
5 Selectors
Contents

5.1 Pattern matching
5.2 Selector syntax

5.2.1 Grouping
5.3 Universal selector
5.4 Type selectors
5.5 Descendant selectors
5.6 Child selectors
5.7 Adjacent sibling selectors
5.8 Attribute selectors

5.8.1 Matching attributes and attribute values
5.8.2 Default attribute values in DTDs
5.8.3 Class selectors

5.9 ID selectors
5.10 Pseudo-elements and pseudo-classes
5.11 Pseudo-classes

5.11.1 :first-child pseudo-class
5.11.2 The link pseudo-classes: :link and :visited
5.11.3 The dynamic pseudo-classes: :hover, :active, and :focus
5.11.4 The language pseudo-class: :lang

5.12 Pseudo-elements
5.12.1 The :first-line pseudo-element
5.12.2 The :first-letter pseudo-element
5.12.3 The :before and :after pseudo-elements

Note: Several sections of this specification have been updated
by other specifications. Please, see "Cascading Style Sheets
(CSS) — The Official Definition" in the latest CSS Snapshot for a
list of specifications and the sections they replace.

The CSS Working Group is also developing CSS level 2
revision 2 (CSS 2.2).

5.1 Pattern matching

In CSS, pattern matching rules determine which style rules apply to elements
in the document tree. These patterns, called selectors, may range from
simple element names to rich contextual patterns. If all conditions in the
pattern are true for a certain element, the selector matches the element.

The case-sensitivity of document language element names in selectors
depends on the document language. For example, in HTML, element names
are case-insensitive, but in XML they are case-sensitive.

The following table summarizes CSS 2.1 selector syntax:
Pattern Meaning Described in

section
* Matches any element. Universal

selector

E Matches any E element (i.e., an element of
type E).

Type selectors

E F Matches any F element that is a
descendant of an E element.

Descendant
selectors

E > F Matches any F element that is a child of
an element E.

Child selectors

E:first-child Matches element E when E is the first child
of its parent.

The :first-child
pseudo-class

E:link
E:visited

Matches element E if E is the source
anchor of a hyperlink of which the target is
not yet visited (:link) or already visited
(:visited).

The link
pseudo-classes

E:active
E:hover
E:focus

Matches E during certain user actions. The dynamic
pseudo-classes

E:lang(c) Matches element of type E if it is in
(human) language c (the document
language specifies how language is
determined).

The :lang()
pseudo-class

E + F Matches any F element immediately
preceded by a sibling element E.

Adjacent
selectors

E[foo] Matches any E element with the "foo"
attribute set (whatever the value).

Attribute
selectors

E[foo="warning"] Matches any E element whose "foo"
attribute value is exactly equal to
"warning".

Attribute
selectors

E
[foo~="warning"]

Matches any E element whose "foo"
attribute value is a list of space-separated
values, one of which is exactly equal to
"warning".

Attribute
selectors

E[lang|="en"] Matches any E element whose "lang"
attribute has a hyphen-separated list of
values beginning (from the left) with "en".

Attribute
selectors

DIV.warning Language specific. (In HTML, the same as
DIV[class~="warning"].)

Class selectors

E#myid Matches any E element with ID equal to
"myid".

ID selectors

5.2 Selector syntax

A simple selector is either a type selector or universal selector followed
immediately by zero or more attribute selectors, ID selectors, or pseudo-
classes, in any order. The simple selector matches if all of its components
match.

Note: the terminology used here in CSS 2.1 is different from what is
used in CSS3. For example, a "simple selector" refers to a smaller part of

a selector in CSS3 than in CSS 2.1. See the CSS3 Selectors module
[CSS3SEL].

A selector is a chain of one or more simple selectors separated by
combinators. Combinators are: white space, ">", and "+". White space may
appear between a combinator and the simple selectors around it.

The elements of the document tree that match a selector are called
subjects of the selector. A selector consisting of a single simple selector
matches any element satisfying its requirements. Prepending a simple
selector and combinator to a chain imposes additional matching constraints,
so the subjects of a selector are always a subset of the elements matching
the last simple selector.

One pseudo-element may be appended to the last simple selector in a
chain, in which case the style information applies to a subpart of each
subject.

5.2.1 Grouping

When several selectors share the same declarations, they may be grouped
into a comma-separated list.

