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A B S T R A C T   

Decoding of motor imagery (MI) from Electroencephalogram (EEG) is an important component of BCI system 
that helps motor-disabled people interact with the outside world via external devices. One of the main issues 
associated with the multiclass classification of MI based EEG is the informative confusion due to non-stationary 
characteristics of EEG data. In this work, an innovative idea of transforming EEG signal into a new domain, 
weight vector of autoencoder, unsupervised neural network, is proposed for the first time to solve that confusion. 
These weight vectors are optimized according to that particular EEG signal. The features: autoregressive co
efficients (ARs), Shannon entropy (SE) and wavelet leader were extracted from the weight vector. A rectangular 
windowing-based feature extraction technique is implemented to capture the local features of the EEG data. 
Finally, extracted features were used in the support vector machine (SVM) as a classifier network. The proposed 
method is implemented on two openly available EEG dataset (BCI competition-III and Competition-IV) to vali
date the effectiveness and superiority of the proposed methodology over the newly reported methods. For four- 
class EEG based MI classification, the proposed technique has achieved an average test accuracy of 95.33% and 
97% for dataset-IIIa from BCI-III and dataset-IIa from BCI-IV respectively. The experimental results reveal that, 
the proposed technique is a promising solution to improve the decoding performance of BCIs.   

1. Introduction 

BCI creates a communication pathway between neuronal system and 
external devices to decode the intent of operator into computer in
struction by distinguishing a task associated with neuronal activity (Das 
et al., 2016). Several techniques are used to capture the neuronal ac
tivity inside the brain. EEG is one of them and widely used due to its non- 
invasive nature and high temporal resolution. It captures the electro- 
chemical fluctuations inside the brain by means of electrodes on the 
scalp. The MI classification through EEG is one of widely used BCI ap
plications. The cerebral activities of MI can be triggered when a person 
imagines any movement of his body parts. If these cerebral activities are 
properly translated, then the findings can be used to interact with 
external devices such as BCI based wheel chair for physically challenged 
patients and service robot for several motor neuron diseases (e.g. 
Poliomyelitis, Parkinson disease, etc.) (Ang & Guan, 2017; Sun et al., 
2019). The EEG pattern identification, therefore, plays a key role in the 
applications of BCIs for MI. 

In the MI based BCI systems, initially features are extracted from the 
EEG signal. These features are then integrated into a feature array, and 
these arrays are further used to train the machine learning models. The 
performance of these machine learning models depends on two major 
factors (i) discriminative feature extraction and (ii) training algorithms. 
The best performance will be achieved if these features are discrimi
nating for each class of the data. However, in EEG based BCI system, 
three main challenges such as: artifacts, non-stationarity and mis
labelling of training feature sets can degrade the performance of the 
systems. Eye blink and facial muscular activities, considered as biolog
ical artifacts, are unavoidable contaminations that are measured 
together with neural activities and thereby distort valuable information 
(Jafarifarmand et al., 2017). The variations seen in different neuro
physiological conditions of subjects in terms of degree of alertness while 
the signal recording sessions are occurring can cause the immense non- 
stationarity in the EEG signals (Krauledat, 2008). The improper imagi
nation of mental tasks and inappropriate class lsabelling result in devi
ation in the training data. Various intelligent methods have been 
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developed in the literature to deal with the EEG artifacts (Ghosh et al., 
2019; Phadikar et al., 2020a; Phadikar et al., 2020b). The mislabelling 
features can be figure out with the help of expert EEG specialist and 
carefulness during recording and labelling the features. However, to 
deal with the non-stationarity of EEG signals is a challenging task in EEG 
pattern recognition. Several strategies such as transforming the EEG 
signals into frequency domain, time–frequency domain etc. are 
employed in feature extraction stage to deal with challenges in EEG 
based motor imagery recognition. 

As this paper focuses on multiclass MI classification, several research 
articles on multiclass MI classification have been surveyed and pre
sented in Table 1. However, among all the methods, the common spatial 
pattern (CSP) is most frequently used as a technique of feature extraction 
for MI classification. Initially it was developed for two class data clas
sification, and then modified for multiclass classification problem. 
Basically, in CSP, the data of two classes are spatially filtered to maxi
mize the difference in variance between two classes. Before imple
menting the CSP to decode the MI, EEG signals are bandpass filtered 
between a wide frequency band (4 to 40 Hz). The performance of CSP is 
highly depending on the selection of frequency band. It is therefore 
necessary to select a frequency band or a wide frequency band for the 
specific characteristics, but this process is very inconvenient. If the 
frequency band is incorrectly used, then the performance of BCI system 
degrades. To overcome this problem, several extensions of CSP have 
been proposed in the literature such as filter bank common spatial 
pattern (FBCSP). In FBCSP, the EEG (4 to 40 Hz) is divided into multiple 
smaller frequency bands, and then CSP is applied for feature extraction 
(Rathee et al., 2017). Recently, various methods are employed to 
transform the EEG signals into images to extract the prominent features 
for MI tasks (Fadel et al., 2020). The recordings of all the electrodes are 
converted into 2-D images, thus the problem of EEG signal classification 
becomes an image classification task. 

