
Ecole supérieure en Informitique

Sidi Bel Abbes

Option : ISI

Conception of a Microservice based
IoT System

Authors
Khebchi Abdallah
Laroui Mohammed
Bendaoud Mohammed Amine

Advisors
Pr. Rahmoun

Dr. Bensenane

September 9, 2021

Abstract

Due to large-scale IoT systems and connected devices, enterprises face difficulty in
developing, deploying, integrating and scaling the applications. Microservices and con-
tainerization enable efficient and faster development by breaking down IoT functionalities
into small, modular and independent units that work in isolation without affecting the
overall performance of the IoT ecosystem.

With the advent of IoT and DevOps 2.0, the technology and architecture on which the
IoT platforms and solutions are built will be one of the driving factors, determining the
long-term sustainability and success for any organization. If we time travel from the
times of mainframe, client/server, and web to now in the cloud era, the adoption of
microservices and containerization becomes imperative in the IoT world.

Contents

1 Introduction 1
1.1 Objectives . 1

2 Background 2
2.1 Internet of Things . 2
2.2 Microservices . 3

2.2.1 What is Microservices . 3
2.2.2 Why using Microservices . 3

2.3 Containerization . 3
2.3.1 What is Containerization . 3
2.3.2 Why using Containers . 4
2.3.3 Docker . 4
2.3.4 Docker Compose . 4

2.4 Telecommunication protocols . 4
2.4.1 HTTP . 4
2.4.2 TCP . 5
2.4.3 MQTT . 5
2.4.4 SSH . 6
2.4.5 Websocket . 6
2.4.6 UART . 6
2.4.7 I2C . 7
2.4.8 SPI . 8
2.4.9 USB . 8

2.5 Web servers . 9
2.5.1 NGINX . 9

2.6 Databases . 9
2.6.1 Postgresql . 10

2.7 Message Brokers . 10
2.7.1 Mosquitto . 10

2.8 Ide’s and Programming Languages . 11
2.8.1 Arduino IDE . 11
2.8.2 Goland IDE . 12
2.8.3 C++ Language . 12
2.8.4 Go Language . 13

iv

Contents

3 Hardware 15
3.1 Raspberry Pi 3 B+ . 15

3.1.1 Definition . 15
3.1.2 Specifications . 15
3.1.3 Configuration . 16
3.1.4 Network Configuration . 17
3.1.5 Static IP Addresses . 17

3.2 ESP8266 . 18
3.2.1 Definition . 18
3.2.2 Specification . 18

3.3 Sensors . 19
3.3.1 DHT11 . 19
3.3.2 Soil Moisture Sensor . 20

3.4 Actors . 21
3.4.1 LED-pin . 21

4 Software 22
4.1 Requirements . 22

4.1.1 Functional Requirements . 22
4.1.2 Non Functional Requirements . 23

4.2 Conception . 24
4.2.1 Global Architecture . 24
4.2.2 Authentication Service . 25
4.2.3 Data Service . 28
4.2.4 Command Service . 29
4.2.5 Visualisation Service . 30

4.3 Middlewares . 32
4.3.1 Authentication Middleware . 32
4.3.2 MQTT client . 33

4.4 Setup NGINX server as an API GateWay 33
4.4.1 NGINX/NGINX+ . 33
4.4.2 NGINX config . 34

5 Deployment 36
5.1 Deployment strategy . 36
5.2 Dockerizing our Services . 36

5.2.1 Example : . 36
5.3 Using Docker-Compose to manage Service Containers 38

5.3.1 docker-compose.yaml : . 38
5.4 Conclusion . 38

v

1 Introduction

IoT has a huge deployment ecosystem containing multiple servers, applications, sensors,
and protocols. It also has many end-points like firmware, web, mobile, and QA, which
require heavy integration between device, data, and applications. This increases the
development time and efforts even in an agile setup. Gartner predicts that through
2018, half the cost of implementing IoT solutions will be spent in integrating various IoT
components with each other and back-end systems. With microservices, the functionality
is broken down into the lowest level components as small, modular, independently
deployable and loosely-coupled services, which reduces the integration complexity faced
with monolithic architecture.

1.1 Objectives

The objective of this project is to build and maintain an IoT platform based on Mi-
croservice architecture with the adoption of all it aspects from design to deployment
making the use of DevOps tools such as Docker for containerization our services hosted
in Raspberry pi 3 b+ server.

