

Fakultät für Naturwissenschaften und Technik Facoltà di Scienze e Tecnologie Faculty of Science and Technology

Comparison of eigenvalue solvers in KRATOS MULTIPHYSICS

Veit Gufler & Erich Wehrle

May 23, 2018 Free University of Bozen-Bolzano

Contents

I.	Comparison of solver settings	2
1.	Example: Eignevalue analysis of a three-dimensional cantilever	2
2.	Wiki: FEAST solver	2
3.	Parameters and their meaning	3
	3.1. FEAST solver	3
	3.2. EigenSolverApplication	3
	6 11	
II.	Comparison of results	4
4.	Example: Eigenvalue analysis of a three-dimensional cantilever	4
	4.1. Model description	4
	4.2. Comparison	4
	4.3. Kratos Multiphysics FEAST - complex_pastix_solver	4
	4.4. Kratos Multiphysics FEAST - complex_skyline_lu_solver	6
	4.5. Kratos Multiphysics FEAST - complex_pastix_solver	6
	4.6. Kratos Multiphysics FEAST - complex_pastix_solver	6
	4.7. Kratos Multiphysics FEAST - complex_pastix_solver	6
	4.8. Kratos Multiphysics FEAST - complex pastix solver	7
	4.9. Kratos Multiphysics FEAST - complex pastix solver	7
	4.10. Kratos Multiphysics FEAST - complex pastix solver	7
	4.11. Kratos Multiphysics FEAST - complex pastix solver	7
	4.12. Kratos Multiphysics EigenSolverApplication	8
	4.13. Kratos Multiphysics EigenSolverApplication	8

	4.14.	Kratos Multiphysics EigenSolverApplication	8
	4.15.	Kratos Multiphysics EigenSolverApplication	8
	4.16.	Kratos Multiphysics EigenSolverApplication	8
	4.17.	Kratos Multiphysics EigenSolverApplication	ç
	4.18.	Kratos Multiphysics FEAST - complex_pastix_solver	ç
	4.19.	Kratos Multiphysics EigenSolverApplication	ç
	4.20.	ANSYS APDL	9
5.	Hou	sing of planetary gear	9
	5.1.	Model description	ç
	5.2.	Comparison	10
	5.3.	Kratos Multiphysics FEAST - complex_pastix_solver	11
	5.4.	Kratos Multiphysics EigenSolverApplication	11
	5.5.	Kratos Multiphysics EigenSolverApplication	11
	5.6.	Kratos Multiphysics EigenSolverApplication	11

III. Housing

Part I. Comparison of solver settings

1. Example: Eignevalue analysis of a three-dimensional cantilever

 $https://github.com/KratosMultiphysics/Examples/tree/master/structural_mechanics/validation/beam_eigenvalue_anality and anality and analytical anality and anality anality anality and anality an$

```
"eigensolver_settings":{
1
2
                "solver_type": "FEAST",
                "print_feast_output": true,
3
                "perform_stochastic_estimate": false,
4
                "solve_eigenvalue_problem": true,
5
                "lambda_min": 10,
6
                "lambda_max": 10000,
7
                "search_dimension": 40,
8
                "linear_solver_settings":{
9
                     "solver_type": "complex_skyline_lu_solver"
10
                }
11
12
            },
```

2. Wiki: FEAST solver

https://github.com/KratosMultiphysics/Kratos/wiki/How-to-use-the-FEAST-Solver-in-Kratos%3F

```
"eigensolver_settings":{
    "solver_type": "feast",
    "print_feast_output": true,
    "perform_stochastic_estimate": false,
    "solve_eigenvalue_problem": true,
    "lambda_min": 0.0,
```


1

2

3

4 5

6

12

```
7 "lambda_max": 2.5e3,
8 "search_dimension": 6
9 },
```

The simulation does not start without the definition of the linear solver.

3. Parameters and their meaning

3.1. FEAST solver

perform_stochastic_estimate defines if a stochastic estimation will be done (true) or not (false).

solve_eigenvalue_problem defines if the eigenvalue problem will be solved (true) or not (false).

lambda_min defines the lower limit of the search interval for the eigenvalues.

