PD
feedback control and then shaping the reference input for robust
performance. A collocated PD feedback controller is a stabilizing
control for the system. Consider the second order system defined
in (32) with collocated actuator–sensor pair.
Mẍ+ Kx = Du (32)
where K is positive semi-definite for systems with rigid body
modes. Assuming that the null space of the system input matrix D,
is not coincident with the null space of K , we can select a candidate
Lyapunov function

V =
1
2
(ẋTMẋ+ (x− xr)TK(x− xr)

+ Kp(x− xr)TDDT (x− xr)), (33)
whereKp is a positive scalar. The timederivative ofV can bewritten
as
V̇ = ẋT (Mẍ+ K(x− xr)+ KpDDT (x− xr))

= ẋT (Du+ KpDDT (x− xr)), (34)
since Kxr = 0. This is due to the fact that xr lies in the null space
of the stiffness matrix K .
If we select the control law as

u = −KdDT ẋ− KpDT (x− xr) (35)

then on substitution of u in (34), V̇ reduces to

V̇ = −KdẋDDT ẋ (36)
which is negative semi-definite since DDT ≥ 0. Consequently, the
collocated PD controller given by Eq. (35) is a stabilizing control
law.
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Table 1
Reference shaper parameters.

Parameter Method
No scaling Modal disp. scaled Observability scaled

A0, t0 0.17, 0.00 0.20, 0.00 0.18, 0.00
A1, t1 0.15, 1.93 0.12, 3.24 0.14, 3.01
A2, t2 0.27, 6.19 0.33, 5.87 0.28, 5.69
A3, t3 0.18, 7.97 0.12, 8.08 0.16, 7.90
A4, t4 0.06, 10.26 0.04, 9.91 0.07, 10.07
A5, t5 0.16, 12.00 0.19, 12.00 0.16, 12.00

Fig. 3. Floating oscillator.

6. Results

Two examples are used to illustrate the proposed technique.
The first is a three mass–spring system which is similar to the
benchmark floating oscillator proposed by Wie and Bernstein
(1992). The second example is based on the double pendulum
crane presented by Tanaka and Kouno (1998). For both these ex-
amples, a baseline maneuver time was selected to permit an unbi-
ased comparison of the optimal shapers derived by optimizing the
modal weighted residual energy cost with the traditional minimax
shaped profiles.

6.1. Three mass floating oscillator

Robust pre-filters for the three mass floating oscillator system
with uncertainty in spring constant k as shown in Fig. 3 were
designed using the minimax optimization approach with the
scaled residual energy based objective functions for precise rest to
rest positioning of massm3.
The three mass floating oscillator system shown in Fig. 3 with

m1 = m2 = m3 = 1 and knom = 1 is represented by Eq. (8). To
control the position of the three masses, a PD controller with pro-
portional gain of 5 and derivative gain of 0.1 is used. For the pur-
pose of positioning all three masses from an initial position of rest
of (x1, x2, x3) = (0, 0, 0), to final position of rest of (x1, x2, x3) =
(1, 1, 1) a robust five time-delay reference input shaper was used.
With modal coordinate transformation, the closed loop system is
represented as{ÿ1
ÿ2
ÿ3

}
+

[ 0.001 −0.002 −0.01
−0.002 0.005 0.022
−0.01 0.022 0.094

]{ẏ1
ẏ2
ẏ3

}

+

[0.33 0 0
0 2.42 0
0 0 6.24

]{y1
y2
y3

}
=

[ 0.484
−1.115
−4.85

]
xr (37)

where xr is the reference position of the first mass.
Parameters for the reference shaper for a user specifiedmaneu-

ver time of 12 s, were obtained using minimax optimization based
on displacement precision scaled residual energies described in
Sections 3 and 4. For comparison purposes the shaper parameters
using unscaled residual energy as the objective function were also
calculated. These parameters are shown in Table 1.
Fig. 4. Variation of F over the range of parameter variation.

Fig. 5. Box plot of performance index F .

As the output of the system is the position of the thirdmass, the
performance index F , consists of the kinetic energy and pseudo-
potential energy of the thirdmasswhich goes to zerowhere ẋ3 goes
to zero and x3 equals x3r , the desired final position of massm3.