1

2 Background

In this section, several related concepts will be explained for better understanding the
process of project.

2.1 Internet of Things

The Internet of Things, or IoT, refers to the billions of physical devices around the world
that are now connected to the internet, all collecting and sharing data. Thanks to the
arrival of super-cheap computer chips and the ubiquity of wireless networks, it’s possible
to turn anything, from something as small as a pill to something as big as an aeroplane,
into a part of the IoT. Connecting up all these different objects and adding sensors
to them adds a level of digital intelligence to devices that would be otherwise dumb,
enabling them to communicate real-time data without involving a human being. The
Internet of Things is making the fabric of the world around us more smarter and more
responsive, merging the digital and physical universes.

Figure 2.1: IOT

2

2.2 Microservices

2.2 Microservices

2.2.1 What is Microservices

Microservices - also known as the microservice architecture - is an architectural style
that structures an application as a collection of services that are

• Highly maintainable and testable

• Loosely coupled

• Independently deployable

• Organized around business capabilities

• Owned by a small team

The microservice architecture enables the rapid, frequent and reliable delivery of large,
complex applications. It also enables an organization to evolve its technology stack.

2.2.2 Why using Microservices

With microservices, multiple teams work on independent services, enabling you to deploy
more quickly — and pivot more easily when you need to. Development time is reduced,
and your teams’ code will be more reusable. By decoupling services, you won’t have to
operate on expensive machines. Basic x86 machines will do. The increased efficiency of
microservices not only reduces infrastructure costs, it also minimizes downtime.

2.3 Containerization

2.3.1 What is Containerization

Containerization is the packaging of software code with just the operating system
(OS) libraries and dependencies required to run the code to create a single lightweight
executable—called a container—that runs consistently on any infrastructure. More
portable and resource-efficient than virtual machines (VMs), containers have become the
de facto compute units of modern cloud-native applications.

3

2 Background

2.3.2 Why using Containers

Containers give developers the ability to create predictable environments that are isolated
from other applications. Containers can also include software dependencies needed by
the application, such as specific versions of programming language runtimes and other
software libraries

2.3.3 Docker

Docker is an open platform for developing, shipping, and running applications. Docker
enables you to separate your applications from your infrastructure so you can deliver
software quickly. With Docker, you can manage your infrastructure in the same ways
you manage your applications.

2.3.4 Docker Compose

Docker Compose is a tool that was developed to help define and share multi-container
applications. With Compose, you can create a YAML file to define the services and with
a single command, can spin everything up or tear it all down.

2.4 Telecommunication protocols

2.4.1 HTTP

HTTP is a protocol which allows the fetching of resources, such as HTML documents.
It is the foundation of any data exchange on the Web and it is a client-server protocol,
which means requests are initiated by the recipient, usually the Web browser. A complete
document is reconstructed from the different sub-documents fetched, for instance text,

4

2.4 Telecommunication protocols

layout description, images, videos, scripts, and more.

Clients and servers communicate by exchanging individual messages (as opposed to a
stream of data). The messages sent by the client, usually a Web browser, are called
requests and the messages sent by the server as an answer are called responses.

2.4.2 TCP

TCP stands for Transmission Control Protocol a communications standard that enables
application programs and computing devices to exchange messages over a network. It is
designed to send packets across the internet and ensure the successful delivery of data
and messages over networks. As a result, high-level protocols that need to transmit data
all use TCP Protocol. Examples include peer-to-peer sharing methods like File Transfer
Protocol (FTP), Secure Shell (SSH), and Telnet. It is also used to send and receive
email through Internet Message Access Protocol (IMAP), Post Office Protocol (POP),
and Simple Mail Transfer Protocol (SMTP), and for web access through the Hypertext
Transfer Protocol (HTTP).

2.4.3 MQTT

MQTT is a publish/subscribe protocol that allows edge-of-network devices to publish to
a broker. Clients connect to this broker, which then mediates communication between

5

2 Background

the two devices. ... When another client publishes a message on a subscribed topic, the
broker forwards the message to any client that has subscribed.