From the previous research, it is observed that the CSP and transform 
were widely used as feature extractors in the four-class MI classification. 
The commonly used CSP algorithm, however, recognizes only spatial- 
based features while paying no attention to the spectral properties of 

EEG signals. The performance depends on the spectral filter for which 
the frequency band is usually predetermined and fixed manually. In 
AAR-based approaches, time information is ignored. In wavelet trans
form based techniques, considering coefficient vectors at different level 
as a feature of EEG signal increase the computational complexity of the 
system. However, challenges remain in achieving higher classification 
accuracy to improve the performance of real-time MI-based BCI. 

It is quite difficult to decode four-class MI tasks from the EEG data 
because of its non-stationary nature. Hence, the derived features may 
not be entirely discriminative. To address the challenge of finding 
discriminatory features for four-class MI classification because of highly 
random and non-stationary EEG signal, an innovative idea of trans
forming the EEG signal in a new domain i.e., weight vector of unsu
pervised neural network has been proposed in this paper for four-class 
MI classification for the first time. An efficient feature extraction method 
is developed rather than improving the classification algorithm to 
enhance the performance of BCI. 

In view of the above, the main features of the innovative method 
proposed in this paper are:  

a) It is a fully automated, unsupervised, and data-driven feature 
extraction method using individual autoencoders for each EEG 
channels, which does not require any help of experts or prior 
knowledge. 

b) The proposed novel feature extraction method can adaptively cap
ture the intention of motor movements from the EEG data.  

c) It extracts discriminative feature sets in new domain in which the 
classifier can achieve higher classification accuracy for four-class MI 
data. 

A new hypothesis is proposed in this paper as: when an EEG signal is 
fed to train the neural network, is it possible to represent the EEG signal 
in terms of their weight vector from the input layer to hidden layer of a 
neural network? Because, the weight vectors of the neural network are 
optimized according to the input data fed to the network. Hence, the 
input signal can be represented as optimized weight vectors of the 

Table 1 
Different feature extraction technique used in EEG signals for MI classification.  

References Feature Extraction Technique Classifier Dataset Used Mean 
Accuracy* (%) 

Ang et al., (2012) CSP Features Naïve Bayesian Parzen Window 
(NBPW) 

BCI-IV (IIa) 71.73 

Kam et al., (2013) Logarithmic values of normalized variances using 
non-homogeneous spatial filter 

LDA BCI-IV (IIa) 60 

Aghaei et al. (2016) Spatio-Spectral features using Separable Common 
Spatio-spectral Patterns (SCSSP) 

Linear minimum mean distance 
classifier 

BCI-IV (IIa) 65.4 

Rathee et al., (2017) Spectral features using filter bank common spatial 
pattern (FBCSP) 

SVM BCI-IV (IIa) 58.14 

Jafarifarmand et al., (2017) Artifact Rejected CSP (AR-CSP) Adaptive resonance theory (ART) 
based neuro-fuzzy classifier 

BCI-IV (IIa) 85.49 

Dose et al., (2018) Principle component analysis (PCA) with 
convolutional neural network (CNN) 

CNN The Physionet dataset 
(Goldberger et al., 2000) 

68.51 

Amin et al., (2019) Spectral and temporal features using multi-layer 
CNN (MCNN) 

CNN BCI-IV (IIa) 75.7 

Ai et al., (2019) CSP and local characteristics scale decomposition 
(LCD) 

Spectral regression discriminant 
analysis (SRDA) 

BCI-IV (IIa) 79.7 

Zhang et al., (2019) One-versus-rest FBCSP Long short-term memory (LSTM) BCI-IV (IIa) 83 
Sreeja & Samanta, (2019) Wavelet energy Sparsity based classifier BCI-III (IIIa) 91.84 
Jafarifarmand & 

Badamchizadeh, (2020) 
Modified CSP with joint approximate 
diagonalization (JAD) 

ART based neuro-fuzzy classifier BCI-IV (IIa) 62.66 

Ma et al., (2020) Power spectral density (PSD) Visual geometric based CNN BCI-IV (IIa) 96.26 
Wang et al., (2020) CSP + Auto regressive Naïve Bayesian Classifier (NBC) BCI-IV (IIa) 86.01 
Fadel et al., (2020) Azimuthal equidistant projection and Clough- 

Tocher algorithm 
CNN The Physionet dataset 70.64 

Wu et al., (2021) Tangent Space Mapping (TSM) SVM BCI-IV (IIa) 77.33 
Hou et al., 2022 Bispectrum, Entropy and CSP (BECSP) SVM BCI-IV (IIa) 71.61 
Chen et al., 2022 Filter bank channel group attention (FB-CGANet) Neural Network BCI-IV (IIa) 79.4  

* All the results in the table are presented from the original paper. 
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network. If it is possible then that the feature values can be extracted 
from a particular weight vector characterizing a particular EEG signal in 
new domain. 