Definition: $\lambda = \omega^2 = (2\pi f)^2 \left[\left(\frac{\text{rad}}{\text{s}} \right)^2 \right]$.

lambda_max defines the upper limit of the search interval for the eigenvalues.

Definition: $\lambda = \omega^2 = (2\pi f)^2 \left[\left(\frac{\text{rad}}{\text{s}} \right)^2 \right].$

- **search_dimension** With higher values of the search dimension, the simulations take generally longer. It the search dimension is set to a value which is too low, the results are not complete. In this case an error message is printed on the terminal.
- **linear_solver_settings** defines which linear solver will be used. Two known possibilities are "complex_skyline_lu_solver" and "complex_pastix_solver".

3.2. EigenSolverApplication

number_of_eigenvalues defines how many eigenvalues will be calculated.

- **max_iteration** defines after how many iterations the simulation stops, without reaching convergence of the results. If it is set to a value which is too low, the results are not complete. In this case it is printed that the convergence is not reached after the chosen maximum number of iterations.
- **tolerance** defines the allowed tolerance of the eigenvalues. Whit a chosen tolerance of "1" or higher the results do not make sense.
- **echo_level** If it is set to "1", after the start of the EigenSolverApplication nothing is shown on the terminal until the results are calculated and presented. If it is set to a higher value for example "2" or "1000", after the start of the EigenSolverApplication in the terminal is shown when every single iteration is completed.

Part II. Comparison of results

4. Example: Eigenvalue analysis of a three-dimensional cantilever

4.1. Model description

Kratos Multiphysics

The model used for the following studies is a cantilever beam with a width of 10 mm, a height of 5 mm and a length of 200 mm. The geometry is meshed with volumetric elements of the type hexahedron and the dimensions are $1 \times 1 \times 1$ mm. These discretization parameters results in a mesh with 10000 elements and 13266 nodes. Figure 1 shows the meshed geometry.

ANSYS APDL

Aluminum, E=70000, nu=0.3. $200 \times 100 \times 5$ mm, 1 mm mesh with linear volume elements

4.2. Comparison

Many simulation runs have been performed with different parameter settings. The results are shown on table 1.

4.3. Kratos Multiphysics FEAST - complex_pastix_solver

```
1
            "eigensolver_settings":{
                "solver_type": "FEAST"
 2
 3
                "print_feast_output": true,
 4
                "perform_stochastic_estimate": false,
                "solve_eigenvalue_problem": true,
 5
 6
                "lambda_min": 0,
7
                "lambda_max": 4e9,
                "search_dimension": 40,
8
                "linear_solver_settings":{
9
                     "solver_type": "complex_pastix_solver"
10
11
                }
12
            }
```