2.4.4 SSH

SSH, or Secure Shell, is a remote administration protocol that allows users to control and
modify their remote servers over the Internet.It provides a mechanism for authenticating
a remote user, transferring inputs from the client to the host, and relaying the output
back to the client

2.4.5 Websocket

A WebSocket is a persistent connection between a client and server. WebSockets provide
a bidirectional, full-duplex communications channel that operates over HTTP through a
single TCP/IP socket connection. At its core, the WebSocket protocol facilitates message
passing between a client and server

2.4.6 UART

By definition, UART is a hardware communication protocol that uses asynchronous serial
communication with configurable speed. Asynchronous means there is no clock signal to
synchronize the output bits from the transmitting device going to the receiving end.

6

2.4 Telecommunication protocols

Two UARTs directly communicate with each other

2.4.7 I2C

I2C stands for Inter-Integrated Circuit. It is a bus interface connection protocol incor-
porated into devices for serial communication. It was originally designed by Philips
Semiconductor in 1982. Recently, it is a widely used protocol for short-distance com-
munication. Working of I2C Communication Protocol : It uses only 2 bi-directional
open-drain lines for data communication called SDA and SCL. Both these lines are pulled
high.

Serial Data (SDA) – Transfer of data takes place through this pin. Serial Clock (SCL) –
It carries the clock signal.

I2C operates in 2 modes –

• Master mode

• Slave mode

Each data bit transferred on SDA line is synchronized by a high to the low pulse of each
clock on the SCL line.

I2C protocol

7

2 Background

2.4.8 SPI

The Serial Peripheral Interface (SPI) bus is a synchronous serial communication interface
specification used for short distance communication, primarily in embedded systems. ...
SPI devices communicate in full duplex mode using a master-slave architecture with a
single master.

wire SPI bus configuration with multiple slaves

2.4.9 USB

The USB protocol, also known as Universal Serial Bus, was first created and introduced
in 1996 as a way to institutionalize a more widespread, uniform cable and connector that
could be used across a multitude of different devices. With the increase in technological
devices during this time, having a universal cable would help reduce the confusion and
inconvenience of having a collection of cables needed for each individual device.

8

2.5 Web servers

2.5 Web servers

2.5.1 NGINX

NGINX is open source software for web serving, reverse proxying, caching, load balancing,
media streaming, and more. It started out as a web server designed for maximum
performance and stability.

How Does Nginx Work? Nginx is built to offer low memory usage and high concurrency.
Rather than creating new processes for each web request, Nginx uses an asynchronous,
event-driven approach where requests are handled in a single thread. With Nginx, one
master process can control multiple worker processes

2.6 Databases

A database is an organized collection of structured information, or data, typically stored
electronically in a computer system. A database is usually controlled by a database
management system (DBMS). ... The data can then be easily accessed, managed,
modified, updated, controlled, and organized.

9

2 Background

2.6.1 Postgresql

PostgreSQL is a powerful, open source object-relational database system that uses and
extends the SQL language combined with many features that safely store and scale the
most complicated data workloads.

2.7 Message Brokers

Message brokers are often used to manage communications between on-premises systems
and cloud components in hybrid cloud environments. Using a message broker gives
increased control over interservice communications, ensuring that data is sent securely,
reliably, and efficiently between the components of an application

2.7.1 Mosquitto

10

2.8 Ide’s and Programming Languages

Mosquitto is a lightweight open source message broker that Implements MQTT versions
3.1.0, 3.1.1 and version 5.0. It is written in C by Roger Light, and is available as a free
download for Windows and Linux and is an Eclipse project.

2.8 Ide’s and Programming Languages

2.8.1 Arduino IDE

The Arduino Integrated Development Environment - or Arduino Software (IDE) - contains
a text editor for writing code, a message area, a text console, a toolbar with buttons
for common functions and a series of menus. It connects to the Arduino and Genuino
hardware to upload programs and communicate with them.

11

2 Background

2.8.2 Goland IDE

GoLand is a cross-platform integrated development environment (IDE) for Go developers.
GoLand includes such features as context-dependent code completion and refactoring,
debugging, profiling, type and declaration navigation, and error analysis. In addition to
tools for core Go development, supports JavaScript, TypeScript, Node.js, SQL, Databases,
Docker, Kubernetes, and Terraform. You can always extend current functionality by
installing additional plugins from the plugin repository.

2.8.3 C++ Language

C++ is a cross-platform language that can be used to create high-performance appli-
cations. C++ was developed by Bjarne Stroustrup, as an extension to the C language.
C++ gives programmers a high level of control over system resources and memory.