To test the hypothesis, an autoencoder neural network is used to find 
the unique weight vector for each MI EEG signal. The autoencoder has 
been used in this paper as it produces the same output as the input. 
Hence, it is a data driven network. As a result, the weight vectors are 
updated according to EEG data. Once the weight vectors are computed, 
then spectral features are extracted through a slid-windowing method 
using rectangular window function. The windowing-based feature 
extraction technique is implemented to capture the local features of EEG 
data. The window size is selected through proper technique. Then all the 
windowed feature values are concatenated to form a feature vector. 
Finally, these feature vectors along with feature labels are fed to the 
SVM network as a classifier. Once the training of classifier network is 
completed, test EEG signals are used to test the network and fed to 
autoencoder to compute its unique weight vector. Now the feature 
values are extracted and predicted through the previously trained SVM 
network. This method is fully automatic and unsupervised. The pro
posed system is compared with the conventional MI based BCI systems 
(Jafarifarmand et al., 2017; Ai et al., 2019; Zhang et al., 2019; Sreeja & 
Samanta, 2019; Ma et al., 2020; Wang et al., 2020; Wu et al., 2021; Chen 
et al., 2022) and also achieved the highest classification accuracy. The 
proposed system is validated with publicly available two datasets. Same 
feature sets are also extracted from the original EEG data (without 
transforming the EEG) and the performance is compared with the pro
posed method. The proposed system does not use any channel selection 
method for achieving higher accuracy than the conventional methods. 
To the best of our knowledge, this is the maiden attempt of feature 
extraction methods for the EEG based MI classification. The benefits of 
the stated model are established through the exploratory outcomes as 
explained in this paper. 

2. Materials and tools 

2.1. Autoencoder 

An autoencoder is a neural network, based on unsupervised machine 
learning algorithm that captures the signature inside the EEG data (Liou 
et al., 2014). It mainly has two parts: encoder that maps the input into a 
code, and a decoder that maps the code to reconstruct the original input. 
Weights between layers are updated according to the training algorithm 
to minimize the reconstruction error. As the reconstruction error is small 
enough, the code could be assumed to incorporate most of the 

information of the input vector. The architecture of autoencoder is 
shown in Fig. 1. 

By taking × as input vector, autoencoder maps the input vector to a 
hidden layer representation y with deterministic mapping as: 

y = fencoder
(
WT

e x+ be
)

(1)  

where, We and be is the weight and bias vector respectively of the 
encoder and fencoder is the activation function of the neurons in the 
encoder. The output of the autoencoder z, has the same phase as x, is 
then extracted by mapping the hidden layer representation or code y 
using the transformation. 

z = fdecoder
(
WT

d y+ bd
)

(2)  

where Wd and bd are characterized as the weight vector and bias vector 
respectively in the decoder. fdecoder is the activation function of neurons 
in the decoder. In autoencoder network, training can be done by mini
mizing the reconstruction error which is measured as squared error. The 
autoencoder finds the appropriate parameters θ = {We , Wd, be, bd}

through minimizing the cost function. 

E(θ) = L(x, z)+ λ‖W‖
2  

=
∑n

i
‖xi − zi‖

2
+ λ(‖We‖

2
+ ‖Wd‖

2
) (3)  

where, λ‖W‖
2 is a regularized parameter to avoid the over-fitting by 

minimizing the L2 norm of parameters, and L(x, z) is the reconstruction 
error. The weight vector W = We(:) can represent the MI signal in new 
space. 

2.2. Feature extraction 

Although several feature extraction methods have been developed 
for MI EEG classification, selecting a suitable method for selection of 
features for higher classification accuracy is still a thought-provoking 
task for effective EEG classification. Finding a good feature set for a 
binary classification task may not be so difficult but for a complex multi 
task classification, getting discriminative feature set is really a chal
lenging task. In the proposed work, four feature values are extracted 
from the weight vector for the corresponding EEG data. 

2.2.1. Autoregressive (AR) coefficients 
The AR model is a representation of a type of random process in 

signal processing; as such, it is used to characterize such time-varying 
processes (Neumaier & Schneider, 2001). In parametric method, it es
timates the PSD of an EEG. Therefore, there are no chances of spectral 
leakage. Hence, it yields better frequency resolution. The PSD is esti
mated by measuring the parameters of the linear systems under 
consideration. The signal can be represented as a linear combinations of 
p previous values of the same signal. The signal x[n] at the time instant n 
can be modelled as: 

x[n] = −
∑p

i=1
a[i]x[n − i] + e[n] (4)  

where, e[n] is a zero-mean white noise, a[i] is the ith coefficient of the 
model with order p. A total p number of AR coefficients are used as 
feature values in this work. However, the selection of order p is very 
sensitive because, the estimates generally improve with increase in 
order but at higher computational cost.  

• Burg’s Method to Estimate the AR Model 

Several strategies have been proposed for the estimation of AR 
models. The Burg’s method is widely used in EEG based classification of 

Fig. 1. The architecture of autoencoder. Xi, hi and Zi denotes the input node, 
hidden nodes and output nodes respectively. 

