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Fast nearest-neighbor searching for nonlinear signal processing

Christian Merkwirth,* Ulrich Parlitz, and Werner Lauterborn
Drittes Physikalisches Institut, Universita¨t Göttingen, Bürgerstraße 42-44, D-37073 Go¨ttingen, Germany

~Received 15 October 1999; revised manuscript received 29 March 2000!

A fast algorithm for exact and approximate nearest-neighbor searching is presented that is suitable for tasks
encountered in nonlinear signal processing. Empirical benchmarks show that the algorithm’s performance
depends mainly on the~fractal! dimensionDd of the data set, which is usually smaller than the dimensionDs

of the vector space in which the data points are embedded. We also compare the running time of our algorithm
with those of two previously proposed algorithms for nearest-neighbor searching.

PACS number~s!: 05.45.2a, 07.05.Kf
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I. INTRODUCTION

The task of finding one or more nearest neighbors i
Ds-dimensional space occurs in many fields of data proc
ing, e.g., information retrieval in database applications, d
mining, or, as in our case, nonlinear time-series analy
@1–3#, especially for modeling and prediction of time seri
~via time-delay reconstruction! @4#, fast correlation sum com
putation~correlation dimension, generalized mutual inform
tion, etc.!, estimation of the Renyi dimension spectrum@5# or
Lyapunov exponents@4#, and nonlinear noise reduction@6#.

Nearest-neighbor searching and related problems of c
putational geometry have been extensively studied in c
puter science and pattern recognition and turned out no
fall into the class of computationally hard problems. Sear
ing the nearest neighbor to every point in a data setX of size
N using a naive algorithm~which calculates all interpoin
distances! is of orderO(N2). However, for practical appli-
cations it would be useful to have an algorithm of ord
O(N logN). While the specific details of the algorithms th
have been proposed so far vary, a common approach
build up an auxiliary indexing data structure in theprepro-
cessing phasewhich helps finding nearest neighbors duri
the search phase.

II. ATRIA : A TRIANGLE INEQUALITY BASED
ALGORITHM

The algorithm to be presented is based on theANNA algo-
rithm proposed by McNames@7#. To prune the search spac
the algorithm employs the triangle inequality:

d~x,z!<d~x,y!1d~y,z!

for any triple of pointsx, y, and z.

Hered(x,y) denotes the distance between pointsx andy.
Since this inequality is valid for any metric, there is n

limitation in what kind of metric is used to calculate di
tances. We successfully used the algorithm to comp
neighbors in spherical geometry. Additionally, the prep
cessing is independent of the type of queries~exact or ap-
proximate! that will be executed during the search phase

*Email address: C.Merkwirth@dpi.physik.uni-goettingen.de
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Another advantage of the proposed algorithm is its re
tively low complexity. For data sets of fixed fractal dime
sion Dd , search time grows approximately linearly with th
dimensionDs of the data space@7#. The typical~not worst
case! memory consumption is of orderO(N).

III. PREPROCESSING PHASE

A. Top-down construction of the cluster tree

During the preprocessing phase, a hierarchical cluster
~Fig. 1! is recursively constructed. Aclustercontains a dis-
tinct subset of the points of the original data set. Additio
ally, it is characterized by its center pointc and the minimal
radiusR that is needed to cover all points belonging to th
cluster. A new level of the binary tree is constructed
dividing ~splitting! each cluster of the current level into tw
child clusters~subclusters!. At any tree level, each point o
the data set is an element of exactly one cluster.

B. Clustering strategy

In the following section we present the main steps of
recursive clustering algorithm.

~1! Choose two cluster centers, one for each of the t
new child clusters. For this choice, many different select
schemes are possible. We propose a very simple one: If
current cluster is the root cluster, pick randomly a pointa out

FIG. 1. First levels of the hierarchical cluster tree.
2089 ©2000 The American Physical Society
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of the points belonging to this cluster. Otherwise, leta be the
current cluster’s center. Then determine the pointcr with
maximal distance froma. This point becomes the center o
the first~right! child cluster. Now the centercl of the second
~left! child cluster is the point that has maximal distance
cr .

~2! Assign each point of the current cluster to one of
child clusters. As criterion the distance to the child clus
centers is used: Choose the nearer one.

~3! Compute and store the enclosing radiiR of both newly
created subclusters.

