This repository has been archived by the owner on Jan 20, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSnakefile_5Binning
executable file
·396 lines (354 loc) · 14.2 KB
/
Snakefile_5Binning
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
##
## Snakefile_5Binning - Binning rules
##
## Knutt.org/KnuttReads2Bins
# This Snakefile uses metaBAT2 for binning and checkM for bin analysis.
# Each bin receives classification and depth data.
localrules: checkm_data, filter_cat_proteins, binmap
# Binning results
basedir_binning = config["output_dir"]+"/Binning"
basedir_bench_binning = basedir_bench + "/Binning"
basedir_data_binning = basedir_data + "/Binning"
# Run metabat2
rule metabat:
version: "1.0"
input:
contigs = rules.megahit_assembly.output.contigs,
depth = rules.metabat_depth.output
params:
prefix = basedir_binning + "/METABAT/{sample}/bins/{sample}"
output:
dir = directory(basedir_binning + "/METABAT/{sample}/bins"),
unbinned = basedir_binning + "/METABAT/{sample}/{sample}.unbinned.fa",
lowdepth = basedir_binning + "/METABAT/{sample}/{sample}.lowDepth.fa",
tooshort = basedir_binning + "/METABAT/{sample}/{sample}.tooShort.fa"
log:
basedir_binning + "/METABAT/{sample}/{sample}_metabat2.log"
benchmark:
basedir_bench_binning + "/metabat_{sample}.tsv"
threads:
16
conda:
"envs/KnuttReads2Bins.yml"
message:
"Running METABAT2 for {wildcards.sample}"
shell:
("{{ metabat2 -i {input.contigs} -a {input.depth} "
"-m {config[min_contiglen_binning]} -x {config[min_contigcov]} "
"-s {config[min_binsize]} -t {threads} -v -o {params.prefix} "
"--unbinned --seed 42 && "
"mv {params.prefix}.unbinned.fa {params.prefix}.lowDepth.fa "
"{params.prefix}.tooShort.fa {output.dir}/.. ; }} &> {log}")
# Download checkM data and set data root
rule checkm_data:
version: "1.0"
params:
dir = basedir_dbs + "/CheckM/"
output:
dat = basedir_dbs + "/CheckM/taxon_marker_sets.tsv",
conda:
"envs/KnuttReads2Bins.yml"
message:
"Downloading CheckM data"
shell:
("wget -qO- https://data.ace.uq.edu.au/public/CheckM_databases/checkm_data_2015_01_16.tar.gz | "
"tar xzf - -C {params.dir} && checkm data setRoot {params.dir}")
# Run checkM on a sample
rule checkm_sample:
version: "1.0"
input:
rules.checkm_data.output,
indir = rules.metabat.output.dir
params:
datadir = rules.checkm_data.params.dir,
newheader = "bin\tmarker_lineage\tlineage_genomes\tlineage_markers\tlineage_marker_sets\t0_sets\t1_sets\t2_sets\t3_sets\t4_sets\t5_or_more_sets\tcompleteness\tcontamination\tstrain_heterogeneity"
output:
sreport = basedir_data_binning + "/{sample}_checkm.tsv",
outdir = directory(basedir_binning + "/CheckM/{sample}/{sample}_checkm_data/")
log:
basedir_binning + "/CheckM/{sample}/{sample}_checkm_wf.log"
benchmark:
basedir_bench_binning + "/checkm_wf_{sample}.tsv"
threads:
16
conda:
"envs/KnuttReads2Bins.yml"
message:
"Running CheckM lineage workflow for {wildcards.sample}"
shell:
("checkm lineage_wf -f {output.sreport} --tab_table -x fa "
" -t {threads} {input.indir} {output.outdir} &> {log} && "
"sed -i '1c{params.newheader}' {output.sreport}")
# Calculate checkm help files
rule checkm_extra_data:
version: "1.0"
input:
rules.checkm_data.output,
indir = rules.checkm_sample.input.indir,
contigs = rules.metabat.input.contigs,
mapped = rules.map_reads.output.bam,
mappedi = rules.map_reads.output.bai,