S. Phadikar et al.                                                                                                                                                                                                                               



Expert Systems With Applications 213 (2023) 118901

4

mental state. It directly measures the reflection coefficients without 
using the autocorrelation function (Al-Fahoum & Al-Fraihat, 2014). This 
approach estimates data records of PSD that exactly look like the orig
inal. For a detail description, interested readers may refer to (Stoica & 
Moses, 2005).  

• Determination of AR Model Order 

While designing an AR model, it is important to define the order of 
the model which best fits the data. It depends on the data sampling rate 
because, the AR model estimates the present value of data using the 
number of past data samples. Sum-squared error (SSE) is a widely used 
tool for determining the order of an AR model. The lower SSE indicates 
the order of the model that best fits the data (Anderson et al., 1998). As 
suggested by Anderson et al. (1998), for EEG based mental state clas
sification, AR coefficients of order 6 best fit the data. 

2.2.2. Wavelet packet entropy 
The wavelet transform is widely used in feature extraction due to its 

capability of capturing the local features of an EEG signal. It is difficult 
to use such coefficients directly as features because of its wider length. 
Hence, for better classification, some higher-level features may be 
extracted from these coefficients. Entropy is a tool to capture the un
certainty of a given system and commonly used in information theory 
and signal processing (Li & Zhou, 2016). In this work, Shannon entropy 
(SE) is directly calculated from the wavelet packet decomposition 
(WPD) coefficients of the weight vector. The WPD is an extension of 
discrete wavelet transform (DWT). The key difference between WPD and 
DWT is that, it decomposes not only the approximation coefficients but 
also the detail coefficients simultaneously. As a result, the WPD has same 
frequency bandwidth in each resolution while DWT does not. For an 
EEG signal x(t), the coefficients can be derived as: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d0,0(t) = x(t),
di,2j− 1(t) =

̅̅̅
2

√ ∑

k
h(k)di− 1,j(2t − k),

di,2j(t) =
̅̅̅
2

√ ∑

k
g(k)di− 1,j(2t − k)

(5)  

where h(k) and g(k) denote high pass and low pass filters respectively, 
and di,j is the WPD coefficients at the ith level and jth node. The energy at 
ith level and jth node can be derived by wavelet-energy, defined as: 

Ei,j =
∑N

k=1
‖di,j,k‖

2 (6)  

where, N denotes total number of coefficients in the corresponding node. 
The SE of jth node at ith level is calculated based on the probability 
distribution of energy as: 

SEi,j = −
∑N

k=1
Pi,j,k*log

(
Pi,j,k

)
(7)  

where Pi,j,k is the probability of the kth coefficient at its corresponding 
node and is defined as: 

Pi,j,k =
‖di,j,k‖

2

Ei,j
(8) 

Finally, the SE feature vector is computed by cascading all the SEs 
from every node of level M. 

SE = (SEi,1, SEi,2,⋯, SEi,2M )i=M (9)    

• Selection of Base Wavelet 

The selection of appropriate base wavelet (mother wavelet) may 
affect the calculation of SE feature vector in wavelet domain. Hence, a 
cross-correlation based approach is proposed to check the performance 
of all the available wavelet bases for EEG based MI signal classification. 
The cross correlation between MI signal and the wavelet functions are 
calculated and the function is selected which gives the maximum value. 
The correlation Xcorr between the EEG signal of interest X and the mother 
wavelet function Y is. 

Xcorr =

∑
(X − X)(Y − Y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(X − X)2
(Y − Y)2

√ (10)  

2.2.3. Wavelet fractal estimates 
Two fractal parameters from DWT coefficients are estimated and 

used as features. The width of singularity spectrum and the second 
cumulant of the scaling exponents are obtained as features. The width of 
singularity spectrum derives the multi-fractal nature of the EEG signal. 
The scaling exponents are scale based exponents describing power-law 
behaviour in the signal at different resolution. The second cumulant 
broadly represents the departure of the scaling exponents from linearity 
(Leonarduzzi et al., 2010). Both the features are calculated from wavelet 
leaders. The wavelet leaders estimate the multifractal spectrum based on 
wavelet transform. 

Let ψ be a wavelet function having various null moments and fast 
decay and dilated by scale 2j and translated to time position 2jk. It can be 
assumed that, each wavelet coefficient Cjk corresponding to the wavelet 
transform of the series {x(i)} is localized on the dyadic interval (Leo

narduzzi et al., 2010), Ijk =
[

k
2j,

k+1
2j

]
. Then the dilated intervals can be 

computed as: 

3Ijk =

[
k − 1

2j ,
k + 2

2j

]

(11) 

The wavelet leaders djk are computed as: 

djk = sup
{
|Clh| : Ilh⊂3Ijk

}
(12) 

The most important key factor about the wavelet leader is the search 
for the greatest wavelet coefficients in a narrow time neighbourhood for 
a given time and scale (Leonarduzzi et al., 2010). The singularity 
spectrum (SS) determines how many singularities are there. However, 
the SS can be easily computed from the structure function (SF). The SF is 
computed from the wavelet leader as: 

S
(
q, 2j) =

1
nj

∑nj

k=1
|djk|

q (13) 

If the signal {x(i)} shows some form of self-similarity, the SF decays 
as power laws of the scales. The exponents of these power laws are called 
scaling exponents (SE) and are computed as: 

SE(q) = lim
j→0

inf
(

log2
(
S
(
q, 2j

) )

j

)

(14) 

Finally, the SS can be obtained from the SE via Legendre transform 
(LT) as: 

D(h)=inf
q (1 + qh − SE(h) ) (15) 

The width of the SS is measured as the difference between maximum 
and minimum value in the D(h) and the second cumulant of the SE are 
used as feature values. 

