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Fast nearest-neighbor searching for nonlinear signal processing
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A fast algorithm for exact and approximate nearest-neighbor searching is presented that is suitable for tasks
encountered in nonlinear signal processing. Empirical benchmarks show that the algorithm’s performance
depends mainly on th@ractal) dimensionD 4 of the data set, which is usually smaller than the dimenBign
of the vector space in which the data points are embedded. We also compare the running time of our algorithm
with those of two previously proposed algorithms for nearest-neighbor searching.

PACS numbdps): 05.45—a, 07.05.Kf

[. INTRODUCTION Another advantage of the proposed algorithm is its rela-
tively low complexity. For data sets of fixed fractal dimen-
The task of finding one or more nearest neighbors in a&ion Dy, search time grows approximately linearly with the
D-dimensional space occurs in many fields of data processdimensionDg of the data spacg7]. The typical(not worst
ing, e.g., information retrieval in database applications, dat@as¢ memory consumption is of ord€(N).
mining, or, as in our case, nonlinear time-series analysis
[1-3], especially for modeling and prediction of time series
(via time-delay reconstructiofn4], fast correlation sum com-
putation(correlation dimension, generalized mutual informa- A. Top-down construction of the cluster tree
tion, etc), estimation of the Renyi dimension spectr{fshor

Lyapunov exp'onentE4], and nonlinear noise reductiqfi]. (Fig. 1) is recursively constructed. Alustercontains a dis-

Ngarest-nelghbor searching and rela_ted problgms_of COMnct subset of the points of the original data set. Addition-
putational geometry have been extensively studied in com

¢ ; 4 patt i dt d out not télly, it is characterized by its center poinand the minimal
puter science and pattern recognition and turned out not 1p, ;s g that is needed to cover all points belonging to this
fall into the class of computationally hard problems. Search

ing th t neiahbor t int in a dataxset si cluster. A new level of the binary tree is constructed by
Ing the nearest neighbor to every point in a da a‘_’se size dividing (splitting) each cluster of the current level into two
N using a naive algorithniwhich calculates all interpoint

. X . .~ child clusters(subclusters At any tree level, each point of
distancesis of orderO(N?). However, for practical appli- { 5 y P

. . ; the data set is an element of exactly one cluster.
cations it would be useful to have an algorithm of order
O(N logN). While the specific details of the algorithms that
have been proposed so far vary, a common approach is to

Ill. PREPROCESSING PHASE

During the preprocessing phase, a hierarchical cluster tree

B. Clustering strategy

build up an auxiliary indexing data structure in theepro- In the following section we present the main steps of the
cessing phasahich helps finding nearest neighbors during recursive clustering algorithm.
the search phase (1) Choose two cluster centers, one for each of the two
new child clusters. For this choice, many different selection
Il. ATRIA: A TRIANGLE INEQUALITY BASED schemes are possible. We propose a very simple one: If the
ALGORITHM current cluster is the root cluster, pick randomly a paiout

The algorithm to be presented is based onakeA algo-
rithm proposed by McNamgg]. To prune the search space,

the algorithm employs the triangle inequality:

Level 0 Root cluster

d(x,z)=d(x,y)+d(y,z)

for any triple of pointsx, y, and z.

Hered(x,y) denotes the distance between poixtndy.

Since this inequality is valid for any metric, there is no
limitation in what kind of metric is used to calculate dis-
tances. We successfully used the algorithm to compute

neighbors in spherical geometry. Additionally, the prepro-
cessing is independent of the type of queriesact or ap- Level IT
proximate that will be executed during the search phase. iy

*Email address: C.Merkwirth@dpi.physik.uni-goettingen.de FIG. 1. First levels of the hierarchical cluster tree.

Level 1

Level I
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of the points belonging to this cluster. Otherwise ddte the sese [17] 18] 21[ 34] 12] 6 | 19[ 35] 42] 8 | 9 [43] 45] 31] 2 | 3] 16] 20] 22[ 33] 48] -+
current cluster's center. Then determine the pantwith

maximal distance frona. This point becomes the center of indices before splitting
the first(right) child cluster. Now the centey; of the second

(left) child cluster is the point that has maximal distance to splitting
C.