12

2.8 Ide’s and Programming Languages

Why using C++ in embedded programming

By design, C++ lends itself to embedded development because the language sits in
between higher-level software and hardware, allowing you to access and control hardware
directly without sacrificing the benefits of a high-level language.. It’s particularly effective
for hardware that will need to be around for a while, as programs written in C++ can
operate for decades at a time due to the language’s high stability.

C++ also gives developers the ability to efficiently use abstractions without too much
cost to infrastructure. The data structure of C++, like C, is algorithm-based, which
makes it a great choice for solving all the little puzzles you encounter during embedded
development.

2.8.4 Go Language

Go was originally designed at Google in 2007. At the time, Google was growing quickly,
and code being used to manage their infrastructure was also growing quickly in both
size and complexity. Some Google engineers began to feel that this large and complex
codebase was slowing them down. So they decided that they needed a new programming
language focused on simplicity and quick performance. Robert Griesemer, Rob Pike, and
Ken Thompson designed Go.

Why using Go in microservices

Although go is a new language compared to others, it has many advantages. Programs
coded in golang are more robust. They can withstand heavy loads that allow applications
to build with loaded services. Golang is more suited for multiprocessor systems and web
apps. Moreover, it integrates with GitHub easily to manage the distributed packages.
The most use of microservice architecture is done when the application needs to be
scalable. And if there is one language that can perfectly fit the criteria, then it is –
Golang, the reason that it does is because of its inheritance from C-family programming

13

2 Background

languages, the components written in golang are easier to combine with components
coded in other languages that reside in the same family.

14

3 Hardware

3.1 Raspberry Pi 3 B+

3.1.1 Definition

The Raspberry Pi 3 Model B+ is the latest product in the Raspberry Pi 3 range, boasting
a 64-bit quad core processor running at 1.4GHz, dual-band 2.4GHz and 5GHz wireless
LAN, Bluetooth 4.2/BLE, faster Ethernet, and PoE capability via a separate PoE HAT
The dual-band wireless LAN comes with modular compliance certification, allowing
the board to be designed into end products with significantly reduced wireless LAN
compliance testing, improving both cost and time to market. The Raspberry Pi 3 Model
B+ maintains the same mechanical footprint as both the Raspberry Pi 2 Model B and
the Raspberry Pi 3 Model B.

3.1.2 Specifications

• Processor : Broadcom BCM2837B0, Cortex-A53 64-bit SoC @ 1.4GHz

• Memory : 1GB LPDDR2 SDRAM

• Connectivity:

15

3 Hardware

– 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN, Bluetooth 4.2, BLE

– Gigabit Ethernet over USB 2.0 (maximum throughput 300Mbps)

– 4 × USB 2.0 ports

• Access : Extended 40-pin GPIO header

• Video and Sound :

– 1 × full size HDMI

– MIPI DSI display port

– MIPI CSI camera port

– 4 pole stereo output and composite video port

• Multimedia: H.264, MPEG-4 decode (1080p30); H.264 encode (1080p30); OpenGL
ES 1.1, 2.0 graphics

• SD card support: Micro SD format for loading operating system and data storage

• Input power:

– 5V/2.5A DC via micro USB connector

– 5V DC via GPIO header

– Power over Ethernet (PoE)–enabled (requires separate PoE HAT)

3.1.3 Configuration

raspin installation

Raspberry Pi recommend the use of Raspberry Pi Imager to install an operating system
on your SD card. You will need another computer with an SD card reader to install the
image.
full video : https://youtu.be/ntaXWS8Lk34

16

3.1 Raspberry Pi 3 B+

Config

The raspi-config raspi-config is the Raspberry Pi configuration tool originally written
by Alex Bradbury. You will be shown raspi-config on first booting into Raspberry Pi OS.
To open the configuration tool after this,a simply run the following from the command
line: sudo raspi-config

3.1.4 Network Configuration

You will need to define a Wpa.application.conf file
A wpa.supplicant.conf file example:

3.1.5 Static IP Addresses

If you wish to disable automatic configuration for an interface and instead configure it
statically, add the details to /etc/dhcpcd.conf. For example:

17

3 Hardware

3.2 ESP8266

3.2.1 Definition

ESP8266 is a wifi SOC (system on a chip) produced by Espressif Systems . It is an
highly integrated chip designed to provide full internet connectivity in a small package.
ESP8266 can be used as an external Wifi module, using the standard AT Command set
Firmware by connecting it to any microcontroller using the serial UART, or directly serve
as a Wifi-enabled micro controller, by programming a new firmware using the provided
SDK.