In this example, we condense three rules with identical declarations into
one. Thus,

h1 { font-family: sans-serif }
h2 { font-family: sans-serif }
h3 { font-family: sans-serif }

is equivalent to:

h1, h2, h3 { font-family: sans-serif }

CSS offers other "shorthand" mechanisms as well, including multiple
declarations and shorthand properties.

5.3 Universal selector

The universal selector, written "*", matches the name of any element type. It
matches any single element in the document tree.

If the universal selector is not the only component of a simple selector, the
"*" may be omitted. For example:

• *[lang=fr] and [lang=fr] are equivalent.
• *.warning and .warning are equivalent.
• *#myid and #myid are equivalent.

5.4 Type selectors

A type selector matches the name of a document language element type. A
type selector matches every instance of the element type in the document
tree.

The following rule matches all H1 elements in the document tree:

h1 { font-family: sans-serif }

5.5 Descendant selectors

At times, authors may want selectors to match an element that is the
descendant of another element in the document tree (e.g., "Match those EM
elements that are contained by an H1 element"). Descendant selectors
express such a relationship in a pattern. A descendant selector is made up of
two or more selectors separated by white space. A descendant selector of the
form "A B" matches when an element B is an arbitrary descendant of some
ancestor element A.

For example, consider the following rules:

h1 { color: red }
em { color: red }

Although the intention of these rules is to add emphasis to text by changing
its color, the effect will be lost in a case such as:

<H1>This headline is very important</H1>

We address this case by supplementing the previous rules with a rule that
sets the text color to blue whenever an EM occurs anywhere within an H1:

h1 { color: red }
em { color: red }
h1 em { color: blue }

The third rule will match the EM in the following fragment:

<H1>This headline
is very important</H1>

The following selector:

div * p

matches a P element that is a grandchild or later descendant of a DIV
element. Note the white space on either side of the "*" is not part of the
universal selector; the white space is a combinator indicating that the DIV
must be the ancestor of some element, and that that element must be an
ancestor of the P.

The selector in the following rule, which combines descendant and attribute
selectors, matches any element that (1) has the "href" attribute set and (2) is
inside a P that is itself inside a DIV:

div p *[href]

5.6 Child selectors

A child selector matches when an element is the child of some element. A
child selector is made up of two or more selectors separated by ">".

The following rule sets the style of all P elements that are children of BODY:

body > P { line-height: 1.3 }

The following example combines descendant selectors and child selectors:

div ol>li p

It matches a P element that is a descendant of an LI; the LI element must be
the child of an OL element; the OL element must be a descendant of a DIV.
Notice that the optional white space around the ">" combinator has been left
out.

For information on selecting the first child of an element, please see the
section on the :first-child pseudo-class below.

5.7 Adjacent sibling selectors

Adjacent sibling selectors have the following syntax: E1 + E2, where E2 is the
subject of the selector. The selector matches if E1 and E2 share the same
parent in the document tree and E1 immediately precedes E2, ignoring non-
element nodes (such as text nodes and comments).

Thus, the following rule states that when a P element immediately follows a
MATH element, it should not be indented:

math + p { text-indent: 0 }

The next example reduces the vertical space separating an H1 and an H2
that immediately follows it:

h1 + h2 { margin-top: -5mm }

The following rule is similar to the one in the previous example, except that
it adds a class selector. Thus, special formatting only occurs when H1 has
class="opener":

h1.opener + h2 { margin-top: -5mm }

5.8 Attribute selectors

CSS 2.1 allows authors to specify rules that match elements which have
certain attributes defined in the source document.

5.8.1 Matching attributes and attribute values

Attribute selectors may match in four ways:

[att]
Match when the element sets the "att" attribute, whatever the value of
the attribute.

[att=val]
Match when the element's "att" attribute value is exactly "val".

[att~=val]
Represents an element with the att attribute whose value is a white
space-separated list of words, one of which is exactly "val". If "val"
contains white space, it will never represent anything (since the words
are separated by spaces). If "val" is the empty string, it will never
represent anything either.

[att|=val]

Represents an element with the att attribute, its value either being
exactly "val" or beginning with "val" immediately followed by "-" (U
+002D). This is primarily intended to allow language subcode matches
(e.g., the hreflang attribute on the a element in HTML) as described in
BCP 47 ([BCP47]) or its successor. For lang (or xml:lang) language
subcode matching, please see the :lang pseudo-class.