		18		,															,		60.31	57.75	63.0		12.22	
		f_1									·										7 1555	1226	1190		3 1179	
		f_{17}	,	ï	,													,	ï		15443.3	,	11936.1	,	11767.9	
		f_{16}	ī	ı	,		,											,	ı		14825.02	11759.62	10972.9	,	10858.48	
		f_{15}		,	,		,											,	,	,	11742.90	8783.42	8654.04	,	8513.08	
		f_{14}		,	,						ı							,	,		10762.95	7113.80	6822.91	,	6752.34	
		f_{13}		,	,		,											,	,	,	3888.47		5967.48		\$893.00	
		12	3.42	12.32	12.32	12.32	12.32	12.32			9.41	12.32	12.32	2.32	12.32		2.72	0062	12.32	2.32	0.12 8	.9.81	4.57 5	e-07	9.46	
ver		f	30 878	36 864	36 864	36 864	36 864	36 864			18 853	864	36 864	36 864	864		57 865	2 812	36 864	36 864	27 850	23 587	27 584	8.3	25 574	
antile	2	f_{11}	7113.8	6776.3	6776.3	6776.3	6776.3	6776.3	,		6698.1	6776.3	6776.3	6776.3	6776.3	,	6777.5	79803	6776.3	6776.3	6705.2	3630.2	3561.2	nan	3521.2	
onal c	luency [Hz	f_{10}	,	6424.72	6424.72	6424.72	6424.72	6424.72			5952.08	6424.72	6424.72	6424.72	6424.72	1	6424.72	505566	6424.72	6424.72	6372.00	3556.90	3557.81	nan	3503.37	
mensi	Eigenfree	f_9	5879.81	5840.44	5840.44	5840.44	5840.44	5840.44			5719.25	5840.44	5840.44	5840.44	5840.44		5840.48	395303	5840.44	5840.44	5744.37	1815.11	1826.65	nan	1796.97	
ree-di		f_8	3630.23	3561.10	3561.10	3561.10	3561.10	3561.10			3531.10	3561.10	3561.10	3561.10	3561.10		3561.10	166805	3561.10	3561.10	3506.03	1296.50	1311.21	nan	1297.79	
the th		f_7	556.90	542.92	542.92	542.92	542.92	542.92			462.72	542.92	542.92	542.92	542.92		542.92	4116.3	542.92	542.92	502.53	48.25	65.20	nan	54.39	
with		9		98.13 3	98.13 3	98.13 3	98.13	98.13	_	-	80.87 3	98.13 3	98.13 3	98.13	98.13	1	98.13 3	42.36 3	98.13 3	98.13 3	61.73 3		0525 6	an	97 6	
rison		£	11	62 29	62 29	62 29	62 29	62 29			95 29	62 29	62 29	62 29	62 29		62 29	91 89.	62 29	62 29	54 29		26 0.0	ц	0.	
ompai		f_5	1815.	1828.	1828.	1828.	1828.	1828.	1	•	1817.	1828.	1828.	1828.	1828.		1828.	3153.	1828.	1828.	1798.	i.	0.002	nan	0.86	
e 1: Co		f_4	1296.50	1287.70	1287.70	1287.70	1287.70	1287.70		1	1265.13	1287.70	1287.70	1287.70	1287.70	1287.70	1287.70	2303.90	1287.70	1287.70	1274.37	ī	nan	nan	0.00	
Tabl		f_3	648.25	655.93	655.93	655.93	655.93	655.93		655.93	1	655.93	655.93	655.93	655.93	655.93	655.93	668.45	655.93	655.93	645.14		nan	nan	0.00	
		f_2	206.88	207.82	207.82	207.82	207.82	207.82			ı	207.82	207.82	207.82	207.82	207.82	207.82	209.55	207.82	207.82	205.67	·	nan	nan	0.00	
		f_1	103.44	104.96	104.96	104.96	104.96	104.96			·	104.96	104.96	104.96	104.96	104.96	104.96	104.98	104.96	104.96	103.23	,	nan	nan	0.00	
	ime																									
	Calculation t	[hh:mm:ss]		00:05:33	00:04:52 ¹	00:07:15	00:07:17 ¹	00:08:13 ¹	00:00:22	00:03:03	$00:05:12^{1}$	00:04:39 ¹	00:09:09	00:01:03	00:01:42 ¹	00:00:36	00:00:26 ¹	00:00:15	00:00:33 ¹	00:01:41	00:00:29		00:06:46 ¹	00:34:09 ¹	00:00:29	
	ıdary	itions	ıped	ıped	ped	ped	ped	ped	ped	ped	ped	ıped	ped	ped	ped	ped	ped	ped	ıped	ped	ped					
	Bour	cond	Clan	Clan	Clan	Clan	Clan	Clan	Clan	Clan	Clan	Clan	Clan	Clan	Clan	Clan	Clan	Clan	Clan	Clan	Clan	Free	Free	Free	Free	
	Parametere	t at atticted 5	analytical	Feast §4.3	Feast §4.4	Feast §4.3	Feast §4.5	Feast §4.6	Feast §4.7	Feast §4.8	Feast §4.9	Feast §4.10	Feast §4.11	Eigen §4.12	Eigen §4.12	Eigen §4.13	Eigen §4.14	Eigen §4.15	Eigen §4.16	Eigen §4.17	ANSYS APDL	analytical	FPFeast - §4.18	ESEigen - §4.19	ANSYS APDL	

