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Normalisation

Schema Design

A driving force for the study of dependencies has been schema design.
Schema design aims to select the most appropriate schema for a particular database
application.

The choice of a schema is guided by semantic information about the application data provided
by users and captured by dependencies.



A common approach starts with a universal relation and applies decomposition to create new
relations that satisfy certain normal forms (i.e. normalization).

HIEEEXRITRRIEFERITHHN—IXEBLR EHNERRENEENEEENAEFERRS
BB EN,

EXWERZIEENAEFHEMELERNES XEEERRAFIREHBKE X RATH
Ko FEREBMNBETHBFEEDHIENS YRR, UERITHESHZNAERFFRNE
Ko

EIHIEERERITAZEEM— @A X R (universal relation) FF iR, 28 5 A 7 (
decomposition) HIIFE, BIEFM X R, LUFARELEEMRERRK (B, sekik), EFIEMBEIRZ
B FEERSBE N, EAEAEMES, LBLHERR. RSB —SERNTESE, HFiR
=EMERE,

Ait, HIEEEXZITE— 1N EERENAEFTRUBE R, — B4 mBEESHNT
B IRk RELRNESX—IREBMX BT E, BEKEMIE LU RINASSIE RRE LM X
R 2RI Th# X B,

Normal Forms

Normalisation is decomposing a relation into smaller relations in a certain normal form.
Each normal form reduces certain kinds of data redundancy.

Each normal form does not have certain types of (undesirable) dependencies.

1NF is not based on any constraints.
2NF, 3NF and BCNF are based on keys and functional dependencies.
4NF and 5NF are based on other constraints (will not be covered).

What normal forms will we learn?
Boyce-Codd normal form (BCNF)
Third normal form (3NF)

Normal forms | Test criteria
1NF
(X weak
2NF
U
3NF Y
J
BCNF strong
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Two Properties

We need to consider the following properties when decomposing a relation:

1 Lossless join — “ capture the same data ”: To disallow the possibility of generating spurious
tuples when a NATURAL JOIN operation is applied to the relations after decomposition.

2 Dependency preservation — “ capture the same meta-data ”: To ensure that each functional
dependency can be inferred from functional dependencies after decomposition.

Lossless Join — Example

R

Name StudentID DoB

Mike 123456 |20/09/1989

Mike 123458 |25/01/1988

Example 1

R1 R2

Name StudentID StudentID DoB

Mike 123456 123456(20/09/1989

Mike 123458 123458(25/01/1988

Does the decomposition of R into R1 and R2 has the lossless join property?
Yes, because the natural join of R1 and R2 yields R.

Example 2



The following decomposition from R into R3 and R4 doesn’t have the lossless join property. It
generates spurious tuples.

R3 R4

Name StudentID Name DoB

Mike 123456 | |Mike 20/09/1989
Mike 123458 |Mike 25/01/1988

SELECT * FROM R3 NATURAL JOIN R4

Name StudentID DoB

Mike 123456 (20/09/1989

Mike 123458 |25/01/1988

Note: Natural JOIN rely on common attributes if no common parts, it will do cartesian product.

Dependency Preservation — Example
Example 1: Given a FD {StudentID} — {Name} defined on R

R1 R2

Name StudentID StudentID CourseNo
Mike 123456 123456 | COMP2400
Mike 123458 123458 COMP2600

Does the above decomposition preserves {StudentlD} — {Name}?
Yes, because {StudentID} and {Name} are both in R1 after decomposition and thus {StudentID}
— {Name} is preserved in R1.

Example 2

R1 R2

Name CourseNo StudentID CourseNo
Mike COMP2400 123456 | COMP2400
Mike COMP2600 123458 COMP2600

Does the above decomposition preserves {StudentlD} — {Name}?
No, because {StudentID} and {Name} are not in the same relation after decomposition.

Example 3: Given a set of FDs { {StudentID} — {Email}, {Email} — {Name}, {StudentID} —
{Name} } defined on R

R

Name StudentID Email

Mike 123456 | 123456@anu.edu.au
Tom 123123|123123@anu.edu.au




R1 R2

Name Email StudentID Email

Mike 123456@anu.edu.au 123456 [123456@anu.edu.au
Tom 123123@anu.edu.au 123123 [123123@anu.edu.au

Does the above decomposition preserves {StudentIlD} — {Name}?
Yes, because {StudentID} — {Name} can be inferred by {StudentID} — {Email} (preserved in
R2) and {Email} — {Name} (preserved in R1).

Discussion
If R with a set Z of FDs is decomposed into R1 with ¥1 and R2 with 22,

Lossless join if and only if the common attributes of R1 and R2 are a superkey for R1 or R2;

Dependency preserving if and only if (£1 U 22)* =3 holds.
Consider R={A, B, C} with the setof FDs > ={A —-B,B —» C, A — C}.