Attribute values must be identifiers or strings. The case-sensitivity of
attribute names and values in selectors depends on the document language.

For example, the following attribute selector matches all H1 elements that
specify the "title" attribute, whatever its value:

h1[title] { color: blue; }

In the following example, the selector matches all SPAN elements whose
"class" attribute has exactly the value "example":

span[class=example] { color: blue; }

Multiple attribute selectors can be used to refer to several attributes of an
element, or even several times to the same attribute.

Here, the selector matches all SPAN elements whose "hello" attribute has
exactly the value "Cleveland" and whose "goodbye" attribute has exactly the
value "Columbus":

span[hello="Cleveland"][goodbye="Columbus"] { color: blue; }

The following selectors illustrate the differences between "=" and "~=".
The first selector will match, for example, the value "copyright copyleft
copyeditor" for the "rel" attribute. The second selector will only match when
the "href" attribute has the value "http://www.w3.org/".

a[rel~="copyright"]
a[href="http://www.w3.org/"]

The following rule hides all elements for which the value of the "lang"
attribute is "fr" (i.e., the language is French).

*[lang=fr] { display : none }

The following rule will match for values of the "lang" attribute that begin
with "en", including "en", "en-US", and "en-cockney":

*[lang|="en"] { color : red }

Similarly, the following aural style sheet rules allow a script to be read
aloud in different voices for each role:

DIALOGUE[character=romeo]
 { voice-family: "Laurence Olivier", charles, male }

DIALOGUE[character=juliet]
 { voice-family: "Vivien Leigh", victoria, female }

5.8.2 Default attribute values in DTDs

Matching takes place on attribute values in the document tree. Default
attribute values may be defined in a DTD or elsewhere, but cannot always be
selected by attribute selectors. Style sheets should be designed so that they
work even if the default values are not included in the document tree.

More precisely, a UA may, but is not required to, read an "external subset"
of the DTD but is required to look for default attribute values in the
document's "internal subset." (See [XML10] for definitions of these subsets.)
Depending on the UA, a default attribute value defined in the external subset
of the DTD might or might not appear in the document tree.

A UA that recognizes an XML namespace [XMLNAMESPACES] may, but is
not required to, use its knowledge of that namespace to treat default
attribute values as if they were present in the document. (E.g., an XHTML UA
is not required to use its built-in knowledge of the XHTML DTD.)

Note that, typically, implementations choose to ignore external subsets.

For example, consider an element EXAMPLE with an attribute "notation"
that has a default value of "decimal". The DTD fragment might be

<!ATTLIST EXAMPLE notation (decimal,octal) "decimal">

If the style sheet contains the rules

EXAMPLE[notation=decimal] { /*... default property settings ...*/ }
EXAMPLE[notation=octal] { /*... other settings...*/ }

the first rule might not match elements whose "notation" attribute is set by
default, i.e., not set explicitly. To catch all cases, the attribute selector for the
default value must be dropped:

EXAMPLE { /*... default property settings ...*/ }
EXAMPLE[notation=octal] { /*... other settings...*/ }

Here, because the selector EXAMPLE[notation=octal] is more specific than
the type selector alone, the style declarations in the second rule will override
those in the first for elements that have a "notation" attribute value of
"octal". Care has to be taken that all property declarations that are to apply
only to the default case are overridden in the non-default cases' style rules.

5.8.3 Class selectors

Working with HTML, authors may use the period (.) notation as an alternative
to the ~= notation when representing the class attribute. Thus, for HTML,
div.value and div[class~=value] have the same meaning. The attribute
value must immediately follow the "period" (.). UAs may apply selectors
using the period (.) notation in XML documents if the UA has namespace
specific knowledge that allows it to determine which attribute is the "class"
attribute for the respective namespace. One such example of namespace
specific knowledge is the prose in the specification for a particular
namespace (e.g., SVG 1.1 [SVG11] describes the SVG "class" attribute and

how a UA should interpret it, and similarly MathML 3.0 [MATH30] describes
the MathML "class" attribute.)