(2) Assign each point of the current cluster to one of itS current cluster’s current cluster’s
child clusters. As criterion the distance to the child cluster section start section end
centers is used: Choose the nearer one.

(3) Compute and store the enclosing raliof both newly left child’s section  right child’s section
created subclusters. start end start end

(4) Proceed recursively as long as a cluster contains more /
thanL points L~30, ... 200). A cluster that is not further
divided into subclusters is calledterminal nodeof the clus- =[] 22[ 21 34] 3 [ 2 [19]35] 0 [ 8 4] 43[ 45 31] 6 [12] 16] 20[ 18] 33] 48] -+~
ter tree.

(5) When a terminal node is reached, compute and store FIG. 2. Splitting the current cluster. The section boundaries of

the distances from the cluster's center to all points belongini‘e current cluster do not change during the splitting. Entries are
to this cluster xchanged only within the current section to segregate the indices

of the left and right child clusters.
C. Implementation details section boundaries are the same as for the index acr@ur
Points of the input data set are addressed using an integi#nplementation of the algorithm uses an array of tugels
index, ranging from 1 tdN. To handle these indices, it is not dex, distanceto efficiently access both quantities.
necessary to store an array of sixefor each level of the
cluster tree, actually, we just need to hold one linear afay IV. SEARCH PHASE
of sizeN in memory. The indices of the points belonging to

the same cluster are stored in a contiguous section of the A. Prune and conquer

array A. Searching for one or more nearest neighbors can be trivi-
The data structure that represents one cluster stores thgly done by computing distances from the query pajrib
following attributes all points of the data set and sorting these distances in in-
c is the index of the point that is designated as this cluscreasing order. However, this leads to a time complexity of
ter's center. O(N) for a single query. In order to reduce the number of
R the maximal distance from the center point to any pointdistance calculations, we have to prune the search tree. This
belonging to this cluster, can be done by excluding clusters from the search that are

very far away from the query point and cannot therefore
contain a nearest neighbor. To quantify this rule, the algo-
rithm has to maintain a sorted table of points; (i

g the points belonging to the parent cluster are assigned t& 1. - - - k) that are close tg. Thesepreliminary neighbors
this cluster when their distance to this clusters center igvill be successively replaced by bett@rearej candidates
smaller than their distance to the center of this cluster's sisuntil the final set of nearest neighbors is found.
ter. During preprocessing, the minimum of the difference of Once a few preliminary neighbors have been inserted into

R=maxd(c,x).
xeC

the distances is computed and storedyin this table, the value(my,q) (distance from query poirg to
thekth nearest point found so fais given, which is an upper
g=min[d(Cgjsteriy ,X) —d(C,x)]. limit of the distance to the actudtth nearest neighbor.
xeC d(my,q) is used within three rules.

start is the beginning of the section ghwhere the indi- (1) Exclude cluster if

ces of this cluster’s points are stored.
end is the end of the section oA where the indices of _swap
this cluster’s points are stored. indices
left, right are pointers to the left and right child clusters
(used only in internal nodes

weee [17]22] 21] 34] 3] 6 [19] 35] 42] 8 | 9 [43] 45] 31] 2 [12] 16] 20[18] 33 48] -+~

The root cluster'start value points to the beginning &, " | l —
its end value toA’s end. To split a cluster into subclusters, it alfeagli_’ezomd i j Already sorted
—_— - area

is not necessary to alter the start and end of the section where
the indices of the current cluster's points are stored. Only G 3. Exchanging indices inside current section. Indices of
permutations of the indices inside this section are needefhints that arégeometrically closer to the leftright) child’s center
(see Fig. 2 These permutations can be performed using @&re moved to the leftright) side of the section. During sorting,
quicksort-like schemg8] to assign points to the nearest clus- pointersi and j move inward from the current cluster's section
ter center(Fig. 3). boundaries, stopping at indices that need to be exchanged. The po-

Storing distances to the center for points in terminal nodesition where both pointers meet defines the section boundaries of
can also be done using just one linear array of lemgtiAll the new child clusters.
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d(m, ’q)<amin(i) (1) C. Priority queue controlled search order

The order in which the nodes of the tree are searched is

- o . crucial to minimize the overall number of distance calcula-
wheredpn(i) gives a lower bound on the distances from theyons ysually, a stack is used to control the tree traversal

query point to any point inside clustetfor details, see Sec. (gepth firsy. The disadvantage of this method is that, once a