~4! Proceed recursively as long as a cluster contains m
thanL points (L'30, . . . ,200). A cluster that is not furthe
divided into subclusters is called aterminal nodeof the clus-
ter tree.

~5! When a terminal node is reached, compute and s
the distances from the cluster’s center to all points belong
to this cluster.

C. Implementation details

Points of the input data set are addressed using an int
index, ranging from 1 toN. To handle these indices, it is no
necessary to store an array of sizeN for each level of the
cluster tree, actually, we just need to hold one linear arraA
of sizeN in memory. The indices of the points belonging
the same cluster are stored in a contiguous section of
arrayA.

The data structure that represents one cluster stores
following attributes

c is the index of the point that is designated as this cl
ter’s center.

R the maximal distance from the center point to any po
belonging to this cluster,

R5max
xPC

d~c,x!.

g the points belonging to the parent cluster are assigne
this cluster when their distance to this cluster’s center
smaller than their distance to the center of this cluster’s
ter. During preprocessing, the minimum of the difference
the distances is computed and stored ing:

g5min
xPC

@d~csister( i ) ,x!2d~c,x!#.

start is the beginning of the section onA where the indi-
ces of this cluster’s points are stored.

end is the end of the section onA where the indices of
this cluster’s points are stored.

left, right are pointers to the left and right child cluste
~used only in internal nodes!.

The root cluster’sstart value points to the beginning ofA,
its end value toA’s end. To split a cluster into subclusters,
is not necessary to alter the start and end of the section w
the indices of the current cluster’s points are stored. O
permutations of the indices inside this section are nee
~see Fig. 2!. These permutations can be performed usin
quicksort-like scheme@8# to assign points to the nearest clu
ter center~Fig. 3!.

Storing distances to the center for points in terminal no
can also be done using just one linear array of lengthN. All
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section boundaries are the same as for the index arrayA. Our
implementation of the algorithm uses an array of tupels~in-
dex, distance! to efficiently access both quantities.

IV. SEARCH PHASE

A. Prune and conquer

Searching for one or more nearest neighbors can be t
ally done by computing distances from the query pointq to
all points of the data set and sorting these distances in
creasing order. However, this leads to a time complexity
O(N) for a single query. In order to reduce the number
distance calculations, we have to prune the search tree.
can be done by excluding clusters from the search that
very far away from the query point and cannot therefo
contain a nearest neighbor. To quantify this rule, the al
rithm has to maintain a sorted table of pointsmi ( i
51, . . . ,k) that are close toq. Thesepreliminary neighbors
will be successively replaced by better~nearer! candidates
until the final set of nearest neighbors is found.

Once a few preliminary neighbors have been inserted
this table, the valued(mk ,q) ~distance from query pointq to
thekth nearest point found so far! is given, which is an upper
limit of the distance to the actualkth nearest neighbor
d(mk ,q) is used within three rules.

~1! Exclude clusteri if

FIG. 2. Splitting the current cluster. The section boundaries
the current cluster do not change during the splitting. Entries
exchanged only within the current section to segregate the ind
of the left and right child clusters.

FIG. 3. Exchanging indices inside current section. Indices
points that are~geometrically! closer to the left~right! child’s center
are moved to the left~right! side of the section. During sorting
pointers i and j move inward from the current cluster’s sectio
boundaries, stopping at indices that need to be exchanged. Th
sition where both pointers meet defines the section boundarie
the new child clusters.
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d~mk ,q!,d̂min~ i ! ~1!

whered̂min( i ) gives a lower bound on the distances from t
query point to any point inside clusteri ~for details, see Sec
IV B !.

~2! If cluster i is a terminal node, exclude any pointx
belonging to this cluster from being searched if

d~mk ,q!,ud~ci ,q!2d~ci ,x!u.

Valuesd(ci ,x) were computed and stored during the p
processing phase~for details, see Sec. III C and Appendi
proof 3!.

~3! Partial distance calculation: To qualify a pointx as
nearest-neighbor candidate, its distanced(x,q) must be
smaller than the actual thresholdd(mk ,q), otherwise the ex-
act value ofd(x,q) is not needed. This allows one to term
nate the operation of calculatingd(x,q) as soon as the partia
distance exceedsd(mk ,q) ~details depend on the kind o
distance function used! @9#. Carefully implemented, partia
distance calculation can seamlessly be integrated into
search phase to further reduce computational effort. As in
previous case~2!, this rule is applied only when scannin
through the points inside a terminal node.

