
D ARRAY NOTATION FOR
COMPUTATIONS WITH
TENSORS

T his appendix describes the handling of second and fourth-order tensors in finite element
computer programs. It should be particularly helpful to those wishing to follow, in

program HYPLAS, the implementation of techniques discussed in this book that have been
presented almost exclusively in compact tensorial notation.

In finite element computer programs, the components of a symmetric second-order
tensor are usually stored as a single column array, whereas fourth-order tensor components
are stored in two-dimensional arrays. By arranging the relevant components consistently,
operations such as internal products between tensors and products between fourth and
second-order tensors can be conveniently carried out in the computer program as matrix
products.

The order in which components of a tensor can be stored in array format is not unique.
In the following, we show the convention adopted in many finite element programs and, in
particular, in the program HYPLAS.

D.1. Second-order tensors

Let us start with second-order tensors. Expression (2.27) (page 21) shows the matrix repre-
sentation of a generic tensor in terms of its Cartesian components. Here we shall be concerned
only with symmetric tensors (which are of relevance for finite element computations).
Second-order symmetric tensors will be converted into single column arrays and their actual
single array representation will depend on whether the tensor is a stress-like or strain-like
quantity. Let us start by considering the stress tensor, σ, in plane stress and plane strain
problems. In this case, the in-plane components of the matrix [σ] will be converted into a
single column array σ (the computer array representation will be denoted here by upright
bold-faced symbols) according to the rule

[σ] =


σ11 σ12

σ12 σ22


−→ σ =



σ11

σ22

σ12


. (D.1)
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Only the three relevant independent components are stored in σ. In axisymmetric problems
we store, in addition to the above, the component σ33; that is

[σ] =



σ11 σ12 0

σ12 σ22 0

0 0 σ33


−→ σ =



σ11

σ22

σ12

σ33


, (D.2)

where the index 3 is associated with the circumferential direction. It should be noted here that
the σ33 stress is generally non-zero also under plane strain conditions. In this case, the stress
may be stored as in the above (i.e. including σ33), but the last element of the stress array will
be ignored in product operations such as (D.5).

In three-dimensions (this case is not implemented in HYPLAS), we have the conversion rule

[σ] =



σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33


−→ σ =




σ11

σ22

σ33

σ12

σ23

σ13



. (D.3)

Let us now consider the strain tensor, ε. The rule for storage in this case is

[ε] =



ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33


−→ ε =




ε11

ε22

ε33

2ε12

2ε23

2ε13



. (D.4)

Note that the shear components have been multiplied by a factor of two; that is, ε is the array
of engineering strains. The reason for this is that, in this way, the internal product between a
stress- and a strain-like tensor can be computed as a matrix product

σ : ε = σTε. (D.5)

If we denote by δε a virtual strain tensor, i.e. the symmetric gradient virtual displacement
field, by applying the above conversion rules the corresponding virtual work reads

σ : δε = σT δε. (D.6)

In plane problems, the general conversion rule for strains is

[ε] =


ε11 ε12

ε12 ε22


−→ ε =



ε11

ε22

2ε12


. (D.7)
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However, note that in elastoplasticity under plane strain, even though the total strain
component ε33 vanishes, the corresponding elastic and plastic components do not. Thus, we
adopt the following storage rule

[εe] =



εe11 εe12 0

εe12 εe22 0

0 0 εe33


−→ εe =



εe11

εe22

2εe12
εe33


 (D.8)

for the elastic strain (and the plastic strain). Axisymmetric implementations follow the above
rule also for the array conversion of the total strain tensor, ε.

D.2. Fourth-order tensors

We now consider fourth-order tensors. Let D be a tangent modulus tensor with Cartesian
components Dijkl on the basis {ei}

D = Dijkl ei ⊗ ej ⊗ ek ⊗ el. (D.9)

In tensorial compact form, the tangent stress–strain relation reads

dσ = D : dε. (D.10)

Fourth-order tensors will be stored in two-dimensional arrays. In its array form, the compo-
nents of D in plane strain problems (i.e. with i, j = 1, 2) will be arranged as

D =



D1111 D1122 D1112

D2211 D2222 D2212

D1211 D1222 D1212


, (D.11)

so that the tangential relation between the in-plane stress array can be represented as the
matrix product

dσ = D dε. (D.12)

That the above is equivalent to (D.10) is left as an exercise for the interested reader. Note that
in elasticity and associative plasticity problems the tensor D has the symmetries

Dijkl = Djikl = Djilk = Dklij . (D.13)

In such cases, the conversion rule produces a symmetric two-dimensional matrix.
In axisymmetric problems we have

D =




D1111 D1122 D1112 D1133

D2211 D2222 D2212 D2233

D1211 D1222 D1212 D1233

D3311 D3322 D3312 D3333


, (D.14)
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and in three-dimensions,

D =




D1111 D1122 D1133 D1112 D1123 D1113

D2211 D2222 D2233 D2212 D2223 D2213

D3311 D3322 D3333 D3312 D3323 D3313

D1211 D1222 D1233 D1212 D1223 D1213

D2311 D2322 D2333 D2312 D2323 D2313

D1311 D1322 D1333 D1312 D1323 D1313



. (D.15)

Note that, according to the above rule, the fourth-order symmetric identity tensor defined
by (2.108) (page 31) is represented in plane problems as

IS =




1 0 0

1 0

sym 1
2


. (D.16)

In using the above representation in computations, account should be taken of the fact that

ISε =



ε11

ε22

ε12


 
= ε. (D.17)

For axisymmetric problems,

IS =




1 0 0 0

1 0 0

sym 1
2 0

0 1


. (D.18)

In three-dimensions, we have

IS =




1 0 0 0 0 0

1 0 0 0 0

1 0 0 0
1
2 0 0

sym 1
2 0

1
2



. (D.19)
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D.2.1. OPERATIONS WITH NON-SYMMETRIC TENSORS

Note (refer to expressions (C.18), page 755, and (C.25)) that the product between a fourth-
order tensor (the material or spatial modulus) and a generally non-symmetric second-order
tensor (the full material or spatial gradient of a vector field) arises naturally in the linearisation
of the virtual work equation under large deformations. In such cases, the above representation
cannot be used. Modifications in the array conversion rules are needed to allow such products
to be carried out in the computer program as matrix products. Let us use the spatial
version (C.32) of the linearised virtual work as an example. We start by defining the second-
order tensors

T≡∇xδu, U ≡∇xη, (D.20)

respectively, as the (full) gradients of δu and the virtual displacement field η. In plane
problems, we will adopt the following computer array representation:

T =



T11

T21

T12

T22


, (D.21)

with the same rule applying for U , and

a =



a1111 a1121 a1112 a1122

a2111 a2121 a2112 a2122

a1211 a1221 a1212 a1222

a2211 a2221 a2212 a2222


. (D.22)

With the above notation, the integrand on the right-hand side of (C.25) has the representation

a : T : U = UT a T. (D.23)

Again, note that when the fourth-order tensor has the major symmetries

aijkl = aklij , (D.24)

which occurs in hyperelasticity and hyperelastic-based associative plasticity, the conversion
rule gives a symmetric two-dimensional matrix representation.

In axisymmetric problems, we adopt

T =




T11

T21

T12

T22

T33




(D.25)
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and

a =




a1111 a1121 a1112 a1122 a1133

a2111 a2121 a2112 a2122 a2133

a1211 a1221 a1212 a1222 a1233

a2211 a2221 a2212 a2222 a2233

a3311 a3321 a3312 a3322 a3333



. (D.26)

An analogous conversion rule can be defined for three-dimensional problems.