The GPIO pins allow Analog and Digital IO, plus PWM, SPI, I2C, etc.

3.2.2 Specification

• Processor: L106 32-bit RISC microprocessor core based on the Tensilica Xtensa
Diamond Standard 106Micro running at 80 MHz

• Memory:

– 32 KiB instruction RAM

– 32 KiB instruction cache RAM

– 80 KiB user-data RAM

– 16 KiB ETS system-data RAM

18

3.3 Sensors

• External QSPI flash: up to 16 MiB is supported (512 KiB to 4 MiB typically
included)

• IEEE 802.11 b/g/n Wi-Fi:

– Integrated TR switch, balun, LNA, power amplifier and matching network

– WEP or WPA/WPA2 authentication, or open networks

• 17 GPIO pins

• SPI

• I2C (software implementation)

• I2S interfaces with DMA (sharing pins with GPIO)

• UART on dedicated pins, plus a transmit-only UART can be enabled on GPIO2

• 10-bit ADC (successive approximation ADC)

3.3 Sensors

The main purpose of sensors is to collect data from the surrounding environment. Sensors,
or ’things’ of the IoT system, form the front end. These are connected directly or indirectly
to IoT networks after signal conversion and processin

3.3.1 DHT11

19

3 Hardware

The DHT11 is a commonly used Temperature and humidity sensor that comes with
a dedicated NTC to measure temperature and an 8-bit microcontroller to output the
values of temperature and humidity as serial data.

Specifications

• Operating Voltage: 3.5V to 5.5V

• Operating current: 0.3mA (measuring) 60uA (standby)

• Output: Serial data

• Temperature Range: 0°C to 50°C

• Humidity Range: 20

• Resolution: Temperature and Humidity both are 16-bit

• Accuracy: ±1°C and ±1

3.3.2 Soil Moisture Sensor

The soil moisture sensor is one kind of sensor used to gauge the volumetric content
of water within the soil. As the straight gravimetric dimension of soil moisture needs
eliminating, drying, as well as sample weighting. These sensors measure the volumetric
water content not directly with the help of some other rules of soil like dielectric constant,
electrical resistance, otherwise interaction with neutrons, and replacement of the moisture
content.

The relation among the calculated property as well as moisture of soil should be adjusted
and may change based on ecological factors like temperature, type of soil, otherwise
electric conductivity. The microwave emission which is reflected can be influenced by
the moisture of soil as well as mainly used in agriculture and remote sensing within
hydrology.

20

3.4 Actors

Specifications

• The required voltage for working is 5V

• The required current for working is ¡20mA

• Type of interface is analog

• The required working temperature of this sensor is 10°C 30°C

3.4 Actors

3.4.1 LED-pin

LED stands for light-emitting diode, which means that much like their diode cousins,
they’re polarized. There are a handful of identifiers for finding the positive and negative
pins on an LED. You can try to find the longer leg, which should indicate the positive,
anode pin.

21

4 Software

4.1 Requirements

There are three primary categories of system requirements: functional, nonfunctional, and
architectural. Functional requirements are “what” the system should do. Nonfunctional
requirements are “how well” the system should perform in one or more areas. Architectural
requirements are more descriptive of “connections” between the subsystems to form the
final system.

Functional versus nonfunctional requirements Functional requirements specify what the
system has to do. They are traceable to a specific source, often to Use Cases or Business
Rules. They are often called “product features.”

4.1.1 Functional Requirements

The user can :

• Signup and login into the application

• Visualise the collected data in form of graph

• Query the collected data :

– Query all the data stored

– Query the last N-measurement

– Query the collected data by date

• Perform a command to actors (ON——OFF)

• Add timed command for some duration

• Setup a trigger/alert on a specific measurement and the command when the alert
happens

• Receive emails from the app when the alert is triggered.

22

4.1 Requirements

4.1.2 Non Functional Requirements

Nonfunctional requirements are mostly quality-related requirements which include the
areas of performance, availability, reliability, usability, flexibility, configurability, integra-
tion, maintainability, portability, and testability. This category may also include implicit
requirements for modification and upgrades, reusability, and interoperability.