All the feature values are extracted from the autoencoder weight 
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vector using non-overlapping slid windowing technique using rectan
gular window function. Here, p number of AR coefficients, 2M number of 
Shannon entropy and two wavelet fractal estimates are extracted from 
each window. Finally, (p + 2M + 2) * S number of feature values are 
concatenated to form the feature vector, where S is the total number of 
rectangular windows to cover the whole weight vector. 

2.3. Multiclass SVM classifier 

The SVM is the most widely used classifier that utilizes the strategy of 
supervised machine learning. SVM can competently categorize non- 
linear data by means of kernel trick. The SVM uses training data to 
create an optimal hyper plane, with the aim to classify test data (Hsu & 
Lin, 2002). Some unique features of different datasets are obtained and 
provided to the classifier. The optimal hyper plane, known as support 
vectors, is made to get a decision boundary from the adjacent samples of 
different datasets. If the datasets are linearly indistinguishable in the 
original finite dimensional, then the data can be re-mapped into suffi
ciently higher dimensional space to reduce the non-linearity. To address 
the higher dimensionality, kernel trick is used for better classification 
and less effort. However, SVMs were originally designed for two-class 
classification problem. Some extensions of SVM have been proposed in 
the literature for multiclass classification problem. These extensions are 
1-against-1, 1-against-all, DAGSVM etc. (Hsu & Lin, 2002). 

2.4. Datasets 

In this investigation, two datasets were used: one for validation and 
another for comparison with other recently reported methods of EEG 
based MI Classification. 

2.4.1. Dataset IIIa from BCI competition III 
Dataset IIIa from BCI competition III (Blankertz et al., 2006) has been 

used to validate the proposed system. The data consist of recording from 
the three subjects (k3b, k6b, I1b). The subjects performed four MI tasks 
according to a cue. The subjects were imagining the movements of left 
hand (class-1), right hand (class-2), tongue (class-3), and foot (class-4) 
while relaxing in a chair with armrests. The experiment consisted of 
several runs with 40 trials each. After the trial began, the 2 s were silent, 
an acoustic stimulus started at t = 2 s to indicate the beginning of the 
trial, and a cross “+” was displayed. Then, from t = 3 s, an arrow to the 
left, right, up or down was displayed for 1 s and at the same time, and the 
subjects were asked to imagine a movement of left hand, right hand, 
tongue or foot according to the arrow until the cross disappeared at t = 7 
s. Each of the four cues is displayed ten times within each run in a 
randomized order. 

2.4.2. Dataset IIa from BCI competition IV 
To demonstrate the superiority of the proposed model over other 

recently developed methods, the dataset IIa from BCI competition IV 
(Tangermann et al., 2012) has been adapted. This dataset consists of 
EEG data from 9 subjects (A01 – A09). The subjects were imagining the 
movements of left hand (class 1), right hand (class 2), tongue (class 3), 
and foot (class 4) while relaxing in a chair with armrests. The recorded 
data consisted of 22-channel EEG signals. The data were sampled at 250 
Hz. 

2.5. Performance metrics 

The following parameters are used in this paper to evaluate the 
performance of the proposed methodology for four class MI EEG clas
sification. The metrics are used after separating the dataset into training 

and test dataset through holdout cross validation (CV) technique. The 
CV partition usually divides the datasets into training and test (holdout) 
set. This partition depends on a scalar r, called holdout parameter. When 
0 < r < 1, this approach randomly selects r*n observations for the test 
set, where n is the total number of observations. When r is integer, this 
method randomly selects r observations for the test set. 

Accuracy(Acc) =
TP + TN

P + N
(16)  

Sensitivity(Sen) =
TP
P

(17)  

Specificity(Spe) =
TN
N

(18)  

precision =
TP

TP + FP
(19)  

where, TP (true positive) denotes the number of correctly predicted 
positive MI class and TN (true negative) represents the number of 
correctly predicted negative MI class. P denotes the total number of 
positive class present in the observation and N denotes the total number 
of negative class present in the observation. 