For example, we can assign style information to all elements with
class~="pastoral" as follows:

.pastoral { color: green } / all elements with class~=pastoral */

or just

.pastoral { color: green } /* all elements with class~=pastoral */

The following assigns style only to H1 elements with class~="pastoral":

H1.pastoral { color: green } /* H1 elements with class~=pastoral */

Given these rules, the first H1 instance below would not have green text,
while the second would:

<H1>Not green</H1>
<H1 class="pastoral">Very green</H1>

To match a subset of "class" values, each value must be preceded by a ".".
For example, the following rule matches any P element whose "class"

attribute has been assigned a list of space-separated values that includes
"pastoral" and "marine":

p.marine.pastoral { color: green }

This rule matches when class="pastoral blue aqua marine" but does not
match for class="pastoral blue".

Note. CSS gives so much power to the "class" attribute, that authors
could conceivably design their own "document language" based on
elements with almost no associated presentation (such as DIV and SPAN
in HTML) and assigning style information through the "class" attribute.
Authors should avoid this practice since the structural elements of a
document language often have recognized and accepted meanings and
author-defined classes may not.

Note: If an element has multiple class attributes, their values must be
concatenated with spaces between the values before searching for the
class. As of this time the working group is not aware of any manner in
which this situation can be reached, however, so this behavior is explicitly
non-normative in this specification.

5.9 ID selectors

Document languages may contain attributes that are declared to be of type
ID. What makes attributes of type ID special is that no two such attributes
can have the same value; whatever the document language, an ID attribute
can be used to uniquely identify its element. In HTML all ID attributes are
named "id"; XML applications may name ID attributes differently, but the
same restriction applies.

The ID attribute of a document language allows authors to assign an
identifier to one element instance in the document tree. CSS ID selectors
match an element instance based on its identifier. A CSS ID selector contains
a "#" immediately followed by the ID value, which must be an identifier.

Note that CSS does not specify how a UA knows the ID attribute of an
element. The UA may, e.g., read a document's DTD, have the information
hard-coded or ask the user.

The following ID selector matches the H1 element whose ID attribute has
the value "chapter1":

h1#chapter1 { text-align: center }

In the following example, the style rule matches the element that has the
ID value "z98y". The rule will thus match for the P element:

<HEAD>
 <TITLE>Match P</TITLE>
 <STYLE type="text/css">
 *#z98y { letter-spacing: 0.3em }
 </STYLE>
</HEAD>
<BODY>
 <P id=z98y>Wide text</P>
</BODY>

In the next example, however, the style rule will only match an H1 element
that has an ID value of "z98y". The rule will not match the P element in this
example:

<HEAD>
 <TITLE>Match H1 only</TITLE>
 <STYLE type="text/css">
 H1#z98y { letter-spacing: 0.5em }
 </STYLE>
</HEAD>
<BODY>
 <P id=z98y>Wide text</P>
</BODY>

ID selectors have a higher specificity than attribute selectors. For example,
in HTML, the selector #p123 is more specific than [id=p123] in terms of the
cascade.

Note. In XML 1.0 [XML10], the information about which attribute
contains an element's IDs is contained in a DTD. When parsing XML, UAs
do not always read the DTD, and thus may not know what the ID of an
element is. If a style sheet designer knows or suspects that this will be
the case, he should use normal attribute selectors instead: [name=p371]
instead of #p371. However, the cascading order of normal attribute
selectors is different from ID selectors. It may be necessary to add an "!
important" priority to the declarations: [name=p371] {color: red !
important}.

If an element has multiple ID attributes, all of them must be treated as IDs
for that element for the purposes of the ID selector. Such a situation could be
reached using mixtures of xml:id [XMLID], DOM3 Core [DOM-LEVEL-3-CORE],
XML DTDs [XML10] and namespace-specific knowledge.

5.10 Pseudo-elements and pseudo-classes

In CSS 2.1, style is normally attached to an element based on its position in
the document tree. This simple model is sufficient for many cases, but some
common publishing scenarios may not be possible due to the structure of the
document tree. For instance, in HTML 4 (see [HTML4]), no element refers to
the first line of a paragraph, and therefore no simple CSS selector may refer
to it.

CSS introduces the concepts of pseudo-elements and pseudo-classes to
permit formatting based on information that lies outside the document tree.