23

4 Software

4.2 Conception

4.2.1 Global Architecture

24

4.2 Conception

4.2.2 Authentication Service

Role

Mainly the auth-service is responsible for securing user infos and protecting API routes
around the services .
This service handle 3 requests :

• POST /api/v1/auth/signup

• POST /api/v1/auth/login

• GET /api/v1/auth/logout

Service Workflow

Signup sequence diagram

Login sequence diagram

25

4 Software

Logout sequence diagram

26

4.2 Conception

JWT

JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact and
self-contained way for securely transmitting information between parties as a JSON
object. This information can be verified and trusted because it is digitally signed. JWTs
can be signed using a secret (with the HMAC algorithm) or a public/private key pair
using RSA or ECDSA.

Although JWTs can be encrypted to also provide secrecy between parties, we will focus
on signed tokens. Signed tokens can verify the integrity of the claims contained within it,
while encrypted tokens hide those claims from other parties. When tokens are signed
using public/private key pairs, the signature also certifies that only the party holding
the private key is the one that signed it. JSON Web Token structure :

• Header: The header typically consists of two parts: the type of the token, which is
JWT, and the signing algorithm being used, such as HMAC SHA256 or RSA.

• Payload: The second part of the token is the payload, which contains the claims.
Claims are statements about an entity (typically, the user) and additional data.
There are three types of claims: registered, public, and private claims.

27

4 Software

• Signature: To create the signature part you have to take the encoded header, the
encoded payload, a secret, the algorithm specified in the header, and sign that.

Sessions and Redis

When a user login into the app this service store a session containing the signed jwt in the
redis database with a specific life-time , other services use it to check the authentication
of the user using authentication middleware.

Database model

The sevice communicates with 2 databases (users database and sessions in memory
database)
the users database contains the user table (username,hashed password and user’s email)
the session database contains the user jwt as a token and a life-time for that specific
token (expire time)

4.2.3 Data Service

Role

The main objective of the data-service is storing collected data from sensors into a
database .
Data service also responsible for :

• Subscribing to the mqtt topic viq an mqtt client

• Parse the mqtt message into an object

• Store the object in database

• Providing an API that handle some query requests :

– GET /api/v1/data/all

– GET /api/v1/data/last

– GET /api/v1/data/byDate

Database model

The data service store all incoming telemetry data in the iot database containing one
table (Event table) with fields such as time and date and measurement data (Tempera-
ture,Humidity,Soil moisture)

28

4.2 Conception

4.2.4 Command Service

Role

The command service provides an API for performing commands on actors in the
nodMCU IC and query all commands that has been done.
The command service also provides an endpoint to set thresholds on specific measurement
, the service notify the user by email when the threshold triggered.
The command service API :

• POST /api/v1/command/add

• GET /api/v1/command/all

• POST /api/v1/command/trigger

• POST /api/v1/command/timed

Service Workflow

Add command diagram

Database model

The command service store data in database called commands it contains 2 tables (Com-
mand(id,time,Email,CommandType(On/Off)) and the Threshold table (id,time,email,value,SensorType,CommandType)

29

4 Software

4.2.5 Visualisation Service

Role

The visualisation service make use of both MQTT and Websocket protocols to perform
real time data visualisation. The visualisation service expose one endpoint for handling
websocket connection with the browser.
The visualisation API : GET /ws

WebSocket

In the Background Chapter we mentioned the websocket protocol now we will dive in
the challenge of how to send mqtt messages over websocket protocol ?
Using golang channels and goroutines can solve this by considering subscribing to topic
and handling websocket connections two separate processes and passing between them
the message from mqtt using channels.
code snippet :

var eventChannel = make(chan model . Event)
func onMessageReceived () func (c l i e n t mqtt . Cl ient , msg mqtt . Message) {

r e turn func (c l i e n t mqtt . C l i en t , msg mqtt . Message){
switch msg . Topic () {

case ” esp / senso r ” :
event := parseMessage (msg)
// sending the event to the WsSocketEndPoint func t i on over eventChannel
go func (){ eventChannel <− event } ()

}
}

}
func WebSocketEndPoint (x ∗ gin . Context) {

socket , e r r := UpgradeConnection (x . Writer , x . Request)
i f e r r != n i l {

l og . Pr in t ln (e r r)
}
f o r {

s e l e c t {
// when the eventChannel r e c e i v e d the s e r v e r wr i t e i t to the
// browser over websocket connect ion
case event := <− eventChannel ;

e r r = socket . WriteJSON(event)
i f e r r != n i l {
l og . Pr in t ln (e r r)
}}}}

30

4.2 Conception

Using Plotly js

Plotly JavaScript Open Source Graphing Library Built on top of d3.js and stack.gl,
Plotly.js is a high-level, declarative charting library. plotly.js ships with over 40 chart
types, including 3D charts, statistical graphs, and SVG maps.