 1 Four processors of the type Intel Xeon CPU 5160, 3,00 GHz with 7.8 gigabyte RAM 2 Two processors of the type Intel Core i5-3320M CPU @ 2.60GHz with 7.8 gigabyte RAM

4.4. Kratos Multiphysics FEAST - complex_skyline_lu_solver

```
1
            "eigensolver_settings":{
                "solver_type": "FEAST",
2
                "print_feast_output": true,
3
                "perform_stochastic_estimate": false,
 4
                "solve_eigenvalue_problem": true,
 5
                "lambda_min": 0,
6
                "lambda_max": 4e9,
7
                "search_dimension": 40,
8
9
                "linear_solver_settings":{
                     "solver_type": "complex_skyline_lu_solver"
10
11
                }
12
            },
```

4.5. Kratos Multiphysics FEAST - complex_pastix_solver

```
"eigensolver_settings":{
1
                "solver_type": "FEAST",
2
                "print_feast_output": false,
3
 4
                "perform_stochastic_estimate": false,
                "solve_eigenvalue_problem": true,
 5
                "lambda_min": 0,
6
                "lambda_max": 4e9,
7
                "search_dimension": 40,
8
9
                "linear_solver_settings":{
10
                     "solver_type": "complex_pastix_solver"
11
                }
            },
12
```

4.6. Kratos Multiphysics FEAST - complex_pastix_solver

```
"eigensolver_settings":{
1
                "solver_type": "FEAST",
2
 3
                "print_feast_output": true,
 4
                "perform_stochastic_estimate": true,
                "solve_eigenvalue_problem": true,
5
                "lambda_min": 0,
6
                "lambda_max": 4e9,
7
8
                "search_dimension": 40,
9
                "linear_solver_settings":{
                     "solver_type": "complex_pastix_solver"
10
11
                }
12
            },
```

4.7. Kratos Multiphysics FEAST - complex_pastix_solver

```
"eigensolver_settings":{
1
               "solver_type": "FEAST",
2
3
               "print_feast_output": true,
4
               "perform_stochastic_estimate": false,
               "solve_eigenvalue_problem": false,
5
               "lambda_min": 0,
6
               "lambda_max": 4e9,
7
8
               "search_dimension": 40,
9
               "linear_solver_settings":{
```

```
10 "solver_type": "complex_pastix_solver"
11 }
12 },
```

4.8. Kratos Multiphysics FEAST - complex_pastix_solver

1	<pre>"eigensolver_settings":{</pre>
2	"solver_type": "FEAST",
3	"print_feast_output": true ,
4	"perform_stochastic_estimate": false ,
5	"solve_eigenvalue_problem": true,
6	"lambda_min": 1e7,
7	"lambda_max": 4e7,
8	<pre>"search_dimension": 40,</pre>
9	<pre>"linear_solver_settings":{</pre>
10	<pre>"solver_type": "complex_pastix_solver"</pre>
11	}
12	},

4.9. Kratos Multiphysics FEAST - complex_pastix_solver

1	<pre>"eigensolver_settings":{</pre>
2	"solver_type": "FEAST",
3	"print_feast_output": true ,
4	<pre>"perform_stochastic_estimate": false,</pre>
5	"solve_eigenvalue_problem": true ,
6	"lambda_min": 0,
7	"lambda_max": 4e9,
8	"search_dimension": 10,
9	"linear_solver_settings":{
10	"solver_type": "complex_pastix_solver"
11	}
12	1

==>Warning: Size Subspace M0 too small

4.10. Kratos Multiphysics FEAST - complex_pastix_solver

```
"eigensolver_settings":{
1
2
                "solver_type": "FEAST",
3
                "print_feast_output": true,
                "perform_stochastic_estimate": false,
4
                "solve_eigenvalue_problem": true,
5
                "lambda_min": 0,
6
                "lambda_max": 4e9,
7
                "search_dimension": 20,
8
                "linear_solver_settings":{
9
                    "solver_type": "complex_pastix_solver"
10
                }
11
12
            },
```