• Pseudo-elements create abstractions about the document tree beyond
those specified by the document language. For instance, document
languages do not offer mechanisms to access the first letter or first line of
an element's content. CSS pseudo-elements allow style sheet designers to
refer to this otherwise inaccessible information. Pseudo-elements may also
provide style sheet designers a way to assign style to content that does not
exist in the source document (e.g., the :before and :after pseudo-elements
give access to generated content).

• Pseudo-classes classify elements on characteristics other than their name,
attributes or content; in principle characteristics that cannot be deduced
from the document tree. Pseudo-classes may be dynamic, in the sense that
an element may acquire or lose a pseudo-class while a user interacts with
the document. The exceptions are ':first-child', which can be deduced from
the document tree, and ':lang()', which can be deduced from the document
tree in some cases.

Neither pseudo-elements nor pseudo-classes appear in the document source
or document tree.

Pseudo-classes are allowed anywhere in selectors while pseudo-elements
may only be appended after the last simple selector of the selector.

Pseudo-element and pseudo-class names are case-insensitive.
Some pseudo-classes are mutually exclusive, while others can be applied

simultaneously to the same element. In case of conflicting rules, the normal
cascading order determines the outcome.

5.11 Pseudo-classes

5.11.1 :first-child pseudo-class

The :first-child pseudo-class matches an element that is the first child
element of some other element.

In the following example, the selector matches any P element that is the
first child of a DIV element. The rule suppresses indentation for the first
paragraph of a DIV:

div > p:first-child { text-indent: 0 }

This selector would match the P inside the DIV of the following fragment:

<P> The last P before the note.
<DIV class="note">
 <P> The first P inside the note.
</DIV>

but would not match the second P in the following fragment:

<P> The last P before the note.
<DIV class="note">
 <H2>Note</H2>
 <P> The first P inside the note.
</DIV>

The following rule sets the font weight to 'bold' for any EM element that is
some descendant of a P element that is a first child:

p:first-child em { font-weight : bold }

Note that since anonymous boxes are not part of the document tree, they
are not counted when calculating the first child.

For example, the EM in:

<P>abc default

is the first child of the P.
The following two selectors are equivalent:

* > a:first-child /* A is first child of any element */
a:first-child /* Same */

5.11.2 The link pseudo-classes: :link and :visited

User agents commonly display unvisited links differently from previously
visited ones. CSS provides the pseudo-classes ':link' and ':visited' to
distinguish them:

• The :link pseudo-class applies for links that have not yet been visited.
• The :visited pseudo-class applies once the link has been visited by the user.

UAs may return a visited link to the (unvisited) ':link' state at some point.
The two states are mutually exclusive.
The document language determines which elements are hyperlink source

anchors. For example, in HTML4, the link pseudo-classes apply to A elements
with an "href" attribute. Thus, the following two CSS 2.1 declarations have
similar effect:

a:link { color: red }
:link { color: red }

If the following link:

external link

has been visited, this rule:

a.external:visited { color: blue }

will cause it to be blue.

Note. It is possible for style sheet authors to abuse the :link and
:visited pseudo-classes to determine which sites a user has visited
without the user's consent.

UAs may therefore treat all links as unvisited links, or implement other
measures to preserve the user's privacy while rendering visited and unvisited
links differently. See [P3P] for more information about handling privacy.

5.11.3 The dynamic pseudo-classes: :hover, :active, and :focus

Interactive user agents sometimes change the rendering in response to user
actions. CSS provides three pseudo-classes for common cases:

• The :hover pseudo-class applies while the user designates an element (with
some pointing device), but does not activate it. For example, a visual user
agent could apply this pseudo-class when the cursor (mouse pointer)
hovers over a box generated by the element. User agents not supporting
interactive media do not have to support this pseudo-class. Some
conforming user agents supporting interactive media may not be able to
support this pseudo-class (e.g., a pen device).

• The :active pseudo-class applies while an element is being activated by the
user. For example, between the times the user presses the mouse button
and releases it.

• The :focus pseudo-class applies while an element has the focus (accepts
keyboard events or other forms of text input).

An element may match several pseudo-classes at the same time.
CSS does not define which elements may be in the above states, or how

the states are entered and left. Scripting may change whether elements react
to user events or not, and different devices and UAs may have different ways
of pointing to, or activating elements.

CSS 2.1 does not define if the parent of an element that is ':active' or
':hover' is also in that state.