B. Computing d̂min

To determine whether clusteri needs to be searched, w
need an estimated̂min( i ) of the ~unknown! actual smallest
distancedmin( i )5minxPCi

d(x,q) from the query point to any

point inside this cluster so that 0<d̂min( i )<dmin( i ). Three
lower bounds ondmin can easily be computed, using a mi
ture of information from the preprocessing phase and
tances calculated while processing a query.

~1! d(ci ,q)2Ri . Hered(ci ,q) denotes the distance be
tween the query pointq and the centerc of clusteri, while Ri
is the cluster’s radius~see Appendix, proof 1!.

~2! 1
2 @d(ci ,q)2d(q,csister( i ))1gi #, whered(q,csister( i ))

denotes the distance from the query point to the cente
clusteri ’s sister~see Appendix, proof 2!.

~3! Using the nesting property of the hierarchical clust
ing, a cluster’sdmin cannot be smaller than its parent’sd̂min .

Since all three values are valid lower bounds on the ac
minimum distance, their maximum is assigned tod̂min( i ).

It can hardly be overstressed that estimatingdmin is a very
crucial part of this algorithm. If we had an exact estimate,
could selectively pick out only those terminal nodes that
tually contain one or more nearest neighbors~these are maxi-
mal k clusters!. Unfortunately, it seems that it is not possib
to compute the exact value ofdmin without explicitly calcu-
lating distancesd(x,q);x of the given clusterC. Then, how-
ever, it is too late to usedmin to prune the search tree sinc
the work that should be avoided is already done.

We formulated all inequalities that arose during the t
versal of the cluster tree into a linear programming proble
which, to our surprise, did not yield better estimates fordmin
than those that were obtained from the rules 1–3 descr
above.
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C. Priority queue controlled search order

The order in which the nodes of the tree are searche
crucial to minimize the overall number of distance calcu
tions. Usually, a stack is used to control the tree trave
~depth first!. The disadvantage of this method is that, onc
cluster is inserted into the stack, it is not possible to alter
order in which the clusters are processed, even if a m
promising path through the cluster tree is discovered in
meantime.

To ensure that clusters are visited in order of increas
distance toq, the proposed algorithm employs apriority
queue~PQ! @8,10#. The PQ guides the traversal through t
tree by keeping track of the nodes that have not b
searched yet. The PQ’s entries are sorted byd̂min so that the
cluster with the smallestd̂min can efficiently be extracted
from the top of the PQ. Due to rule 2 in Sec. IV B, there is~if
any! one path from the root cluster to one of the termin
nodes withd̂min50 ~the node the query point would fall into
if it were part of the preprocessing!; for all other terminal
nodesd̂min is strictly positive@except for rather degenerat
queries whered(ci ,q) equalsd(csister( i ) ,q) for all pairs of
child clusters#.

D. Processing a query

This section outlines the search algorithm’s main loop a
the next two give the termination criteria for exact and a
proximate queries. The main loop proceeds as follows.

Initialize the sorted table of preliminary neighbo
(m1 , . . . ,mk).

Insert the root cluster into the priority queue.
Repeat the following sequence.
~i! Extract clusterC with the smallestd̂min from the PQ.
~ii ! Break if the termination criterion is reached.
~iii ! If C is a terminal node, scan through the cluster

computingd(x,q) ;xPC, obeying rule 2~see Sec. IV A!,
and insertx into a sorted table of preliminary neighbors
d(x,q)<d(mk ,q).

~iv! Otherwise insert child clusters ofC into the PQ.

E. Exact queries

Once all clusters have been visited with

d̂min<d~mk ,q!,

no better ~i.e., nearer! neighbor can be found in one of th
remaining clusters. This is illustrated in Fig. 4, where bo
the decreasing distance to thekth preliminary neighbor and
the estimated̂min of the minimal distance between theq and
the cluster’s points are plotted. When both curves inters
the algorithm can terminate and return the preliminary nei
borsm1 , . . . ,mk as exact nearest neighborsn1 , . . . ,nk .

F. Approximate queries

Approximate queries can be seen as an extension to
exact problem. If one is not interested in getting thek nearest
neighbors, but justk neighbors that are not too far off th
exact ones~in terms of their distances!, approximate queries
can greatly reduce the search time. An additional input
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rametere has to be provided that specifies the maximal
lowed error in the returned neighbor distancesd(ni

e ,q) with
respect to the distance of the true nearest neighborsd(ni

0 ,q)
@11#:

d~ni
e ,q!<~11e!d~ni

0 ,q!, i 51, . . . ,k. ~2!