F =
1
2

√
ẋ32 + (x3 − x3r)2. (38)

Fig. 4 illustrates the variation in performance index F evaluated
at the end of maneuver, as a function of the uncertain coefficient
of stiffness k for the three types of reference shapers. It is
evident from this figure that over the range of parameter variation
(0.6 < k < 1.4), the variation of the performance index
F , for the modal displacement based input shaper (dashed line)
and observability measure based reference shaper (dash-dotted
line) is lower than the unscaled residual energy based reference
shaper (solid line). Three horizontal lines are also presented which
represent the average magnitude of the output energy measure
over the uncertain domain for each of the input shaper. This is
to permit estimating an average performance over the uncertain
domain.
For better analysis of the performance of the reference shapers

over the domain of the uncertain variable, the domain of the un-
certainty is sampled uniformly and a box and whisker plot of per-
formance index F for each of the sampled uncertain stiffness k is
presented in Fig. 5. The box and whisker plots are traditionally
used to display statistical properties of data using a five number
summary (upper and lower quartile, sample minimum and maxi-
mum, andmedian). Theupper and lower lines of the box represents
the upper and lower quartile respectively. The line at the notch
represents the median value and the whiskers extending from the
edge of the box represent the extreme values. It is clear from this
plot that modal displacement and observability scaled controllers
perform much better than the original residual energy based con-
troller. In conclusion, of the three controllers the maximum mag-
nitude and variation of the performance index F , is the lowest for
modal displacement based controller.
Fig. 6 shows the shaped reference input profile for the three

methods which illustrate significantly different switch times
which is reflected in different location of the zeros of the time-
delay filter.
The response of the third mass at nominal value of spring con-

stant k = 1 using the three shaped inputs is shown in Fig. 7. As
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Fig. 6. Shaped reference profile for 3 mass system.

Fig. 7. Response of second mass for nominal k.

Fig. 8. Box plot of variation of scaling factors.

is apparent from the figure, the position of third mass is more pre-
cisely controlled by the scaled energy filters as compared to the tra-
ditional minimax filter which does not scale the residual energy.
The box plots for scaling factors evaluated using the two

approaches are shown in Fig. 8. The plots illustrate the variation
in these scaling factors with change in the uncertain parameter
k. Both modal displacement and observability measures based
factors assign large weights to the first mode (lowest frequency)
and small weights to the third mode (highest frequency). Further,
the variation of these factors with change in uncertain parameter
is higher for the observability measure based scaling illustrated by
the size of the box and whisker plots.
Effect of these scaling factors can also be seen in the placement

of controller zeros in Fig. 9. Controller zeros for the scaled residual
energymethods (� and4) are placed to cover the spread of system
poles corresponding to the first and second modes and ignores the
third mode whereas the original residual energy based controller
(◦) distributes the zeros around all three modes. The series of dots
in Fig. 9 illustrate the root locus of the system poles as a function
of the uncertain stiffness coefficient k.

6.2. Gantry crane

As a second example case, a double-rigid-body pendulum
gantry crane model proposed by Tanaka and Kouno (1998) shown
in Fig. 10 is considered.
Fig. 9. Zeros of time-delay filters.

Fig. 10. Double-rigid-body pendulum gantry crane model.

Table 2
Parameters for gantry crane model.

Parameter Value Parameter Value

m 8 kg m1 0.5 kg
m2 6 kg l1 1.5 m
l�1 0.1 m l2 0.3 m
I1 0.0008 kg m2 I2 0.06kgm2
a 1.0 N m/s

The equations of motion for the system assuming θi and θ̇i (i =
1, 2) to be small can be written as

c11ẍ+ c12θ̈1 + c13θ̈2 + aẋ = u (39)

c21ẍ+ c22θ̈1 + c23θ̈2 + c24θ1 = 0 (40)

c31ẍ+ c32θ̈1 + c33θ̈2 + c34θ2 = 0 (41)

where

c11 = m+m1 +m2, c12 = m1l1 +m2(l1 + l�1)
c13 = m2l2, c21 = m1l1 +m2(l1 + l�1)

c22 = m1l21 +m2(l1 + l
�

1)
2
+ I1, c23 = m2l2(l1 + l�1)

c24 = m1gl1 +m2g(l1 + l�1), c31 = m2l2
c32 = m2l2(l1 + l�1), c33 = m2l22 + I2, c34 = m2gl2.