params:
datadir = rules.checkm_data.params.dir,
covheader = "contigid\tbin\tlen\tbamfile\tavgcov\treads",
profileheader = "bin\tbinsize_Mbp\treads\treads_perc\tofbinnedpop_perc\tofcommunity_perc"
output:
tetras = basedir_data_binning + "/{sample}_checkm_tetras.tsv",
cov = basedir_data_binning + "/{sample}_checkm_cov.tsv",
profile = basedir_data_binning + "/{sample}_checkm_profile.tsv",
log:
basedir_binning + "/CheckM/{sample}/{sample}_checkm_helperfiles.log"
benchmark:
basedir_bench_binning + "/checkm_extra_{sample}.tsv"
threads:
16
conda:
"envs/KnuttReads2Bins.yml"
message:
"Running CheckM utilities for {wildcards.sample}"
shell:
("{{ checkm tetra -t {threads} {input.contigs} {output.tetras} && "
"checkm coverage -x fa -t {threads} {input.indir} {output.cov} {input.mapped} && "
"checkm profile --tab_table -f {output.profile} {output.cov} ; }} &> {log} && "
"sed -i '1 s/Sequence Id/contigid/' {output.tetras} && sed -i '1c{params.covheader}' {output.cov} && "
"sed -i '1c{params.profileheader}' {output.profile}")
rule sourmash_bins:
version: "1.0"
input:
rules.checkm_sample.input.indir
output:
basedir_binning + "/sourmash/{sample}/{sample}_bins_sourmash_k{k}.sig"
log:
basedir_binning + "/sourmash/{sample}/{sample}_bins_sourmash_k{k}.log"
benchmark:
basedir_bench_binning + "/sourmash_bins_k{k}_{sample}.tsv"
conda:
"envs/KnuttReads2Bins.yml"
message:
"Calculating sourmash {wildcards.k}-mer hashes for the bins from {wildcards.sample}"
shell:
"sourmash compute -k {wildcards.k} --track-abundance --scaled {config[sourmash_scaled]} --seed 42 -f -o {output} {input}/*.fa &> {log}"
rule sourmash_bins_describe:
version: "1.0"
input:
expand(basedir_binning + "/sourmash/{sample}/{sample}_bins_sourmash_k{k}.sig", k=sourmash_readclass_k, allow_missing=True)
output:
basedir_data_binning + "/{sample}_bins_sourmash_signature.tsv"
log:
basedir_binning + "/sourmash/{sample}/{sample}_bins_sourmash_descr.log"
benchmark:
basedir_bench_binning + "/sourmash_bins_description_{sample}.tsv"
conda:
"envs/KnuttReads2Bins.yml"
message:
"Describing sourmash signature for the bins from {wildcards.sample}"
shell:
"sourmash sig describe --csv {output} {input} &> {log} && sed -i -E 's/(\"([^\"]*)\")?,/\\2\t/g' {output}"
rule sourmash_bins_search:
version: "1.1"
input:
sig = expand(basedir_binning + "/sourmash/{sample}/{sample}_bins_sourmash_k{k}.sig", k=sourmash_readclass_k, allow_missing=True)[0],
db = basedir_dbs + "/Sourmash/" + sourmash_lca_name
params:
params = ['sourmash', 'search', '--containment'],
header = 'bin\tcontainment\tname\tfilename\tmd5'
output:
basedir_data_binning + "/{sample}_bins_sourmash_search.tsv"
log:
basedir_binning + "/sourmash/{sample}/{sample}_bins_sourmash_search.log"
benchmark:
basedir_bench_binning + "/sourmash_bins_search_{sample}.tsv"
conda:
"envs/KnuttReads2Bins.yml"
message:
"Searching the bin signatures from {wildcards.sample}"
script:
"scripts/Pipeline/iterateSourmashSearch.py"
# Run the LCA
rule sourmash_bins_lca:
version: "1.0"
input:
sig = expand(basedir_binning + "/sourmash/{sample}/{sample}_bins_sourmash_k{k}.sig", k=sourmash_readclass_k, allow_missing=True),
db = basedir_dbs + "/Sourmash/" + sourmash_lca_name
output:
basedir_data_binning + "/{sample}_bins_sourmash_classification.tsv"
log:
basedir_binning + "/sourmash/{sample}/{sample}_bins_sourmash_classification.log"