For e→0, an approximate query becomes an exact qu
Approximate queries return before all clusters that mi
contain exact nearest neighbors have been visited, w
speeds up the calculation, but might result in wrongly
ported nearest neighbors. However, often many returned
proximate neighbors are in fact exact ones and the ave
relative error in the distances is one or two orders sma
than e would allow ~see Sec. V B, dashed line in Fig.
below!.

Approximate queries can be implemented within t
framework of the previously outlined search algorithm
replacing the termination criterion with

d̂min.
d~mk ,q!

11e
~3!

~see Appendix, proof 4!.

V. EXPERIMENTAL RESULTS

All benchmark and timing measurements were perform
on a Silicon Graphics Indigo2, runningIRIX 6.5 as operating
system. The system was equipped with a 175 MHz M
R1000 CPU, 256 Mbytes main memory and 1 Mbyte s
ondary level cache. Background load was kept as cons
and minimal as possible on a multiuser system to ens
unbiased test conditions. Distances were, if not otherw
stated, computed using theL2 metric. The only user-
specified parameterL of the ATRIA algorithm was set at 64
for all tests, which served as a good trade-off between
depth and cluster localization in past experiments. Emp
cally, little advantage could be drawn from optimizing th
parameter for each data set individually.

The data sets used in this section were generated by t
different dynamical systems.

Data sets of typeA were generated by aDs-dimensional
generalization of the iterated He´non map@12#:

FIG. 4. Typical progression ofd(mk ,q) and d̂min for an exact
query. The cluster tree contains more than 2300 nodes. The te
nation criterion is reached when both curves intersect. The long
part of thed(mk ,q) curve shows that no better neighbors are fou

after the first 147 clusters have been processed although thed̂min

curve is still lower until cluster 679 is searched.
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~x1!n115a2~xDs21!n
22b~xDs

!n ,

~xi !n115~xi 21!n , i 52, . . . ,Ds ,

with a51.76 andb50.1. Starting from random initial con
ditions, we discarded the first 5000 iterations and used
next 200 000 iterations.

Data sets of typeB were generated using a hyperchao
generalization of the Ro¨ssler system that was introduced b
Baier and Sahle@13#:

ẋ152x21ax1 ,

ẋi5xi 212xi 11 , i 52, . . . ,M21,

ẋM5e1bxM~xM212d!,

with parametersa50.28,b54, d52, ande50.1. The sys-
tem was integrated fromT50 to T521 200 and the system

i-
at

FIG. 5. Relative number of distance calculations needed to
cate a point versus information dimensionD1. The graph givesf 1

for data sets of typeA with Ds varying from 2 to 12. For this
system, the information dimensionD1 grows monotonically with
Ds . Each data set consisted of 200 000 points. The query po
were randomly chosen from the data set itself; self-matches w
explicitly allowed.

FIG. 6. Relative number of distance calculations versus inf
mation dimensionD1. The solid curve denotesf 1 for data sets of
typeA with Ds varying from 2 to 12. For this system, the informa
tion dimensionD1 grows steadily withDs . The dashed line shows
f 128 for the same data sets. The dotted curve depictsf 1 for data sets
of type B with fixed embedding dimensionDs524, butM varying
from 3 to 11~odd values only!. The dashed-dotted line showsf 128

for the same data sets. Each data set consisted of 200 000 po
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FIG. 7. Speedup in search time and relative distance error ve
approximation parametere for 50 000 data points of typeA with
Ds58 andD1'5.9. The solid line denotes the speedup factor. T
dashed line shows the averaged relative distance error. The m
mal relative error that was encountered is given by the dotted l

FIG. 8. Sum of preprocessing and search time for box-assi
nearest-neighbor search~dotted curve!, kd tree~dashed curve!, and
the proposedATRIA algorithm~solid curve! versus sizeN of data set
B with M55. Twelve exact nearest neighbors in theL` and L2

metrics had to be found to 20 000 reference points which w
chosen from the data set points, except for the smallest data se
of 10 000 points, where each point was used as a query point.
matches were excluded. For detailed timing values, see Table
state was sampled withnT50.1. The first 10 000 transien
samples were discarded. Thenx1 was used for a time-delay
reconstruction with an embedding dimension ofDs524 and
a time delay of 9nT. The resulting data set was cropped
200 000 time-delay vectors.

