# public Kozea /pygal

### Subversion checkout URL

You can clone with HTTPS or Subversion.

Fetching contributors…

Cannot retrieve contributors at this time

file 60 lines (53 sloc) 1.926 kb
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 `# -*- coding: utf-8 -*-# This file is part of pygal## A python svg graph plotting library# Copyright © 2012 Kozea## This library is free software: you can redistribute it and/or modify it under# the terms of the GNU Lesser General Public License as published by the Free# Software Foundation, either version 3 of the License, or (at your option) any# later version.## This library is distributed in the hope that it will be useful, but WITHOUT# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more# details.## You should have received a copy of the GNU Lesser General Public License# along with pygal. If not, see ."""Interpolation using scipy"""from pygal.util import identscipy = Nonetry:    import scipy    from scipy import interpolateexcept ImportError:    passKINDS = ['cubic', 'univariate', 'quadratic', 'slinear', 'nearest', 'zero']def interpolation(x, y, kind):    """Make the interpolation function"""    assert scipy is not None, (        'You must have scipy installed to use interpolation')    order = None    if len(y) < len(x):        x = x[:len(y)]    x, y = zip(*filter(lambda t: None not in t, zip(x, y)))    if len(x) < 2:        return ident    if isinstance(kind, int):        order = kind    elif kind in KINDS:        order = {'nearest': 0, 'zero': 0, 'slinear': 1,                 'quadratic': 2, 'cubic': 3, 'univariate': 3}[kind]    if order and len(x) <= order:        kind = len(x) - 1    if kind == 'krogh':        return interpolate.KroghInterpolator(x, y)    elif kind == 'barycentric':        return interpolate.BarycentricInterpolator(x, y)    elif kind == 'univariate':        return interpolate.InterpolatedUnivariateSpline(x, y)    return interpolate.interp1d(x, y, kind=kind, bounds_error=False)`
Something went wrong with that request. Please try again.