benchmark:
basedir_bench_binning + "/sourmash_classification_{sample}.tsv"
conda:
"envs/KnuttReads2Bins.yml"
message:
"Classifying the bins from {wildcards.sample} with Sourmash"
shell:
"sourmash lca classify --db {input.db} --query {input.sig} > {output} 2> {log} && sed -i -E 's/(\"([^\"]*)\")?,/\\2\t/g' {output}"
rule sourmash_compare_bins:
version: "1.1"
input:
expand(basedir_binning + "/sourmash/{sample}/{sample}_bins_sourmash_k{k}.sig", k=sourmash_readclass_k, sample=sample_names),
wildcard_constraints:
comptype = "|".join(samplecomptypes)
params:
regex = r'^.+/bins/(.+)\.fa$',
k = sourmash_readclass_k,
dir = basedir_data_binning,
typearg = lambda w: "--containment " if w["comptype"]==samplecomptypes[0] else ""
output:
tsv = basedir_data_binning + "/sourmash_bin_comparison_{comptype}.tsv",
np = basedir_data_binning + "/sourmash_bin_comparison_{comptype}",
labels = basedir_data_binning + "/sourmash_bin_comparison_{comptype}.labels.txt",
png = expand(basedir_data_binning + "/sourmash_bin_comparison_{comptype}.{type}.png", type=["dendro","hist","matrix"], allow_missing=True)
log:
basedir_readclass + "/sourmash/sourmash_bin_comparison_{comptype}.log"
benchmark:
basedir_bench_binning + "/sourmash_bin_comparison_{comptype}.tsv"
conda:
"envs/KnuttReads2Bins.yml"
message:
"Comparing the bins using sourmash based on {wildcards.comptype}."
shell:
("{{ sourmash compare {params.typearg}-k {params.k} {input} --csv {output.tsv} --output {output.np} && "
"scripts/Pipeline/sourmashlabels.py {output.labels} '{params.regex}' && "
"sourmash plot --labels --output-dir {params.dir} {output.np} ; }} &> {log} && "
"sed -i -e $(echo 1c$(cat {output.labels} | tr '\n' ',')) {output.tsv} && "
"sed -i -E 's/(\"([^\"]*)\")?,/\\2\t/g' {output.tsv}")
# Filter and add bins names to CAT proteins for BAT
rule filter_cat_proteins:
version: "1.0"
input:
indir = rules.metabat.output.dir,
proteins = rules.classify_contigs.output[2],
aligned = rules.classify_contigs.output[3]
output:
proteins = basedir_binning + "/BAT/{sample}/{sample}.bins.predicted_proteins.faa",
aligned = basedir_binning + "/BAT/{sample}/{sample}.bins.alignment.diamond"
conda:
"envs/KnuttReads2Bins.yml"
message:
"Reformatting CAT results from {wildcards.sample} for BAT"
shell:
("scripts/Pipeline/addBinsCATfileForBAT.py -b {input.indir} -s .fa "
"-p {input.proteins} -d {input.aligned} -P {output.proteins} "
"-D {output.aligned}")
# Classify the bins
rule classify_bins:
version: "1.0"
input:
rules.index_cat_bat.input,
indir = rules.metabat.output.dir,
db = rules.index_cat_bat.output,
proteins = rules.filter_cat_proteins.output.proteins,
aligned = rules.filter_cat_proteins.output.aligned,
params:
taxdir = rules.download_ncbi_tax.params.dir,
prefix = basedir_binning + "/BAT/{sample}/{sample}"
output:
binclass = basedir_binning + "/BAT/{sample}/{sample}.bin2classification.txt",
orflca = basedir_binning + "/BAT/{sample}/{sample}.ORF2LCA.txt"
log:
basedir_binning + "/BAT/{sample}/{sample}_BAT.log"
benchmark:
basedir_bench_binning + "/bat_{sample}.tsv"
threads: # Uses existing data, no DIAMOND call
1
conda:
"envs/KnuttReads2Bins.yml"
message:
"Running BAT on {wildcards.sample}"
shell:
("CAT bins -b {input.indir} -s .fa -d {input.db} -t {params.taxdir} "
"-o {params.prefix} -n {threads} -p {input.proteins} -a {input.aligned} &> {log}")