IVB). - . ) cluster is inserted into the stack, it is not possible to alter the

(2) If clusteri is a terminal node, exclude any poiRt  qrger in which the clusters are processed, even if a more

belonging to this cluster from being searched if promising path through the cluster tree is discovered in the
meantime.

d(my,q)<[d(c;,q)—d(ci,x)|. To ensure that clusters are visited in order of increasing

distance toq, the proposed algorithm employs miority
. queue(PQ [8,10. The PQ guides the traversal through the
Valuesd(c; ,x) were computed and stored during the pre-yoe by keeping track of the nodes that have not been

g:gg(faz)smg phasgor details, see Sec. lllC and Appendix, searched yet. The PQ’s entries are sortedljy, so that the

(3) Partial distance calculation: To qualify a pointas ~ cluster with the smallest,, can efficiently be extracted
nearest-neighbor candidate, its distantx,q) must be from the top of the PQ. Due to rule 2 in Sec. IV B, ther@i;
smaller than the actual threshal@im,,q), otherwise the ex- @ny one path from the root cluster to one of the terminal
act value ofd(x,q) is not needed. This allows one to termi- nodes withd,;,=0 (the node the query point would fall into
nate the operation of calculatimfx,q) as soon as the partial if it were part of the preprocessiigfor all other terminal
distance exceedd(my,q) (details depend on the kind of nodesd,,;, is strictly positive[except for rather degenerate
distance function used9]. Carefully implemented, partial queries wherel(c; ,q) equalsd(Cs;steriy .a) for all pairs of
distance calculation can seamlessly be integrated into thehild clusters.
search phase to further reduce computational effort. As in the
previous cas€?), this rule is applied only when scanning D. Processing a query

through the points inside a terminal node. ) ) ) ) )
This section outlines the search algorithm’s main loop and

the next two give the termination criteria for exact and ap-
B. Computing di, proximate queries. The main loop proceeds as follows.

To determine whether clustémeeds to be searched, we (mln't'a“zri )the sorted table of preliminary neighbors
135+« o alllK).

need an estimatélmm(i) of the (unknown actual smallest Insert the root cluster into the priority queue.
d|stancedmin(|)=m|nXEcid(x,q) from the query point to any Repeat the following sequence.

point inside this cluster so that<0d,,(i) <dmn(i). Three (i) Extract clusteiC with the smallestl,;, from the PQ.
lower bounds ord,,;, can easily be computed, using a mix- (i) Break if the termination criterion is reached.
ture of information from the preprocessing phase and dis- (iii) If C is a terminal node, scan through the cluster by
tances calculated while processing a query. computingd(x,q) Vxe C, obeying rule 2(see Sec. IV A

(1) d(ci,q)—R;. Hered(c;,q) denotes the distance be- and insertx into a sorted table of preliminary neighbors if
tween the query poirdg and the centec of clusteri, whileR;  d(x,q)<d(my,q).

is the cluster’s radiussee Appendix, proof)l (iv) Otherwise insert child clusters & into the PQ.
(2) 3[d(ci,q) —d(a,Csisteqi)) + 9i], whered(q,Csisteriy)
denotes the distance from the query point to the center of E. Exact queries

clusteri’s sister(see Appendix, proof)2
(3) Using the nesting property of the hierarchical cluster-

ing, a cluster'd,,;, cannot be smaller than its parents;, .
Since all three values are valid lower bounds on the actual

minimum distance, their maximum is as',signedat?qn(i). no better (i.e., nearer neighbor can be found in one of the
It can hardly be overstressed that estimating, is avery  remaining clusters. This is illustrated in Fig. 4, where both
crucial part of this algorithm. If we had an exact estimate, wethe decreasing distance to tkéh preliminary neighbor and
could selectively pick out only those terminal nodes that ac ; - . ;
tually contain one or more nearest neighb@hese are maxi- the eshma’Eejm,n_ of the minimal distance between theand
the cluster’s points are plotted. When both curves intersect,

malk clusters. Unfortunately, it Seems that it IS not possible the algorithm can terminate and return the preliminary neigh-
to compute the exact value df,;,, without explicitly calcu- borsmy, ... m, as exact nearest neighbars, . . . n .
lating distancesl(x,q) Vx of the given cluste€. Then, how- b ’ ’ ’

ever, it is too late to usd,;, to prune the search tree since
the work that should be avoided is already done.