Does the decomposition of R into R1 = {A, B} and R2 = {A, C} fulfil lossless join and
dependency preserving?

21 ={A—B}andz2 ={A—C}

Lossless join? Yes because A is a superkey for R1.

Dependency preserving? No because (21 U 22)* + 3 from the fact that {A—-B,A—>C}+HB —
C.

Does the decomposition of R into R1 = {A, B} and R3 = {B, C} fulfil lossless join and
dependency preserving?

21 ={A—B}andZ3 ={B—C}

Lossless join? Yes because B is a superkey for R3.

Dependency preserving? Yes because (X1 U 23)* =¥ from the fact that {A—>B,B—>C}A—
C.

BCNF

Definition
A relation schema R is in BCNF whenever a non-trivial FD X — A holds in R, then X is a
superkey.

When a relation schema is in BCNF, all data redundancy based on functional dependency is
removed. The aim is to not represent the same fact twice (within a relation)!
Note: this does not necessarily mean a good design.



Normalisation to BCNF

Consider the relation schema TEACH with the following FDs:
{StudentID, CourseName} — {Instructor};

{Instructor} — {CourseName}.

Is TEACH in BCNF?

Not in BCNF because of {Instructor} — {CourseName}.

Algorithm for a BCNF-decomposition
Input: a relation schema R" and a set % of FDs on R'.
Output: a set S of relation schemas in BCNF, each having a set of FDs

Start with S = {R"};
Do the following for each R € S iteratively until no changes on S:
1. Find a (non-trivial) FD X — Y on R that violates BCNF, if any;
2. Replace R in S with two relation schemas XY and (R - Y ) and project the FDs to these
two relation schemas.

XY R-Y

X’->Y’

XY’ R-Y-Y’

BCNF - Example

Consider TEACH with the following FDs again:
{StudentID, CourseName} — {Instructor};
{Instructor} — {CourseName}.

Can we normalise TEACH into BCNF?

|StudentID |CourseName |Instructor




u123456 Operating Systems |Jane

u234567 Operating Systems |Jane

u234567 Databases Mark

Replace TEACH with R1 and R2:

R1 R2

CourseName Instructor StudentID Instructor

Operating Systems |Jane u123456 Jane

Databases Mark u234567 Jane
u234567 Mark

Does this decomposition preserve all FDs on TEACH?
No. We only have {Instructor} — {CourseName} on R1.
{StudentID,CourseName} — {Instructor}; Lost!

Consider INTERVIEW={OfficerID, CustomerID, Date, Time, Room} with the following FDs:
{OfficerlD, Date} — {Room}

{CustomerlID, Date} — {OfficerID, Time}

{OfficerID, Date, Time} — {CustomerlD}

{Date, Time, Room} — {CustomerID}

Is INTERVIEW in BCNF? If not, normalize INTERVIEW into BCNF.

{CustomerlD, Date}, {OfficerID, Date, Time}, and {Date, Time, Room} are the keys.
Any superkey must contain one of these keys as a subset.

INTERVIEW is not in BCNF because {OfficerID, Date} — {Room} and {OfficerID, Date} are not
superkey.

We decompose INTERVIEW along the FD: {OfficerID, Date} — {Room}:



INTERVIEW

OfficerlD | CustomerID | Date | Time [ Room

S1011 P100 12/11/2013 | 10:00 | R15

S1011 P105 12/11/2013 | 12:00 | R15

S1024 P108 14/11/2013 | 14:00 | R10

S1024 P107 14/11/2013 | 14:00 | R10

INTERVIEW2

INTERVIEW 1 OfficerlD | CustomerlD | Date | Time
OfficerlD | Date | Room S10i1__| P100 12/11/2013 | 10:00
S1011 12/11/2013 | R15 S1011 P105 12/11/2013 | 12:00
S1024 14/11/2013 | R10 S1024 P108 14/11/2013 | 14:00

S1024 P107 14/11/2013 | 14:00

Project FDs on two new relation schemas.

INTERVIEW1: {OfficerID, Date} — {Room}

INTERVIEW2: {CustomerlD, Date} — {OfficerlD, Time}, {OfficerID, Date, Time} —
{CustomerID}.

Is this decomposition dependency-preservation?
No, because {Date, Time, Room} — {CustomerID} is lost (and cannot be recovered)!

Order Does Matter

When applying BCNF decomposition, the order in which the FDs are applied may lead to
different results.