Data setC was generated using the Lorenz system
three ordinary differential equations:

ẋ15s~x12x2!,

ẋ25rx12x22x1x3 ,

ẋ35x1x22bx3 ,

with parameterss5210, b52 8
3 , and r 528. The system

was integrated fromT50 to T51500 and the system stat
was sampled withnT50.025. The first 40 000 transien
samples were discarded. Thenx1 was used for a time-delay
reconstruction with an embedding dimension ofDs525 and
a time delay ofnT. The resulting data set was cropped
500 000 time-delay vectors.
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e
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FIG. 9. Sum of preprocessing and search time for box-assi
nearest-neighbor search~dotted curve!, kd tree~dashed curve!, and
the proposedATRIA algorithm~solid curve! versus sizeN of data set
C. Twelve exact nearest neighbors in theL` andL2 metrics had to
be found to 20 000 reference points which were chosen from
data set points, except for the smallest data set size of 10 000 po
where each point was used as a query point. Self-matches
excluded. For detailed timing values, see Table II.
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TABLE I. Comparison ofkd tree ~ANN!, box-assisted nearest-neighbor search~BOX!, and ATRIA on data setB with M55 andD1

'4.3. N denotes the number of data set points. Twelve exact nearest neighbors in both theL` andL2 metrics had to be found toNref query
points which were chosen from the data set; therefore self-matches were excluded. For each metric two values are given. Th
specifies the preprocessing time, the right gives the total search time. Timing values are measured in seconds with a resolution of o
so a value of zero seconds just indicates a time smaller than one second.

tANN tBOX tATRIA

N

104

Nref

104

L` L2 L` L2 L` L2

1 1 1 9 0 44 0 25 0 99 1 22 0 20
2 2 3 21 2 105 0 104 0 408 1 69 0 56
3 2 4 22 4 108 0 145 0 568 1 79 1 58
5 2 8 24 8 111 0 211 0 817 2 89 1 65
8 2 15 25 14 118 0 300 0 1149 3 97 3 72

10 2 19 27 20 118 1 347 1 1330 5 101 4 74
20 2 47 28 47 117 1 533 1 2060 9 95 9 73
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A. Computational complexity versus the data set’s fractal
dimension

To give a hardware independent index for the compu
tional costs of nearest-neighbor searching, we use the f
tion f k of distance calculations needed to findk neighbors of
a given query point, divided by the total number of poin
and averaged over a large number of queries. Since the q
points were randomly chosen from each data set, s
matches had to be excluded~locating an existing point can
be performed almost regardless of both the data space
mension and the fractal dimension of the data set; see Fig!.

For the brute force methodf k equals 1~the distances to
all points of the data set have to be computed in order to
the nearest neighbors!. An efficient algorithm should yield
fractions f k much smaller than 1.

Figure 6 showsf 1 and f 128 for data sets of typesA andB.
While the data space dimensionDs varies from 2 to 12 for
the data sets of typeA, it is held constant at 24 for the dat
sets of typeB, where the system dimensionM is increased
-
c-

ery
lf-

di-
5

d

from 3 to 11~odd values only! to produce data sets of vary
ing fractal dimensionDd . As a measure forDd , we employ
the informationdimensionD1 @14#.

The tests consisted in searching the exact nearest neig
or the 128 exact nearest neighbors of each of the 5000 q
points. Note the logarithmic scale of thef k axis. The number
of distance calculations grows almost exponentially withD1.
At higher D1, the increase starts to slow down because
number of distance calculations needed to find the nea
neighbors approaches the total number of data set po
Then, of course,f k converges to 1 and there is no advanta
in preferring this algorithm over a brute force approach.