Results

31

4 Software

4.3 Middlewares

Middleware is software which lies between an operating system and the applications run-
ning on it. Common middleware examples include database middleware, application server
middleware, message-oriented middleware, web middleware and transaction-processing
monitors.

4.3.1 Authentication Middleware

In each service we have to implement an authentication middleware for checking the user
sesssion in the redis database and validating the jwt token .
example code for auth-middleware :

func AuthMiddleware () Http . HandlerFunction {
r e turn func (context Context) {

s := s e s s i o n s . Deafau l t (context)
token := s .GET(” token ”)
i f token == ”” {
context .JSON(StatusUnauthorized , ” not auth ”)
context . Abort ()
re turn
}
. . .
// i f the token i s v a l i d the r eque s t w i l l be

32

4.4 Setup NGINX server as an API GateWay

// handled to the s e r v i c e handler
// e l s e w i l l be an ”no auth” message
context . Next ()

}
}

4.3.2 MQTT client

Using a service that sub/pub to an MQTT broker needs an mqtt client we used Eclipse
Paho MQTT Go client for establishing the connection between services and the message
broker / publishing a message into message broker / and subscribing to a specefic topic.
example for creating an mqtt client :

func NewMqttClient (host , port s t r i n g) mqtt . C l i en t {
opt ions := mqtt . NewClientOptions ()
opt ions . AddBroker(”%s :%s ” , host , port)
opt ions . AutoReconnect = true
c l i e n t := mqtt . NewClient (opt ions)
i f token := c l i e n t . Connect () ; token . Wait () && token . Err != n i l {
panic (token . Err)

}
r e turn c l i e n t

}

4.4 Setup NGINX server as an API GateWay

4.4.1 NGINX/NGINX+

NGINX Multitude of use cases

One NGINX instance can be :

• Web server

• Reverse proxy

• Load balancer

• Cache

• API Gateway and more .

Supporting all cloud platforms and can run on bare metal like raspberry pi 3 b+ .

33

4 Software

API GateWay vs API Management

API Management :

• Policy management .

• Analytics and Monitoring

• API Documentation

API Gateway ;

• Request Routing

• Authentication

• Rate Limiting

• Exception Handling

API Gateway Essential Functions

• TLS Termination

• Client Authentication

• Access-control

• Request Routing

• Rate Limiting

• Load Balancing

4.4.2 NGINX config

Install and run

• Getting the official nginx image :

– docker pull arm32v7/nginx

• Run nginx image :

– docker run –net=host –name ngx -p 80:80 nginx

• Change the default config :

– docker exec -it ngx bash

– nano /etc/nginx/conf.d/default.conf

34

4.4 Setup NGINX server as an API GateWay

e r r o r page 500 502 503 504 /50x . html ;
l o c a t i o n = /50x . html {

root / usr / share / nginx /html ;
}
l o c a t i o n /graph/ {
proxy pass http :// l o c a l h o s t :5555/ api /v1/ v i s u a l / ;
p roxy se t heade r Host $host ;
p roxy se t heade r X−Real−IP $remote addr ;
p roxy se t heade r X−Forwarded−For $proxy add x fo rwarded fo r ;

. . .
}

35

5 Deployment

5.1 Deployment strategy

Using Docker and DockerCompose to run our services on the device.

5.2 Dockerizing our Services

5.2.1 Example :

Building docker image using multi-stage build for optimizing our containers.

36

5.2 Dockerizing our Services

37

5 Deployment

5.3 Using Docker-Compose to manage Service
Containers

5.3.1 docker-compose.yaml :

5.4 Conclusion

Throughout this project we built a solid knowledge about iot/microservices/deployment
and various protocols such as mqtt/ssh/websocket, but still faced some technical problems
mainly in configuring the raspberry and connecting the nodemcu to our local network in
addition of that security is one of the subject that we did not tackle in the project duo

38

5.4 Conclusion

to the fact that using the TLS protocol needs a signed certificate from a legit authority
in the internet and must of the internet browsers or clients like postman do not accept
self signed certificates.

THE END

39