User agents are not required to reflow a currently displayed document due
to pseudo-class transitions. For instance, a style sheet may specify that the
'font-size' of an :active link should be larger than that of an inactive link, but
since this may cause letters to change position when the reader selects the
link, a UA may ignore the corresponding style rule.

a:link { color: red } /* unvisited links */
a:visited { color: blue } /* visited links */
a:hover { color: yellow } /* user hovers */
a:active { color: lime } /* active links */

Note that the A:hover must be placed after the A:link and A:visited rules,
since otherwise the cascading rules will hide the 'color' property of the
A:hover rule. Similarly, because A:active is placed after A:hover, the active

color (lime) will apply when the user both activates and hovers over the A
element.

An example of combining dynamic pseudo-classes:

a:focus { background: yellow }
a:focus:hover { background: white }

The last selector matches A elements that are in pseudo-class :focus and in
pseudo-class :hover.

For information about the presentation of focus outlines, please consult the
section on dynamic focus outlines.

Note. In CSS1, the ':active' pseudo-class was mutually exclusive with
':link' and ':visited'. That is no longer the case. An element can be both
':visited' and ':active' (or ':link' and ':active') and the normal cascading
rules determine which style declarations apply.

Note. Also note that in CSS1, the ':active' pseudo-class only applied to
links.

5.11.4 The language pseudo-class: :lang

If the document language specifies how the human language of an element is
determined, it is possible to write selectors in CSS that match an element
based on its language. For example, in HTML [HTML4], the language is
determined by a combination of the "lang" attribute, the META element, and
possibly by information from the protocol (such as HTTP headers). XML uses
an attribute called xml:lang, and there may be other document language-
specific methods for determining the language.

The pseudo-class ':lang(C)' matches if the element is in language C.
Whether there is a match is based solely on the identifier C being either equal
to, or a hyphen-separated substring of, the element's language value, in the
same way as if performed by the '|=' operator. The matching of C against the
element's language value is performed case-insensitively for characters
within the ASCII range. The identifier C does not have to be a valid language
name.

C must not be empty.

Note: It is recommended that documents and protocols indicate
language using codes from BCP 47 [BCP47] or its successor, and by
means of "xml:lang" attributes in the case of XML-based documents
[XML10]. See "FAQ: Two-letter or three-letter language codes."

The following rules set the quotation marks for an HTML document that is
either in Canadian French or German:

html:lang(fr-ca) { quotes: '« ' ' »' }
html:lang(de) { quotes: '»' '«' '\2039' '\203A' }
:lang(fr) > Q { quotes: '« ' ' »' }
:lang(de) > Q { quotes: '»' '«' '\2039' '\203A' }

The second pair of rules actually set the 'quotes' property on Q elements
according to the language of its parent. This is done because the choice of
quote marks is typically based on the language of the element around the

quote, not the quote itself: like this piece of French “à l'improviste” in the
middle of an English text uses the English quotation marks.

Note the difference between [lang|=xx] and :lang(xx). In this HTML
example, only the BODY matches [lang|=fr] (because it has a LANG
attribute) but both the BODY and the P match :lang(fr) (because both are
in French).

<body lang=fr>
 <p>Je suis Français.</p>
</body>

5.12 Pseudo-elements

Pseudo-elements behave just like real elements in CSS with the exceptions
described below and elsewhere.

Note that the sections below do not define the exact rendering of ':first-
line' and ':first-letter' in all cases. A future level of CSS may define them
more precisely.

5.12.1 The :first-line pseudo-element

The :first-line pseudo-element applies special styles to the contents of the
first formatted line of a paragraph. For instance:

p:first-line { text-transform: uppercase }

The above rule means "change the letters of the first line of every paragraph
to uppercase". However, the selector "P:first-line" does not match any real
HTML element. It does match a pseudo-element that conforming user agents
will insert at the beginning of every paragraph.

Note that the length of the first line depends on a number of factors,
including the width of the page, the font size, etc. Thus, an ordinary HTML
paragraph such as:

<P>This is a somewhat long HTML
paragraph that will be broken into several
lines. The first line will be identified
by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</P>

the lines of which happen to be broken as follows:

THIS IS A SOMEWHAT LONG HTML PARAGRAPH THAT
will be broken into several lines. The first
line will be identified by a fictional tag
sequence. The other lines will be treated as
ordinary lines in the paragraph.

might be "rewritten" by user agents to include the fictional tag sequence for
:first-line. This fictional tag sequence helps to show how properties are
inherited.