Table 2 lists the cranemodel parameters. To control the position
of the trolley, a PD controller with proportional gain of 10 and
derivative gain of 1 was used. Robust pre-filters for shaping the
position reference when there is uncertainty in the length ratio
l1/l2, were designed using the aforementionedmethodologies. The
system needs to be positioned from initial value of (x1, θ1, θ2) =
(0, 0, 0) to (x1, θ1, θ2) = (1, 0, 0). In this scenario, we are
interested in reducing the sway of the payload at the end of the
trolley-positioningmaneuver, yo. So the emphasis is on the precise
control of the payload displacement given by the equation.

y0 = (l1 + l�1)θ1 + l2θ2. (42)
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Table 3
Reference shaper parameters.

Parameter Method
No scaling Modal disp. scaled Observability scaled

A0, t0 0.098, 0.000 0.102, 0.000 0.101, 0.000
A1, t1 0.248, 0.795 0.253, 0.815 0.254, 0.847
A2, t2 0.214, 1.692 0.202, 1.669 0.203, 1.707
A3, t3 0.184, 4.275 0.179, 4.265 0.174, 4.292
A4, t4 0.194, 5.183 0.197, 5.137 0.196, 5.153
A5, t5 0.064, 6.000 0.067, 6.000 0.071, 6.000

Fig. 11. Residual energy distribution vs. length ratio.

Fig. 12. Box plot of performance index F for gantry crane.

Parameters for the reference shapers designed using the three
methodologies for a fixed final time of 6 s are shown in Table 3.
The output of the system here is the position of the payload. So

the performance measure, F(F = KE + PE), used here is the total
energy of the payload.

PE = m2g[(l1 + l�1)(1− cos θ1)+ l2(1− cos θ2)] (43)

KE =
1
2
[m2(ẋ2cm2 + ẏ

2
cm2)+ I2θ̇2

2
] (44)

xcm2 = (l1 + l�1) sin θ1 + l2 sin θ2 (45)

ycm2 = −(l1 + l�1) cos θ1 − l2 cos θ2. (46)

Fig. 11 shows the sensitivity measure for the displacement
of the payload (l1 + l�1)θ1 + l2θ2 to variation in the length
ratio l1/l2, for the three types of reference shapers. We again
see that over the range of parameter variation (2 < l1/l2 <
8) profiles obtained using the modal displacement based scaling
(dashed line) and observability measures based scaling (dotted
line) for the cost function show improvement over the real energy
based cost function (solid line). The horizontal lines illustrate the
average performance of each of the input shaper over the uncertain
domain.
A box and whisker plot of the performance index F evaluated

for uniformly sampled variation of the length ratio l1/l2, at the final
time is presented in Fig. 12. We again see that the performance of
modal displacement based and observability measures based con-
trollers is much better than the original residual energy based con-
troller. Out of the three controllers the maximum magnitude and
Fig. 13. Shaped reference profile for gantry crane.

Fig. 14. Payload response for length ratio (l1/l2 = 5).

Fig. 15. Box plot of variation of scaling factors.

variation of the performance index F , is lowest for observability
measure based controller.
Fig. 13 shows the shaped reference input profile obtained using

the three methods.
The displacement of the payload for nominal value of length

ratio (l1/l2 = 5) using the three kinds of input is shown in Fig. 14 in
the proximity of the end of themaneuver (6 s). As is apparent from
the figure, the response corresponding to modal displacement and
observability measure based reference filters is better than the
unscaled residual energy based filter.
A box andwhisker plot showing the scaling factors correspond-

ing to variation in length ratios, l1/l2, uniformly sampled from
the uncertain domain is illustrated in Fig. 15. Both scaled energy
methods assign larger weights to the second mode and very small
weights to the third mode. Also, the variation in the weights is
larger for modal displacement based scaling compared to observ-
ability measure based scaling.

7. Conclusions

In this paper we proposed twomethods of scaling the cost used
in the minimax optimization based design of robust input shapers
formulti-mode systems. Theweighting factorswere derived based
on the relative importance of respective modes in the output. The
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proposed techniques were then demonstrated on a three mass
floating oscillator and a double pendulum gantry crane model.
It was shown that for these examples, the residual vibration
sensitivity measures are lower for reference shapers designed
using scaled costs as compared to the shapers designed using the
real residual energy as the cost for optimization.
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