Despite the very different dimensionDs of the data space
the resulting curvesf 1 and f 128 are quite similar for both
types of data sets. Focusing on the first intersection of thef 1
curves, data setA’s data space dimensionDs equals 3, while
data setB’s Ds is 24. This clearly indicates that this dimen
sion is of little importance for the search efficiency of th
algorithm. Of course, the absolute search time grows w
ecifies the
so a value
TABLE II. Comparison ofkd tree ~ANN!, box-assisted nearest-neighbor search~BOX!, and ATRIA on data setC with D1'2.05. N
denotes the number of data set points. Twelve exact nearest neighbors in both theL` andL2 metrics had to be found toNref query points
which were chosen from the data set; therefore self-matches were excluded. For each metric two values are given. The left one sp
preprocessing time, the right gives the total search time. Timing values are measured in seconds with a resolution of one second,
of zero seconds just indicates a time smaller than one second.

tANN tBOX tATRIA

N

104

Nref

104

L` L2 L` L2 L` L2

1 1 2 3 1 6 0 7 0 13 1 3 0 4
2 2 5 10 5 15 0 21 0 42 1 8 1 8
3 2 11 9 10 16 1 24 0 54 1 8 1 8
5 2 22 11 23 17 1 29 0 70 2 8 2 8
8 2 41 11 41 18 0 35 1 86 3 8 3 9

10 2 54 11 55 18 0 39 0 96 5 9 4 9
20 2 140 11 140 19 1 55 1 131 9 10 8 10
30 2 249 12 249 20 1 69 1 159 14 10 13 10
40 2 326 12 326 20 2 79 2 185 20 10 18 10
50 2 430 13 428 24 2 90 2 209 25 10 23 10
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increasingDs even if f k remains constant because of t
increasing number of arithmetic operations needed for e
distance calculation.

The particular choice ofD1 out of the continuous spec
trum of Renyi dimensionsDq is arbitrary and was motivate
mainly by the fact thatD1 can easily be computed from th
distribution of neighbor distances@5#. However,D1 does not
at all describe the distribution of the data set points co
pletely and may thus only serve as an estimator for the
pected perfomance of the nearest-neighbor algorithm.

B. Speedup and relative error for increasing the approximation
parameter e

Fifty thousand points of data setA with Ds58 andDd
'5.9 were used to calculate speedup and errors introdu
by approximate queries. The task consisted in finding
eight nearest neighbors~excluding self-matches! to 10 000
query points that were chosen randomly out of the data

In Fig. 7, the solid line depicts the speedup obtained us
approximate queries instead of exact queries for increa
values ofe ~in the case ofe50, approximate queries ar
exact ones!. The speedup factor was calculated by dividi
the execution time of the exact queries by the execution t
of the corresponding approximate queries~preprocessing
was done only once prior to all timing measurements!. The
dashed line shows the relative distance error, averaged
all neighbors and queries. The dotted line denotes the m
mum relative error of the reported nearest-neighbor d
tances. Fore as large as 7, the average relative error in
neighbor distances does not exceed 10%. This is as
inglishly small sincee57 would allow an error up to 700%
Again, this discrepancy seems to be a consequence o
inability to estimatedmin exactly.

C. Empirical benchmarks

In this section, we compare theATRIA algorithm with two
implementations of previously proposed nearest-neighbo
gorithms, the kd tree and box-assisted nearest-neigh
search@3#, on data sets of typesB and C. Distances were
calculated in theL` andL2 metrics.

The implementation of thekd tree with a sliding midpoint
splitting method was taken from the beta release ofANN

~version0.2! by the University of Maryland@15#. The box-
assisted nearest-neighbor algorithm was implemented by
authors. All code was compiled using the same comp
options and optimization settings. The output of the th
algorithms was checked, but except for permutations of
indices of neighbors within the same distance toq no differ-
ences were found.

Benchmarks~see Figs. 8 and 9 and Tables I and II! were
performed for data sets of increasing size. For the sma
data set size, 10 000 query points were used, for all o
sizes 20 000 reference (5query) points were chosen from
the data set. The timing values include preprocessing
search time for exact nearest-neighbor queries withk512.

Though theATRIA algorithm is clearly the fastest on da
setC, it is outperformed by thekd tree algorithm on data se
B when distances are calculated in theL` metric~see Fig. 8!.
Especially for small data set sizes, theATRIA algorithm needs
a significantly longer time to execute the neighbor quer
ch
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However, one must keep in mind thatATRIA is not optimized
for one special kind of metric, while the coordinatewi
splitting employed in thekd tree combines well with the
computation of distances in theL` metric. In fact, thekd
tree’s bad performance on data sets of typeC is caused
mainly by the very long preprocessing time required~see
Table II!, which may indicate an unlucky choice of the spl
ting rule ~the splitting rule recommended by the authors
the ANN package was used!. But even with one second ran
theATRIA algorithm still delivers comparable and stable tim
ing results with a moderate amount of preprocessing, wh
can be important when the number of queries is mu
smaller than the number of data set points.

