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1 Introduction

Feed-forward neural networks are computer systems that learn through artificial neu-

ral pathways. They have the ability to learn patterns through propagating backwards to

adapt to any given input. To do this, they store multi-layered/dimensional lists of numbers

called weights and change them based on how they transform the inputs to form outputs.

When the output is calculated, the network’s error rate, also known as its cost is calcu-

lated through taking the square of the difference between the network’s outputs and real

outputs. Finally, when the cost is calculated, it is used for backpropagation, which involves

the adjustment of each weight of the network through a series of gradient calculations, also

known as optimizations. This report involves the documentation of a new model of neural

network backpropagation optimization with advanced velocity calculations in non-parallel
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layers with the purpose of preventing the network from missing the locally minimal er-

ror rate. Debounce, named after this effect, is a non-parallel neural network optimization

method. It works by using the velocity of the previous weight in the layer to calculate the

current weight’s new gradient for optimization. This creates stronger weight relevance for

the cost of non-parallelizing the network, hence sacrificing speed for accuracy.

2 Procedure

Figure 1: Debounce Weight Update

Figure 1 shows the formula for a weight update used in Debounce. Beta, (β) represents

the velocity of the algorithm’s decay. The higher it is, the faster the algorithm descends

down to a local minimum, vice-versa. The concept behind this formula was to control beta

relative to the change in velocity (Vt - Vt−1) to slow down when the optimizer is nearing

minimal error that weight can produce, and speed up otherwise. The tanh function is set

to limit delta velocity between one and negative one, and the range (α) is there to scale

it optimally. The rest of the optimizer resembles the update rule of any typical optimizer,

forming the new velocity, and adding the learning rate (n) multiplied by the current gradient

(gt) of the optimizer.
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Figure 2: Gradient Calculation

In figure 2, the gradient of the function is calculated through changing the current

weight of the layer by an extremely small value such as 0.001 and taking the difference of

produced errors of the weights and dividing it again by 0.001.

Figure 3: Velocity Calculation

In figure 3, the new velocity is calculated with the formula mentioned in figure 1.

Figure 4: Weight Adjusting

In figure 4, the individual weight is finally changed based on the new velocity (velW)

that is calculated with the formula aforementioned in figure 1. Finally, the previous velocity

is set for the next iteration of weights.
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3 Observations

Figure 5: Finding the Local Minimum of y=x2

Figure 5 shows the iteration speed at which different neural network optimizers find

the local minimum of a typical quadratic function. It can clearly be seen that Debounce is

the quickest when it comes to finding the local minimum of a simple function.

Figure 6: Optimizing a Simple Neural Network

When tested with neural networks given a small dataset, it is only slightly faster than

NADAM. This can be seen in figure 6 in which its cost is very close to NADAM throughout.
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4 Conclusion

Figure 7: Optimizing a Simple Neural Network

Figure 7 shows the final optimization results of the five optimizers after training on

digit recognition for 9 hours. It can clearly be seen that Debounce rapidly allows for the

neural network to decrease its cost. From these results, it can be concluded that a Debounce-

optimized neural network is not only the quickest to learn, but also the most accurate when

it comes to non-parallel neural networks. Although this method is not be too useful for

large-resolution images as of now, it can still be effectively applied to simpler classification

problems such as digit recognition. Perhaps, an implementation of this optimizer can be

added to a neural network library such as TensorFlow for better memory allocation as well

as faster speed.
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