3. Proposed methodology 

This paper proposes a novel method of unsupervised feature 
extraction for EEG based MI classification. The basic architecture of the 
proposed system is presented in Fig. 2. At first, the MI related EEG signal 
is fed to an autoencoder and the weight vector which minimizes the 
reconstruction error in the autoencoder is extracted. Then the S * p 
number of AR coefficients, S * 2 M number of wavelet packet entropy and 
2 * S number of wavelet fractal estimates are extracted from the weight 
vector of corresponding MI data using a non-overlapping rectangular 
window. Finally, the feature-label pairs are fed to a multiclass SVM 
classifier to train the model. The proposed method is implemented in 
MATLAB R2019a and evaluated for BCI-III and BCI-IV dataset. The 
proposed work achieves a higher classification accuracy as compared to 
the conventional methods (Jafarifarmand et al., 2017; Ai et al., 2019; 
Zhang et al., 2019; Sreeja & Samanta, 2019; Ma et al., 2020; Wang et al., 
2020; Wu et al., 2021; Chen et al., 2022) reported for EEG based MI 
classification. 

Stages of the proposed model.  

• Four class MI data were segmented from the dataset and a new 
dataset were created.  

• The EEG data from each class from the new dataset are fed to the 
autoencoder. After minimizing the training error of the network, the 
weight vector from input-to-hidden-layer is extracted. This weight 
vector represents the corresponding EEG data from each class.  

• The weight vectors (representing the original EEG signals) were 
partitioned into a training set and test set using the CV partition 
technique with holdout parameter p = 0.3. 70 % of the data were 
selected randomly for the training purpose and 30 % of the data were 
selected randomly for the testing purpose.  

• A feature extraction window of size 1 s (250 samples) is slid forward 
in each weight vector (training set) to extract the above-mentioned 
feature values, i.e. AR coefficients, wavelet packet entropy, 
wavelet fractal estimates. Hence, total (p + 2M + 2) * S number of 
feature values are concatenated to form the feature vector, where S is 
the total number of windows to cover the whole weight vector. 
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Likewise, test feature sets were also extracted using the same 
method.  

• Finally, the training feature-label pairs were fed to a multiclass SVM 
to train the classifier network.  

• To test the trained classifier network, test feature sets are used and 
the performance is evaluated. 

3.1. Data preprocessing 

The data were recorded in 6 runs (sessions) separated by short breaks 
for each subject. One run consists of 40 trials (10 for each of the four 
possible classes), yielding a total of 240 trials per session. In the pro
posed method, single trial for each of the four possible classes from 6 
runs (sessions) was used to create the main dataset for the proposed 
algorithm. Hence, 4 × 6 = 24 trials (out of 240 trials) were extracted 
from each subject. The data were recorded from the three subjects, as a 
result 3 × 24 = 72 trials were extracted and the main dataset were 
created. 

The EEG data is very sensitive to various artifacts such as eyeblink, 
muscle etc. These artifacts should be removed otherwise result in 
misclassification. In this paper, the eyeblink artifacts are removed 
through the method described in (Phadikar et al., 2020a). At first the 
identified corrupted EEG was decomposed into wavelet coefficients up 
to level 6 using Daubechies wavelet (vanishing moment as 8). Both the 
decomposition level and wavelet function were selected through the 
techniques described in Phadikar et al., (2020a). Then the approximate 
coefficients (ACs) were thresholded in backward manner using the op
timum threshold values followed by inverse wavelet transform (IDWT) 
to reconstruct the original EEG signal. The AC at level 6 was thresholded 
and used in IDWT together with the un-thresholded detail coefficient 
(DC) at the same level (i.e., level 6) to get back the AC at level 5. Then, 
AC at level 5 was thresholded using different threshold value and used in 
IDWT with DC at the same level (i.e., level 5) to get back the AC at level 
4. Likewise, the backward thresholding of the ACs followed by IDWT is 
continued till the artifact free EEG signal is reconstructed at level 1. The 

optimum threshold values for different level were calculated through 
grey wolf optimizer (GWO). Because for simultaneous optimization of 
number of parameters (here thresholds at different levels) meta-heuristic 
optimizers like GWO is the best option. The muscle artifacts are removed 
through the method described in Phadikar et al. (2022). After success
fully removing the artifacts from the created dataset, the MI related EEG 
data were fed to the autoencoder for the following steps. 

3.2. Extraction of weight vectors from the autoencoder 

Before partitioning the data into training and test dataset, the main 
dataset (containing 72 trials) were fed to the autoencoder. Individual 
autoencoder was trained for particular EEG signals (for example: if there 
are 10 EEGs, ten individual autoencoders were trained). When all the 
autoencoders were trained, their optimized weight vectors correspond
ing to the particular EEG signals were extracted. Hence, the proposed 
technique transformed the EEG signals and represented them in a new 
domain/space (i.e., weight vector). Hence, the autoencoder acted as a 
transformer (not as a classifier). The activation function of encoder 
network is selected as log-sigmoid function. For the given input, Xi, the 
encoder output will be yi, 

yi = logsig(WiXi + be) (20)  

logsig(z) =
1

1 + e− z (21) 

To minimize the error defined in equation (3), scaled conjugate 
gradient (SCG) algorithm (Møller, 1993) is used as a training algorithm 
in autoencoder. The weight vectors are selected, when the autoencoder 
reconstruction error is minimized. The number of hidden nodes in the 
hidden layer were selected using trial and error method. However, this 
EEG segment is linearly separable or not, is not known. Hence the 
number of hidden nodes is selected as 30, 50 and 100 and the training 
errors of the autoencoder are compared in the Fig. 3. From the figure, it 
is evident that, the error is the minimum with fast convergence when the 
number of hidden nodes is 50. After extracting all the weight vectors 

Fig. 2. The basic architecture of proposed system.  
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(Wi) from 72 trials, the weight vectors are separated into training and 
test set using the holdout CV algorithm. In the CV partition algorithm, 
the holdout parameter, p is selected as 0.3 and as a result, 70 % of the 
total weight vectors were randomly chosen to form train set and 30 % 
weight vectors were kept as test set. Finally, the data were paired with 
data labels (four motor imagery tasks) and is ready to be applied for the 
next steps. 