rule binmap:
version: "1.0"
input:
bindir = rules.metabat.output.dir,
additional = expand(basedir_binning + "/METABAT/{sample}/{sample}.{type}.fa", type=["unbinned", "lowDepth", "tooShort"], allow_missing=True),
assembly = rules.metabat.input.contigs
output:
basedir_data_binning + "/{sample}_binmap.tsv"
conda:
"envs/R.yml"
message:
"Creating bin map for {wildcards.sample}"
script:
"scripts/DataExtraction/binMap.R"
rule formatbat:
version: "1.0"
input:
cat = rules.formatcat.output.dat,
bat = basedir_binning + "/BAT/{sample}/{sample}.bin2classification.named.txt",
binmap = rules.binmap.output
output:
dat = basedir_data_binning + "/{sample}_bat.tsv",
krona = basedir_data_binning + "/{sample}_bat_krona.tsv"
conda:
"envs/R.yml"
message:
"Formatting BAT output from {wildcards.sample}"
script:
"scripts/DataExtraction/formatBATData.R"
# Create binning report
rule binningReport:
version: "1.0"
input:
checkmprofile = expand(basedir_data_binning + "/{sample}_checkm_profile.tsv", sample=sample_names),
checkmlineage = expand(basedir_data_binning + "/{sample}_checkm.tsv", sample=sample_names),
tetras = expand(basedir_data_binning + "/{sample}_checkm_tetras.tsv", sample=sample_names),
checkmcov = expand(basedir_data_binning + "/{sample}_checkm_cov.tsv", sample=sample_names),
sourmashclass = expand(basedir_data_binning + "/{sample}_bins_sourmash_classification.tsv", sample=sample_names),
commons = "scripts/Reports/commonReport.R",
params:
samples = sample_names
output:
basedir_reporting + "/8binning.html"
benchmark:
basedir_bench_binning + "/binning_report.tsv"
conda:
"envs/R.yml"
message:
"Generating binning report"
script:
"scripts/Reports/binning.Rmd"
rule binning:
version: "1.0"
input:
expand(basedir_data_binning + "/{sample}_checkm.tsv", sample=sample_names),
expand(basedir_data_binning + "/{sample}_checkm_profile.tsv", sample=sample_names),
expand(basedir_data_binning + "/{sample}_binmap.tsv", sample=sample_names)
message:
"Ran binning and CheckM"
rule binningSourmash:
version: "1.0"
input:
expand(basedir_data_binning + "/{sample}_bins_sourmash_classification.tsv", sample=sample_names),
expand(basedir_data_binning + "/{sample}_bins_sourmash_signature.tsv", sample=sample_names),
expand(basedir_data_binning + "/{sample}_bins_sourmash_search.tsv", sample=sample_names),
expand(basedir_data_binning + "/sourmash_bin_comparison_{comptype}.tsv", comptype=samplecomptypes)
rule binningRefData:
version: "1.0"
input:
expand(basedir_data_binning + "/{sample}_checkm.tsv", sample=sample_names),
expand(basedir_data_binning + "/{sample}_checkm_profile.tsv", sample=sample_names),
expand(basedir_data_binning + "/{sample}_binmap.tsv", sample=sample_names)
message:
"Ran binning and CheckM"
rule bat:
version: "1.0"
input:
expand(basedir_data_binning + "/{sample}_bat.tsv", sample=sample_names)
message:
"Ran BAT"
rule batKrona:
version: "1.0"
input:
expand(basedir_data_binning + "/{sample}_bat_krona.tsv", sample=sample_names),
params:
pairs = [file + "," + name for file, name in zip(expand(basedir_data_binning + "/{sample}_bat_krona.tsv", sample=sample_names), sample_names)]
output:
basedir_reporting + "/BAT_krona.html"
conda:
"envs/KnuttReads2Bins.yml"
message:
"Creating BAT Krona report"
shell:
"ktImportText -o {output} -n All {params.pairs}"