We formulated all inequalities that arose during the tra- Approximate queries can be seen as an extension to the
versal of the cluster tree into a linear programming problemexact problem. If one is not interested in getting kheearest
which, to our surprise, did not yield better estimatesd@y,  neighbors, but jusk neighbors that are not too far off the
than those that were obtained from the rules 1-3 describegixact onegin terms of their distancg¢sapproximate queries
above. can greatly reduce the search time. An additional input pa-

Once all clusters have been visited with

dmin=d(my,q),

F. Approximate queries



2092 MERKWIRTH, PARLITZ, AND LAUTERBORN PRE 62
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Clusters processed FIG. 5. Relative number of distance calculations needed to lo-

cate a point versus information dimensibr. The graph gived,

FIG. 4. Typical progression af(m,,q) andd;, for an exact . - .
query. The cluster tree contains more than 2300 nodes. The termfi(-)r data sets of type with D, varying from 2 to 12. For this

nation criterion is reached when both curves intersect. The long fl yste£1, :]hz |tnformtat|on _dltmgnsfldzholo%rggvs r_nc;notTor:ucally with int
part of thed(m,,q) curve shows that no better neighbors are found ~%° ach data set consisted o points. The query points

. ~ were randomly chosen from the data set itself; self-matches were
after the first 147 clusters have been processed althougt the explicitly allowed
curve is still lower until cluster 679 is searched. ’

—a 2_
rametere has to be provided that specifies the maximal al- (X1)n+1=2 (Xp- U b(XDs)“’
lowed error in the returned neighbor distancés;,q) with i

respect to the distance of the true nearest neighthor®,q) (X)n+1=(Xi=)n,  1=2,... Ds,
[11]:

with a=1.76 andb=0.1. Starting from random initial con-
d(nf,q)s(1+e)d(ni°,q), i=1, ... k. ) ditions, we digcarqed the first 5000 iterations and used the
next 200 000 iterations.
For e—0, an approximate query becomes an exact query. Data sets of typd were generated using a hyperchaotic
Approximate queries return before all clusters that mightgeneralization of the Resler system that was introduced by
contain exact nearest neighbors have been visited, whicRaier and Sahl¢13]:
speeds up the calculation, but might result in wrongly re-

ported nearest neighbors. However, often many returned ap- 5<1= —Xptaxp,
proximate neighbors are in fact exact ones and the average _

relative error in the distances is one or two orders smaller Xi=X{_1—Xit1, 1=2,...M—1,
than € would allow (see Sec. VB, dashed line in Fig. 7

below). Xm= €+bXy(Xy—-1—d),

Approximate queries can be implemented within the
framework of the previously outlined search algorithm bywith parameters=0.28,b=4, d=2, ande=0.1. The sys-

replacing the termination criterion with tem was integrated frofi=0 to T=21200 and the system
N d(my,q) 0
dmin>? 3 10

(see Appendix, proof 4 107"

V. EXPERIMENTAL RESULTS

2
All benchmark and timing measurements were performed <*10 |
on a Silicon Graphics Indigo2, runningix 6.5 as operating
system. The system was equipped with a 175 MHz Mips »
R1000 CPU, 256 Mbytes main memory and 1 Mbyte sec- 19 ¢
ondary level cache. Background load was kept as constant
and minimal as possible on a multiuser system to ensure 9
unbiased test conditions. Distances were, if not otherwise 10 > 4 6 8 10
stated, computed using the, metric. The only user-
specified parametdr of the ATRIA algorithm was set at 64
for all tests, which served as a good trade-off between tree FIG. 6. Relative number of distance calculations versus infor-

depth and cluster localization in past experiments. Empirii,ation dimensiorD,. The solid curve denotef; for data sets of

cally, little advantage could be drawn from optimizing this type A with D varying from 2 to 12. For this system, the informa-

Information Dimension D }

parameter for each data set individually. tion dimensionD, grows steadily wittD. The dashed line shows
~The data sets used in this section were generated by thrge,. for the same data sets. The dotted curve deficter data sets
different dynamical systems. of type B with fixed embedding dimensiob =24, butM varying