3.3. Feature extraction from the weight vectors 

A windowing feature extraction method is proposed in this work. The 
rectangular window slides across the weight vector and the features are 
computed. Each window will calculate the p number of AR coefficients, 
2 M number of wavelet packet entropy and two numbers of wavelet 
fractal estimates as a feature values from the EEG segments. Hence, each 
EEG signal will be represented as (S× r) number of feature values. 
Where r is the total number of feature values extracted from a window. 

r =
(
p + 2M + 2

)
(22)    

• In computing AR coefficients, the selection of order p is a key factor. 
As the researchers in (Leonarduzzi et al., 2010) suggested that, the 
order 6 is significant in AR model for mental task classification. 
Hence, the order of AR model p = 6 is selected in the proposed 
methodology. Also, the Burg’s method (described in section II) is 
used to estimate the AR coefficients due its low computational cost.  

• Then to calculate the wavelet packet entropy, SE is calculated from 
the wavelet coefficients of windowed EEG signals. One major issue in 
the computation of wavelet-based SE is the selection of proper 
wavelet function. Several wavelet functions are available in the 
wavelet families, and every wavelet function has different charac
teristics. As a result, entropy will be different for different wavelet 
functions. However, in this work, a proper technique for selection of 
appropriate wavelet function is adopted. The correlation Xcorr be
tween the EEG signal of interest X and the mother wavelet function Y 
is calculated using equation (10) to match the best suitable wavelet 
function for EEG based MI analysis. The wavelet function is selected 
which gives the maximum value. In this work, total 30 wavelet 
functions (Haar, Daubechies with vanishing moment ranging from 2 
to 12, Coiflets with vanishing moment ranging from 1 to 5, Symlets 
with vanishing moment ranging from 2 to 8, Fejer-Korovkin wavelets 
with vanishing moment ranging from 4 to 22) are compared with MI 
related EEG data. For each wavelet function, the average Xcorr is 
shown in Table 2. From the table, it is evident that, the Haar provides 
the maximum correlation among all the wavelet functions. Hence, 
Haar is selected as a mother wavelet function to decompose the 
windowed EEG data using WPD up to level 4. Hence M = 4, and from 

the equation (9), 2 M = 16 wavelet packet entropy will be computed 
from a window. Finally, the second cumulant of the SE and the width 
of the SS is measured from the equation (14) and (15) respectively 
from a window.  

• In total (6 AR coefficients + 16 wavelet packet entropy + 1 SE + 1 
SS) = 24 features are extracted from a window. Now, the window is 
slid forward to cover all the samples of the weight vector. Finally, all 
the feature values computed from every window are concatenated to 
form the feature vector, which consists of (150 * 24) = 3600 feature 
values. 

3.4. Classification 

On the classification stage, 1-against-all SVM classifier is used in this 
work for four class MI data classification. Then the feature-label pairs 
were fed to the classifier to train the network. Additionally, the Gaussian 
kernel function is used in the classifier for better classification. 

4. Experimental results and discussion 

The created dataset was fed to the autoencoders. Individual 
autoencoder was trained for particular EEG signals. When all the 
autoencoders were trained, their optimized weight vectors correspond
ing to the particular EEG signals were extracted. After successfully 
partitioning the weight vectors into training set and test set, the features 
were extracted through a rectangular slid window from both the weight 
vectors. The selection of size of the window is very sensitive because 
lower size results in a large number of feature values which may be 
redundant and higher size result in a smaller number of feature values 
which may result in poor classification. The window slides forward 
across the weight vector. So, depending on the size of weight vectors, the 
window size is selected as 125, 250, 375, 500, 750, 1000, 1250 and 1500 

Table 2 
Wavelets vs Average cross correlation.  

Wavelets Xcorr Wavelets Xcorr Wavelets Xcorr 

Haar  0.12 db11  0.02 coif2  0.02 
db2  0.05 db12  0.02 coif3  0.02 
db3  0.04 sym2  0.05 coif4  0.02 
db4  0.04 sym3  0.04 coif5  0.02 
db5  0.03 sym4  0.03 fk4  0.06 
db6  0.04 sym5  0.03 fk6  0.04 
db7  0.02 sym6  0.02 fk8  0.03 
db8  0.02 sym7  0.02 fk14  0.03 
db9  0.01 sym8  0.02 fk18  0.01 
db10  0.02 coif1  0.04 fk22  0.02 

db: Daubechies; sym: Symlets; coif: Coiflets; fk: Fejer-Korovkin wavelets. 