<P><P:first-line> This is a somewhat long HTML
paragraph that </P:first-line> will be broken into several
lines. The first line will be identified
by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</P>

If a pseudo-element breaks up a real element, the desired effect can often be
described by a fictional tag sequence that closes and then re-opens the
element. Thus, if we mark up the previous paragraph with a SPAN element:

<P> This is a somewhat long HTML
paragraph that will be broken into several
lines. The first line will be identified
by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</P>

the user agent could simulate start and end tags for SPAN when inserting the
fictional tag sequence for :first-line.

<P><P:first-line> This is a
somewhat long HTML
paragraph that will </P:first-line> be
broken into several
lines. The first line will be identified
by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</P>

The :first-line pseudo-element can only be attached to a block container
element.

The "first formatted line" of an element may occur inside a block-level
descendant in the same flow (i.e., a block-level descendant that is not
positioned and not a float). E.g., the first line of the DIV in <DIV><P>This
line...</P></DIV> is the first line of the P (assuming that both P and DIV
are block-level).

The first line of a table-cell or inline-block cannot be the first formatted line
of an ancestor element. Thus, in <DIV><P STYLE="display: inline-
block">Hello
Goodbye</P> etcetera</DIV> the first formatted line of
the DIV is not the line "Hello".

Note that the first line of the P in this fragment: <p>
First... does
not contain any letters (assuming the default style for BR in HTML 4). The
word "First" is not on the first formatted line.

A UA should act as if the fictional start tags of the first-line pseudo-
elements were nested just inside the innermost enclosing block-level
element. (Since CSS1 and CSS2 were silent on this case, authors should not
rely on this behavior.) Here is an example. The fictional tag sequence for

<DIV>
 <P>First paragraph</P>
 <P>Second paragraph</P>
</DIV>

is

<DIV>
 <P><DIV:first-line><P:first-line>First paragraph</P:first-line></DIV:first-line></P>
 <P><P:first-line>Second paragraph</P:first-line></P>
</DIV>

The :first-line pseudo-element is similar to an inline-level element, but with
certain restrictions. The following properties apply to a :first-line pseudo-
element: font properties, color property, background properties, 'word-
spacing', 'letter-spacing', 'text-decoration', 'text-transform', and 'line-height'.
UAs may apply other properties as well.

5.12.2 The :first-letter pseudo-element

The :first-letter pseudo-element must select the first letter of the first line of a
block, if it is not preceded by any other content (such as images or inline
tables) on its line. The :first-letter pseudo-element may be used for "initial
caps" and "drop caps", which are common typographical effects. This type of
initial letter is similar to an inline-level element if its 'float' property is 'none',
otherwise it is similar to a floated element.

These are the properties that apply to :first-letter pseudo-elements: font
properties, 'text-decoration', 'text-transform', 'letter-spacing', 'word-spacing'
(when appropriate), 'line-height', 'float', 'vertical-align' (only if 'float' is
'none'), margin properties, padding properties, border properties, color
property, background properties. UAs may apply other properties as well. To
allow UAs to render a typographically correct drop cap or initial cap, the UA
may choose a line-height, width and height based on the shape of the letter,
unlike for normal elements. CSS3 is expected to have specific properties that
apply to first-letter.

This example shows a possible rendering of an initial cap. Note that the
'line-height' that is inherited by the first-letter pseudo-element is 1.1, but the
UA in this example has computed the height of the first letter differently, so
that it does not cause any unnecessary space between the first two lines.
Also note that the fictional start tag of the first letter is inside the SPAN, and
thus the font weight of the first letter is normal, not bold as the SPAN:

p { line-height: 1.1 }
p:first-letter { font-size: 3em; font-weight: normal }
span { font-weight: bold }
...
<p>Het hemelsche gerecht heeft zich ten lange lesten

Erbarremt over my en mijn benaeuwde vesten

En arme burgery, en op mijn volcx gebed

En dagelix geschrey de bange stad ontzet.