Data sets of typeé\ were generated by Bs-dimensional  from 3 to 11(odd values only The dashed-dotted line showsg
generalization of the iterated Hen map[12]: for the same data sets. Each data set consisted of 200 000 points.
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<] FIG. 9. Sum of preprocessing and search time for box-assisted
& nearest-neighbor sear¢tiotted curve, kd tree (dashed curve and
100F e the proposedTRrIA algorithm(solid curve versus sizéN of data set
e m == m T T T C. Twelve exact nearest neighbors in the andL, metrics had to
05 1 15 2 be found to 20000 reference points which were chosen from the
x10° data set points, except for the smallest data set size of 10 000 points,
N where each point was used as a query point. Self-matches were
L, metric excluded. For detailed timing values, see Table II.
2000f ' ' '
state was sampled with T=0.1. The first 10 000 transient
samples were discarded. Thenwas used for a time-delay
%1500' 1 reconstruction with an embedding dimensionaf= 24 and
E a time delay of AT. The resulting data set was cropped to
o 200000 time-delay vectors.
£1000F .
@ Data setC was generated using the Lorenz system of
3 three ordinary differential equations:
& 500t :
. X1= 0(X1~ X2),

FIG. 8. Sum of preprocessing and search time for box-assisted
nearest-neighbor sear¢tiotted curve kd tree (dashed curve and
the proposedTRIA algorithm(solid curve versus sizeN of data set

Xp=TIX1— X3~ X1X3,

X3:X1X2_ bX3,

with parametersr=—10,b=

—$%, andr=28. The system
was integrated fronT=0 to T=1500 and the system state

B with M=5. Twelve exact nearest neighbors in the and L, was sampled withAT=0.025. The first 40000 transient
metrics had to be found to 20000 reference points which weréamples were discarded. Thepwas used for a time-delay
chosen from the data set points, except for the smallest data set siggconstruction with an embedding dimensionDaf= 25 and

of 10 000 points, where each point was used as a query point. Sel& time delay ofAT. The resulting data set was cropped to
matches were excluded. For detailed timing values, see Table I. 500 000 time-delay vectors.
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TABLE I. Comparison ofkd tree (ANN), box-assisted nearest-neighbor seaiB®X), and ATRIA on data seB with M=5 andD;
~4.3. N denotes the number of data set points. Twelve exact nearest neighbors in blothathéL , metrics had to be found s query
points which were chosen from the data set; therefore self-matches were excluded. For each metric two values are given. The left one

specifies the preprocessing time, the right gives the total search time. Timing values are measured in seconds with a resolution of one second,
so a value of zero seconds just indicates a time smaller than one second.

tann teox taTRIA
N Nret Lo LZ L. I-2 L. L2
10 10
1 1 1 9 0 44 0 25 0 99 1 22 0 20
2 2 3 21 2 105 0 104 0 408 1 69 0 56
3 2 4 22 4 108 0 145 0 568 1 79 1 58
5 2 8 24 8 111 0 211 0 817 2 89 1 65
8 2 15 25 14 118 0 300 0 1149 3 97 3 72
10 2 19 27 20 118 1 347 1 1330 5 101 4 74
20 2 47 28 47 117 1 533 1 2060 9 95 9 73

A. Computational complexity versus the data set’s fractal

from 3 to 11(odd values onlyto produce data sets of vary-
dimension

ing fractal dimensioD4. As a measure foD4, we employ

To give a hardware independent index for the computathe informationdimensionD, [14].

tional costs of nearest-neighbor searching, we use the frac- The tests consisted in Searching the exact nearest neighbor

tion f, of distance calculations needed to fikdeighbors of ~ or the 128 exact nearest neighbors of each of the 5000 query

a given query point, divided by the total number of pointspoints. Note the logarithmic scale of tiigaxis. The number

and averaged over a large number of queries. Since the queoy distance calculations grows almost exponentially viith

points were randomly chosen from each data set, selfAt higher D4, the increase starts to slow down because the

matches had to be excludéidcating an existing point can number of distance calculations needed to find the nearest

be performed almost regardless of both the data space dieighbors approaches the total number of data set points.