Example: Consider R ={A,B,C} and {A —- B,C —- B,B — C}.
Case 1: (Using C — B first)

R1 ={B,C},Z1 ={B—C,C—B};R2 ={A,C},22 ={A—C}

Case 2: (Using B — C first)

R1'={B,C},'1={B —» C,C — B};R2'={AB},22 ={A — B};

Facts

(1) There exists an algorithm that can generate a lossless decomposition into BCNF.
(2) However, a BCNF decomposition that is both lossless and dependency-preserving does not
always exist.

Does there exist a less restrictive normal form such that a lossless and dependency-preserving
decomposition can always be found?

3NF is a less restrictive normal form such that a lossless and dependency-preserving
decomposition can always be found.



3NF

Definition
A relation schema R is in 3NF if whenever a non-trivial FD X — A holds in R, then X is a
superkey or A is a prime attribute.

3NF allows data redundancy but excludes relation schemas with certain kinds of FDs (i.e.,
partial FDs and transitive FDs).

Normalisation to 3NF

Consider the following FDs of ENROL.:
{StudentID, CourseNo, Semester} — {ConfirmedBy_ID, StaffName};
{ConfirmedBy_ID} — {StaffName}.

Is ENROL in 3NF?

{StudentID, CourseNo, Semester} is the only key.

ENROL is not in 3NF because {ConfirmedBy_ID} — {StaffName}, {ConfirmedBy_ID} is not a
superkey and {StaffName} is not a prime attribute.

Algorithm for a dependency-preserving and lossless 3NF-decomposition
Input: a relation schema R and a set £ of FDs on R.
Output: a set S of relation schemas in 3NF, each having a set of FDs
1. Compute a minimal cover ' for £ and start with S =¢
2. Group FDs in Z' by their left-hand-side attribute sets
3. For each distinct left-hand-side Xi of FDs in ' that includes Xi — A1,Xi — A2,....Xi — Ak:
Add Ri =Xi U{A1}U{A2}---U{Ak} to S
4. Remove all redundant ones from S (i.e., remove Riif Ri € Rj)
If S does not contain a superkey of R, add a key of R as RO into S.
6. Project the FDs in 2’ onto each relation schema in S

o



R1=X1A1...A|( ves Rn = XnA
X~ Aq
A minimal
cover Xn—2 A
X; — Ak
R

Remove redundant ones

R1=X1A1...A|( “ee Rn = XnA

X, - A,

Xn—=> A
X1 —> A



If none of R; is /

a superkey of R »

Ro = a key R1=X1A1...A|( coe Rn = XA
X;—2>A;

ces X, — A
X;— Ax

Minimal Cover - Recap
Example 1: £1 ={X -»Y,Y »Z X —Z} and 22 ={X -Y,Y —Z}

IfZl* = 22*, then Z1 is not minimal

Example 2: 1 ={X —Y,XY —Z} and =2 ={X >Y,X —Z}

IfZl* = 22*, then Z1 is not minimal

The set{A — B, B — C, A — C} can be reduced to {A — B, B — C}, because {A — C} is implied
by the other two.

Given the set of FDs £

{StudentID, CourseNo, Semester} — {ConfirmedBy ID, StaffName}

{ConfirmedBy ID} — {StaffName}

we can compute the minimal cover of Z as follows:

1 start from Z;

2 checks whether all the FDs in Z have only one attribute on the right-hand side;
{StudentID, CourseNo, Semester} — { ConfirmedBy_ID, StaffName } can be replaced by
{StudentID, CourseNo, Semester} — { ConfirmedBy_ID }

{StudentID, CourseNo, Semester} — { StaffName }

3 checks whether all the FDs in X have a redundant attribute on the left-hand side;
check if { StudentID, CourseNo, Semester } — {ConfirmedBy ID}
is minimal with respect to the left-hand side
check if { StudentID, CourseNo, Semester } — {StaffName}



is minimal with respect to the left-hand side
All look good!
4 look for a redundant FD in { {StudentID, CourseNo, Semester} — {ConfirmedBy ID},
{StudentID, CourseNo, Semester} — {StaffName}, {ConfirmedBy ID} — {StaffName} }
{StudentID, CourseNo, Semester} — {StaffName} is redundant and thus is removed
5 Therefore, the minial cover of % is { {StudentID, CourseNo, Semester} — {ConfirmedBy ID},
{ConfirmedBy ID} — {StaffName}}

3NF — Example

Consider ENROL again:
{StudentID, CourseNo, Semester} — {ConfirmedBy_ID, StaffName}
{ConfirmedBy_ID} — {StaffName}

A minimal cover is {{StudentID, CourseNo, Semester} — {ConfirmedBy_ID}, {ConfirmedBy_ID}
— {StaffName}}.