The following CSS 2.1 will make a drop cap initial letter span about two
lines:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Drop cap initial letter</TITLE>
 <STYLE type="text/css">
 P { font-size: 12pt; line-height: 1.2 }
 P:first-letter { font-size: 200%; font-style: italic;
 font-weight: bold; float: left }
 SPAN { text-transform: uppercase }
 </STYLE>
 </HEAD>
 <BODY>
 <P>The first few words of an article
 in The Economist.</P>
 </BODY>
</HTML>

This example might be formatted as follows:

The fictional tag sequence is:

<P>

<P:first-letter>
T
</P:first-letter>he first

few words of an article in the Economist.
</P>

Note that the :first-letter pseudo-element tags abut the content (i.e., the
initial character), while the :first-line pseudo-element start tag is inserted
right after the start tag of the block element.

In order to achieve traditional drop caps formatting, user agents may
approximate font sizes, for example to align baselines. Also, the glyph outline
may be taken into account when formatting.

Punctuation (i.e, characters defined in Unicode [UNICODE] in the "open"
(Ps), "close" (Pe), "initial" (Pi). "final" (Pf) and "other" (Po) punctuation
classes), that precedes or follows the first letter should be included, as in:

The ':first-letter' also applies if the first letter is in fact a digit, e.g., the "6"
in "67 million dollars is a lot of money."

The :first-letter pseudo-element applies to block container elements.
The :first-letter pseudo-element can be used with all such elements that

contain text, or that have a descendant in the same flow that contains text. A
UA should act as if the fictional start tag of the first-letter pseudo-element is
just before the first text of the element, even if that first text is in a
descendant.

Here is an example. The fictional tag sequence for this HTML fragment:

<div>
<p>The first text.

is:

<div>
<p><div:first-letter><p:first-letter>T</...></...>he first text.

The first letter of a table-cell or inline-block cannot be the first letter of an
ancestor element. Thus, in <DIV><P STYLE="display: inline-
block">Hello
Goodbye</P> etcetera</DIV> the first letter of the DIV is
not the letter "H". In fact, the DIV does not have a first letter.

The first letter must occur on the first formatted line. For example, in this
fragment: <p>
First... the first line does not contain any letters and
':first-letter' does not match anything (assuming the default style for BR in
HTML 4). In particular, it does not match the "F" of "First."

If an element is a list item ('display: list-item'), the ':first-letter' applies to
the first letter in the principal box after the marker. UAs may ignore ':first-
letter' on list items with 'list-style-position: inside'. If an element has ':before'
or ':after' content, the ':first-letter applies to the first letter of the element
including that content.

E.g., after the rule 'p:before {content: "Note: "}', the selector 'p:first-letter'
matches the "N" of "Note".

Some languages may have specific rules about how to treat certain letter
combinations. In Dutch, for example, if the letter combination "ij" appears at
the beginning of a word, both letters should be considered within the :first-
letter pseudo-element.

If the letters that would form the first-letter are not in the same element,
such as "'T" in <p>'T..., the UA may create a first-letter pseudo-
element from one of the elements, both elements, or simply not create a
pseudo-element.

Similarly, if the first letter(s) of the block are not at the start of the line (for
example due to bidirectional reordering), then the UA need not create the
pseudo-element(s).

The following example illustrates how overlapping pseudo-elements may
interact. The first letter of each P element will be green with a font size of
'24pt'. The rest of the first formatted line will be 'blue' while the rest of the
paragraph will be 'red'.

p { color: red; font-size: 12pt }
p:first-letter { color: green; font-size: 200% }
p:first-line { color: blue }

<P>Some text that ends up on two lines</P>

Assuming that a line break will occur before the word "ends", the fictional tag
sequence for this fragment might be:

<P>
<P:first-line>
<P:first-letter>
S
</P:first-letter>ome text that
</P:first-line>
ends up on two lines
</P>

Note that the :first-letter element is inside the :first-line element. Properties
set on :first-line are inherited by :first-letter, but are overridden if the same
property is set on :first-letter.

5.12.3 The :before and :after pseudo-elements

The ':before' and ':after' pseudo-elements can be used to insert generated
content before or after an element's content. They are explained in the
section on generated text.

h1:before {content: counter(chapno, upper-roman) ". "}

When the :first-letter and :first-line pseudo-elements are applied to an
element having content generated using :before and :after, they apply to the
first letter or line of the element including the generated content.

p.special:before {content: "Special! "}
p.special:first-letter {color: #ffd800}

This will render the "S" of "Special!" in gold.