mension and the fractal dimension of the data set; see Fig. 5Then, of coursef, converges to 1 and there is no advantage
For the brute force methofl, equals 1(the distances to in preferring this algorithm over a brute force approach.

all points of the data set have to be computed in order to find Despite the very different dimensidy of the data space,

the nearest neighbgrsAn efficient algorithm should yield the resulting curves,; and fq,g are quite similar for both

fractionsf, much smaller than 1. types of data sets. Focusing on the first intersection of the
Figure 6 showds; andf,gfor data sets of type& andB. curves, data sei’s data space dimensiddg equals 3, while

While the data space dimensi@y varies from 2 to 12 for data seB’s Dy is 24. This clearly indicates that this dimen-

the data sets of typ#, it is held constant at 24 for the data sion is of little importance for the search efficiency of the

sets of typeB, where the system dimensidvi is increased algorithm. Of course, the absolute search time grows with

TABLE Il. Comparison ofkd tree (ANN), box-assisted nearest-neighbor sea8®X), and ATRIA on data seC with D;~2.05. N
denotes the number of data set points. Twelve exact nearest neighbors in bbthahdL, metrics had to be found tN,; query points
which were chosen from the data set; therefore self-matches were excluded. For each metric two values are given. The left one specifies the

preprocessing time, the right gives the total search time. Timing values are measured in seconds with a resolution of one second, so a value
of zero seconds just indicates a time smaller than one second.

tann teox taTRIA
N Nref L L L. Lo L. L,
10* 10*
1 1 2 3 1 6 0 7 0 13 1 3 0 4
2 2 5 10 5 15 0 21 0 42 1 8 1 8
3 2 11 9 10 16 1 24 0 54 1 8 1 8
5 2 22 11 23 17 1 29 0 70 2 8 2 8
8 2 41 11 41 18 0 35 1 86 3 8 3 9
10 2 54 11 55 18 0 39 0 96 5 9 4 9
20 2 140 11 140 19 1 55 1 131 9 10 8 10
30 2 249 12 249 20 1 69 1 159 14 10 13 10
40 2 326 12 326 20 2 79 2 185 20 10 18 10
50 2 430 13 428 24 2 20 2 209 25 10 23 10
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increasingD even if f;, remains constant because of the However, one must keep in mind theitrIA is not optimized
increasing number of arithmetic operations needed for eactpr one special kind of metric, while the coordinatewise
distance calculation. splitting employed in thekd tree combines well with the
The particular choice oD, out of the continuous spec- computation of distances in the. metric. In fact, thekd
trum of Renyi dimension®, is arbitrary and was motivated tree’s bad performance on data sets of typds caused
mainly by the fact thaD, can easily be computed from the Mainly by the very long preprocessing time requireee

distribution of neighbor distancés]. However,D, does not  1aple I, which may indicate an unlucky choice of the split-
at all describe the distribution of the data set points com{ing rule (the splitting rule recommended by the authors of

pletely and may thus only serve as an estimator for the e the ANN package was usgdBut even with one second rank

) . he ATRIA algorithm still delivers comparable and stable tim-
pected perfomance of the nearest-neighbor algorithm. ing results with a moderate amount of preprocessing, which

. . . o can be important when the number of queries is much
B. Speedup and relative error for increasing the approximation  gmaller than the number of data set points.
parameter €

Fifty thousand points of data sét with Dg=8 andDy VI. DISCUSSION
~5.9 were used to calculate speedup and errors introduced
by approximate queries. The task consisted in finding th(?it
eight nearest neighbor@xcluding self-matchesto 10 000
query points that were chosen randomly out of the data se

We presented an efficient nearest-neighbor search algo-
hm that performs well for data sets with small fractal di-
ension, which are frequently encountered in the field of
) L . ; .~ nhonlinear signal processing. Another advantage of this algo-
In F|g. 7, the So.“d I[ne depicts the speedu_p obtamed USINGithm is that no explicit coordinate representation of the data
approxmate_querles instead of exact quenes for INCreasingy; o guery points is required. Instead, a method for calcu-
valuets ofe g'r?] the cage O]ffzto’ approxllm?t(ta gul;erlz; .3Te lating distances must be provided, which can rely on an ar-
exac one); € Speedup Tfactor was caiculated by dividing bitrary metric. This allows use of this algorithm for nearest-
the execution time of the exact queries by the execution t'm‘ﬁeighbor problems in rather unusual spaces, e.g., function