4.11. Kratos Multiphysics FEAST - complex_pastix_solver

```
1 "eigensolver_settings":{
2 "solver_type": "FEAST",
3 "print_feast_output": true,
4 "perform_stochastic_estimate": false,
```



```
"solve_eigenvalue_problem": true,
5
                "lambda_min": 0,
6
                "lambda_max": 4e9,
7
                "search_dimension": 80,
8
9
                "linear_solver_settings":{
10
                     "solver_type": "complex_pastix_solver"
11
                }
12
            },
```

4.12. Kratos Multiphysics EigenSolverApplication

8

```
1 "eigensolver_settings":{
2 "solver_type": "eigen_eigensystem",
3 "number_of_eigenvalues": 13,
4 "max_iteration": 1000,
5 "tolerance": 1e-6,
6 "echo_level": 1
7 },
```

4.13. Kratos Multiphysics EigenSolverApplication

```
1 "eigensolver_settings":{
2     "solver_type": "eigen_eigensystem",
3     "number_of_eigenvalues": 5,
4     "max_iteration": 1000,
5     "tolerance": 1e-6,
6     "echo_level": 1
7 },
```

4.14. Kratos Multiphysics EigenSolverApplication

```
1 "eigensolver_settings":{
2     "solver_type": "eigen_eigensystem",
3     "number_of_eigenvalues": 13,
4     "max_iteration": 5,
5     "tolerance": 1e-6,
6     "echo_level": 1
7 },
```

Convergence not reached in 10 iterations.

4.15. Kratos Multiphysics EigenSolverApplication

```
1 "eigensolver_settings":{
2         "solver_type": "eigen_eigensystem",
3         "number_of_eigenvalues": 13,
4          "max_iteration": 1000,
5          "tolerance": 1,
6          "echo_level": 1
7     },
```

4.16. Kratos Multiphysics EigenSolverApplication

```
"eigensolver_settings":{
    "solver_type": "eigen_eigensystem",
    "number_of_eigenvalues": 13,
    "max_iteration": 1000,
```


1 2

3

4

```
5. Housing of planetary gear
```

```
5
                "tolerance": 0.1,
6
                "echo_level": 1
7
            },
   4.17. Kratos Multiphysics EigenSolverApplication
            "eigensolver_settings":{
1
2
                "solver_type": "eigen_eigensystem",
3
                "number_of_eigenvalues": 13,
                "max_iteration": 1000,
4
                "tolerance": 1e-6,
5
                "echo_level": 1000
6
7
            },
   4.18. Kratos Multiphysics FEAST - complex pastix solver
            "eigensolver_settings":{
1
2
                "solver_type": "FEAST"
3
                "print_feast_output": true,
4
                "perform_stochastic_estimate": false,
5
                "solve_eigenvalue_problem": true,
                "lambda_min": -10,
6
                "lambda_max": 2e10,
7
                "search_dimension": 40,
8
9
                "linear_solver_settings":{
10
                     "solver_type": "complex_pastix_solver"
11
                }
            },
12
   4.19. Kratos Multiphysics EigenSolverApplication
```

```
1 "eigensolver_settings":{
2 "solver_type": "eigen_eigensystem",
3 "number_of_eigenvalues": 13,
4 "max_iteration": 1000,
5 "tolerance": 1e-6,
6 "echo_level": 1
7 },
```

4.20. ANSYS APDL

Model built, meshed and calculated with ANSYS APDL v170 Block Lanczos solver, in which the first 18 eigenfrequencies are calculated.

5. Housing of planetary gear

5.1. Model description

Kratos Multyphysics

For the following studies the model of the housing of a planetary gear is used. In order to simplify the geometry for the simulation, in this model the internal teeth are removed. The geometry is meshed with elements of the type "tetrahedra" and with the size of 5 mm. These parameters leads to a mesh with 229558 elements and 48308 nodes. Figure 2 shows the meshed geometry. A generic steel is used with a Young's modulus of 206.9 GPa, a density of 7.85e-9 t/mm³ and a poisson ratio of 0.29.