VI. DISCUSSION

We presented an efficient nearest-neighbor search a
rithm that performs well for data sets with small fractal d
mension, which are frequently encountered in the field
nonlinear signal processing. Another advantage of this a
rithm is that no explicit coordinate representation of the d
set or query points is required. Instead, a method for ca
lating distances must be provided, which can rely on an
bitrary metric. This allows use of this algorithm for neare
neighbor problems in rather unusual spaces, e.g., func
spaces or spaces of data base objects, even kernel func
similar to the ones used in support vector machines@16#
could be used to efficiently compute distances in extrem
high-dimensional feature spaces. Approximate neighbor q
ries optionally offer the possibility of speeding up the sea
operation in tradeoff for small errors in the returned neighb
distances.

When neighbors are searched in data sets of high fra
dimension, all interpoint distances become very similar~con-
centration of measure@17#! and an effective preselection o
clusters is no longer possible. Due to the additional overh
of preprocessing and managing search order, the total c
putation time can then be even larger than that of a br
force approach.

The presented algorithm for nearest-neighbor searchin
available as part of the software packageTSTOOL at http://
www.physik3.gwdg.de/tstool
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FIG. 10. Illustration for proof 1.



t

rs

re
ll
een

c.

2096 PRE 62MERKWIRTH, PARLITZ, AND LAUTERBORN
APPENDIX

Proof 1. By construction, we know that;x belonging to
the current clusterCi ~see Fig. 10!

d~ci ,x!<Ri .

From the triangle inequality it follows that

d~q,ci !<d~ci ,x!1d~q,x!,

d~q,ci !<Ri1d~q,x!⇒d~q,ci !2Ri<d~q,x!.
Proof 2. By construction, we know that;x belonging to

the current clusterCi ~see Fig. 11!

d~ci ,x!1gi<d~csister( i ) ,x!. ~A1!

From the triangle inequality it follows that

d~csister( i ) ,x!<d~q,csister( i )!1d~q,x!, ~A2!

d~ci ,q!<d~ci ,x!1d~q,x!, ~A3!

~A1!1~A2!⇒d~ci ,x!1gi<d~q,csister( i )!1d~q,x!,
~A4!

~A3!⇒d~ci ,q!2d~q,x!<d~ci ,x!, ~A5!

~A4!1~A5!⇒d~ci ,q!2d~q,csister( i )!1gi<2d~q,x!.
Proof 3. From the triangle inequality we know that;x

belonging to the current clusterCi ~see Fig. 12!

d~ci ,x!<d~ci ,q!1d~q,x!,

d~ci ,q!<d~ci ,x!1d~q,x!,

⇒ud~ci ,q!2d~ci ,x!u<d~q,x!.

Proof 4. Let ni
0PX ( i 51, . . . ,k) be the exact neares

neighbors to query pointq such that

FIG. 11. Illustration for proof 2.
s

a

0<d~ni
0 ,q!<d~ni 11

0 ,q!, i 51, . . . ,k21,

d~nk
0 ,q!<d~x,q!;xPX\$n1

0 , . . . ,nk
0%.

Thus, we know for any sorted set of preliminary neighbo
that

d~ni
0 ,q!<d~mi ,q!, i 51, . . . ,k.

If the search terminates when the criterion

d̂min.
d~mk ,q!

11e

is reached, all preliminary neighbors withd(mi ,q)
<d(mk ,q)/(11e) are exact ones and there are no mo
exact neighbors closer toq than this threshold, since a
points belonging to clusters up to this distance have b
exhaustively searched. Letj denote the highest indexi for
which this condition holds, otherwise setj to 0. For i
51, . . . ,j , mi5ni

0 and therefore condition~2! of Sec. IV F
is trivially fulfilled. We also know that

d~mk ,q!

11e
<d~mj 11 ,q!<¯<d~mk ,q! ~A6!

as well as

d~mk ,q!

11e
<d~nj 11

0 ,q!<¯<d~nk
0 ,q!

<d~mk ,q!⇒d~mk ,q!<~11e!d~nj 11
0 ,q!.

~A7!

Combining Eqs.~A6! and ~A7! results in

d~mj 11 ,q!<¯<d~mk ,q!<~11e!d~nj 11
0 ,q!.

Thus the preliminary neighbors fulfill condition 2 of Se
IV F for i 5 j 11, . . . ,k.

FIG. 12. Illustration for proof 3.
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