Fig. 3. Performance of the autoencoder with different configuration.  
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samples. The performance of the window sizes is compared in Fig. 4. It is 
evident from the figure that, the window size of 250 samples has ach
ieved the highest classification accuracy. Finally, the feature-label pairs 
were fed to the classifier to train the network. After successfully training 
of the classifier, the trained model has been used to predict the test 
dataset. 

Three cases have been studied to check the superiority of the 

proposed model. In the first case, the same feature sets were extracted 
directly from the information signal and fed to the classifier (case-1). In 
the second case, window-based features were extracted from the infor
mation signal (case-2). In the third case, features were extracted using 
proposed methodology i.e. from autoencoder weight vectors (case-3). 
For all three cases, the performance is compared in Table 3. It is evident 
from the table that, the classification accuracy using proposed model 
(case-3) is higher than the other two cases. The multiclass SVM classifier 
has been adopted through comparison with other classifiers. Linear 
Discriminant Analysis (LDA) network also has been used to evaluate the 
proposed method. Their performance is shown in Table 4. From the 
table, it is evident that, the SVM shows the highest performance in terms 
of precision, sensitivity, specificity and model accuracy. 

The proposed system is also evaluated on BCI-IV-2a dataset. Table 5 
represents the performance of the proposed system on the dataset IIa 
from BCI competition IV. Among all the 9 subjects, subjects: A02, A03, 
A04 and A08 the prediction is 100 % accurate for four-class MI EEG 
data. The performance of proposed system is also compared with the 
other recently reported methods (Jafarifarmand et al., 2017; Ai et al., 
2019; Zhang et al., 2019; Sreeja & Samanta, 2019; Ma et al., 2020; Wang 
et al., 2020; Wu et al., 2021; Chen et al., 2022) and shown in Table 6. It is 
evident from the table that, the proposed approach gives better results 
than other methods in terms of classification accuracy. 

Table 3 
Comparison among several case studies (on dataset IIIa BCI-III).  

Methods Classification Accuracy (%) 

Case-1 85 
Case-2 91.87 
Case-3 95.39  

Table 4 
Performance comparison of the proposed system on dataset IIIa from BCI-III.  

Sub_1 
Parameters           
(%) LDA SVM  

Class-1 Class-2 Class-3 Class-4 Mean Class-1 Class-2 Class-3 Class-4 Mean 
Sensitivity 100 83 62 69 78.5 94 93 94 100 95.25 
Specificity 89 90 95 97 92.75 99 98 100 97 98.5 
Precision 76 73 84 86 79.75 97 93 100 90 95 
Model accuracy 78 % 95%  

Sub_2 
Parameters           
(%) LDA SVM  

Class-1 Class-2 Class-3 Class-4 Mean Class-1 Class-2 Class-3 Class-4 Mean 
Sensitivity 84 66 97 69 79 100 97 100 96 98.25 
Specificity 94 96 85 98 93.25 99 99 100 100 99.5 
Precision 84 83 72 90 82.25 97 97 100 100 98.5 
Model accuracy 80 % 98 %  

Sub_3 
Parameters           
(%) LDA SVM  

Class-1 Class-2 Class-3 Class-4 Mean Class-1 Class-2 Class-3 Class-4 Mean 
Sensitivity 68 93 79 77 79.25 97 90 94 92 93.25 
Specificity 97 82 98 96 93.25 98 97 100 97 98 
Precision 88 63 93 83 81.75 94 90 100 89 93.25 
Model accuracy 79 % 93 %  

Table 5 
Subject wise performance comparison on dataset IIa from BCI-IV.  

Subjects Classification Accuracy (%) Average Accuracy (%) 

A01 93 97 
A02 100 
A03 100 
A04 100 
A05 97 
A06 93 
A07 93 
A08 100 
A09 97  

Fig. 4. Comparison of different window sizes for feature extraction.  
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5. Conclusions and future scope 

In this paper, a new method of feature extraction is proposed for four 
class MI EEG classification. The main challenge in classification of EEG 
signal is its non-stationary characteristics which results in non- 
separability or MI classes. To solve this problem, the EEG signal was 
transformed into another domain or space i.e. the weight vector of 
autoencoder. At the minimum reconstruction error of the network, the 
weight vectors were used to represent the EEG signals in new domain. In 
the proposed method, the values of three features, AR coefficients, 
wavelet packet entropy, wavelet fractal estimates of the EEG signal in 
new domain were used to train an autoencoder neural network. A 
windowing-based feature extraction technique was implemented to 
capture the local features of EEG signals from the transformed EEG (i.e. 
weight vectors). Results reveal that, an EEG signal can be represented in 
weight vector of autoencoder neural network. The performance of the 
proposed method was compared with the existing conventional 
methods. The proposed method successfully predicts the mental task 
with higher accuracy. It can be concluded that, the proposed method can 
be regarded as a powerful tool to improve the performance of MI EEG- 
based BCIs. 
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