Figure 2: Meshed housing with simplified geometry

Calculix

STEP file imported into FreeCAD and meshed there with max mesh size 10 mm, which was a lengthy process. The modal analysis is then calculated with the integrated link to the open source solver Calculix. The FreeCAD–Calculix version requires a constrained model. The entire back side of the housing was then constrained. The model has 58680 nodes and 181274 elements. First five eigenfrequencies are calculated. A generic steel is used with a Young's modulus of 200 GPa and a density of 7.9e-9 t/mm³.

5.2. Comparison

Many simulation runs have been performed with different parameter settings. The results are shown on table 2. Figure 3 shows the first five mode shapes calculated with Kratos Multiphysics.

Figure 3: Mode Shapes

	Table 2. Comparison with the simplified housing											
Parameters	Boundary	Calculation time	f_1	f_2	f_3	f_4	f_5					
		[hh:mm:ss]										
Feast §5.3	Clamped	$00:22:01^3$	8541.71	10247.4	10575.2	10578.4	13863.4					
Eigen §5.4	Clamped	$00:05:05^3$	8541.71	10247.4	10575.2	10578.4	13863.4					
Eigen §5.5	Clamped	$00:02:14^3$	8541.72	10247.4	10575.4	10578.5	13872.3					
Eigen §5.6	Clamped	$00:01:52^3$	8563.75	10258.5	10580.8	10683.5	14332.2					
Calculix	Clamped	$00:00:38^4$	8413.36	9982.08	10119.4	10128.0	14463.0					

Table 2: Comparison with the simplified housing

5.3. Kratos Multiphysics FEAST - complex_pastix_solver

```
"eigensolver_settings":{
1
                "solver_type": "FEAST",
2
3
                "print_feast_output": true,
                "perform_stochastic_estimate": false,
4
                "solve_eigenvalue_problem": true,
5
                "lambda_min": 2.5e9,
6
                "lambda_max": 8e9,
7
8
                "search_dimension": 40,
9
                "linear_solver_settings":{
                     "solver_type": "complex_pastix_solver"
10
11
                }
            },
12
```

5.4. Kratos Multiphysics EigenSolverApplication

```
1 "eigensolver_settings":{
2     "solver_type": "eigen_eigensystem",
3     "number_of_eigenvalues": 6,
4     "max_iteration": 1000,
5     "tolerance": 1e-6,
6     "echo_level": 1
7  },
```

5.5. Kratos Multiphysics EigenSolverApplication

```
1 "eigensolver_settings":{
2     "solver_type": "eigen_eigensystem",
3     "number_of_eigenvalues": 6,
4     "max_iteration": 1000,
5     "tolerance": 0.1,
6     "echo_level": 2
7  },
```

5.6. Kratos Multiphysics EigenSolverApplication

```
1 "eigensolver_settings":{
2 "solver_type": "eigen_eigensystem",
3 "number_of_eigenvalues": 6,
4 "max_iteration": 3,
```

³Four processors of the type Intel Xeon CPU 5160, 3,00 GHz with 7.8 gigabyte RAM
 ⁴Two processors of the type Intel Core i5-3320M CPU @ 2.60GHz with 7.8 gigabyte RAM

"tolerance": 0.1, "echo_level": 2 },

Part III. Housing

Parameters	Boundary	Comment	f_1	f_2	f_3	f_4	f_5	f_6
EigenSolver	Clamped		8584.81	10228.4	10500.3	10506.3	14263.0	14388.8
EigenSolver	Clamped	with mass points	1170.53	1283.11	1412.52	1423.93	1512.61	1527.74
Feast	Free		5113.80	5825.95	6105.04	6418.57	13139.3	13238.1
Feast	Free	with mass points	820.050	969.658	1456.26	1470.48	1642.07	1717.43

5 6 7