Hence, we have:

R1={StudentID, CourseNo, Semester, ConfirmedBy_ID} with {StudentID, CourseNo, Semester}
— {ConfirmedBy_ID}

R2={ConfirmedBy_ID, StaffName} with {ConfirmedBy_ID} — {StaffName}

Omit RO because R1 is a superkey of ENROL.

Let us do some exercises for the 3NF-decomposition algorithm.
Exercise 1: R={A,B,C,D}and 2 ={A—B,B — C, AC — D}:

{A — B, B — C, A— D}is a minimal cover.
R1 = ABD, R2 = BC (omit RO because R1 is a superkey of R)
The 3NF-decomposition is {ABD, BC}.

Exercise2:

R={A,B,C,D}and>={AD—B, AB—C, C—B}: Z is its own minimal cover.

R1 =ABD,R2 =ABC,R3 =CB (omit R3 because R3 ©SR2 and omit RO because R1 is a superkey
of R)

The 3NF-decomposition is {ABD, ABC}.

Summary

Normal Forms

1NF, 3NF and BCNF are popular in practice. Other normal forms are rarely used.
1NF: only atomic values for attributes (part of the definition for the relational data model);
2NF: an intermediate result in the history of database design theory;



3NF: lossless and dependencies can be preserved;

BCNF: lossless but dependencies may not be preserved.

3NF can only minimise (not necessarily eliminate) redundancy. So a relation schema in 3NF
may still have update anomalies.

A relation schema in BCNF eliminates redundancy.
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Normalisation Algorithms

BCNF-decomposition 3NF-decomposition
@ Repeat until no changes @ Find a minimal cover
- Find a problematic FD @ Group FDs in the minimal cover
- Split R into two smaller ones @ Remove redundant ones
and project FDs @ Add a key (if necessary)

@ Project FDs

What properties do these algorithms have?

4 4

Lossless join Lossless join + dependency
preservation



What do you need to compute using FDs?

1 Y
SOME superkeys (check)
SOME k heck
superkeys (check) ALL candidate keys

ONE minimal cover

Denormalisation

Why ?

Do we need to normalize relation schemas in all cases when designing a relational database?
The normalisation process may degrade performance when data are frequently queried.
Since relation schemas are decomposed into many smaller ones after normalisation, queries
need to join many relations together in order to return the results.

Unfortunately, join operation is very expensive.

When data is more frequently queried rather than being updated (e.g., data warehousing
system), a weaker normal form is desired (i.e., denormalisation).
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Denormalisation is a design process that
e happens after the normalisation process,

e s often performed during the physical design stage, and
e reduces the number of relations that need to be joined for certain queries.



We need to distinguish:

Unnormalised — there is no systematic design.

Normalised — redundancy is reduced after a systematic design (to minimise data
inconsistencies).

Denormalised — redundancy is introduced after analysing the normalised design (to
improve the efficiency of queries)
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Trade-offs — Data Redundancy vs. Query Efficiency

A good database design is to find a balance between desired properties, and then
normalise/denormalise relations to a desired degree.



Normalisation: No Data Redundancy but No Efficient Query Processing
Data redundancies are eliminated in the following relations.

STUDENT

Name

StudentID

DoB

Tom

123456

25/01/1988

Michael

123458

21/04/1985

COURSE

CourseNo

Unit

COMP2400

COMP8740

12

ENROL

StudentID

CourseNo

Semester

123456

COMP2400

2010 S2

123456

COMP8740

2011 S2

123458

COMP2400

2009 S2




However, the query for “list the names of students who enrolled in a course with 6 units”

requires 2 join operations.

SELECT Name, CourseNo FROM Enrol e, Course c, Student s WHERE

e.StudentID=s.StudentID and e.CourseNo=c.CourseNo and c.Unit=6;

Denormalisation: Data Redundancy but Efficient Query Processing
If a student enrolled in 15 courses, then the name and DoB of this student need to be stored
repeatedly 15 times in ENROLMENT.

ENROLMENT

Name |StudentID |DoB CourseNo [Semester |[Unit
Tom 123456(25/01/1988 [COMP2400 (2010 S2 6
Tom 123456|25/01/1988 |[COMP8740 (2011 S2 12
Michael 123458(21/04/1985 (COMP2400 (2009 S2 6

However, the query for “list the names of students who enrolled a course with 6 units” can be
processed efficiently (no join needed).

SELECT Name, CourseNo FROM Enrolment WHERE Unit=6;

Discussion

Both normalisation and denormalisation are useful in database design.

e Normalisation: obtain database schema avoiding redundancies and data inconsistencies

e Denormalisation: join normalized relation schemata for the sake of better query
processing

Some problems of (de-)normalisation:
e FDs cannot handle null values.

e To apply normalisation, FDs must be fully specified.

e The algorithms for normalisation are not deterministic, leading to different
decompositions.
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