of thg correfpondlng ?‘pfimx'lflnt?‘t? querléprepro;ei_zng spaces or spaces of data base objects, even kernel functions
was don€ only once prior 1o all iming MEASUremente = qipyiar 1o the ones used in support vector machifks]

dashed line shows the relative distance error, averaged OVEE 1d be used to efficiently compute distances in extremely

all neighbors and queries. The dotted line denotes the maXHigh-dimensional feature spaces. Approximate neighbor que-

mum relative error of the reported nearest-neighbor dIS'ries optionally offer the possibility of speeding up the search

tances. Fm? as large as 7, the average relative error in theoperation in tradeoff for small errors in the returned neighbor
neighbor distances does not exceed 10%. This is astoRfisiances
inglishly small sincee=7 would allow an error up to 700%. '

_ e When neighbors are searched in data sets of high fractal
Agm_n, this d|§crepancy seems to be a consequence of trb‘?mension, all interpoint distances become very sinitan-
inability to estimated,,;,, exactly.

centration of measurgl?7]) and an effective preselection of
clusters is no longer possible. Due to the additional overhead
C. Empirical benchmarks of preprocessing and managing search order, the total com-
In this section, we compare thgRiA algorithm with two ~ putation time can then be even larger than that of a brute
implementations of previously proposed nearest-neighbor aforce approach.
gorithms, thekd tree and box-assisted nearest-neighbor The presented algorithm for nearest-neighbor searching is
search[3], on data sets of typeB and C. Distances were available as part of the software packargrooL at http:/
calculated in the.., andL, metrics. www.physik3.gwdg.de/tstool
The implementation of thkd tree with a sliding midpoint
splitting method was taken from the beta releaseanf ACKNOWLEDGMENT

(VerSi0n0.2) by the University of Marylanc{lS]. The box- The authors acknow|edge financial Support by the

assisted nearest-neighbor algorithm was implemented by thgyndesministerium fuBildung und Forschung, Grant No.
authors. All code was compiled using the same compilen 3N7038/9.

options and optimization settings. The output of the three

algorithms was checked, but except for permutations of the preliminary

indices of neighbors within the same distancejteo differ- nearest neighbor

ences were found. \
Benchmarkgsee Figs. 8 and 9 and Tables | anfiiere cluster center m,

performed for data sets of increasing size. For the smallest
data set size, 10000 query points were used, for all other
sizes 20000 reference=(query) points were chosen from “ d(c;,9)
the data set. The timing values include preprocessing and
search time for exact nearest-neighbor queries Wit 2.
Though theaTrIA algorithm is clearly the fastest on data
setC, it is outperformed by th&d tree algorithm on data set
B when distances are calculated in themetric (see Fig. 8. cluster C,

Especially for small data set sizes, #merIA algorithm needs
a significantly longer time to execute the neighbor queries. FIG. 10. lllustration for proof 1.

query point
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preliminary
nearest neighbor

~m,

d(csister ’ q)

Co:
sister ¢

d(c;,x) d(Csigters X) cluster center

query point
FIG. 11. lllustration for proof 2.

APPENDIX
Proof 1 By construction, we know thafx belonging to cluster i
the current clusteC; (see Fig. 1D FIG. 12. lllustration for proof 3.
d(ci )=<R;. o=d(n?,q)=<d(n®,.q), i=1,...k-1,
From the triangle inequality it follows that d(ny,q)=d(x,q)¥xeX\{n?, ... n}}.

Thus, we know for any sorted set of preliminary neighbors

d(Qaci)gd(Ci,X)"‘d(qu)v that

d(qg,ci)<R;+d(q,x)=d(q,c)) —R;=d(q,x). din?,q)<d(m;,q), i=1,...k
Proof 2 By construction, we know tha¥ x belonging to

the current cluste€; (see Fig. 11 If the search terminates when the criterion

a d(mk,Q)
d(ci ) + i =d(Csisteri) X)- (A1) min” T e
From the triangle inequality it follows that is reached, all preliminary neighbors withld(m;,q)
=d(m,,q)/(1+¢€) are exact ones and there are no more
d(Csisteri) »X) <d(Q,Csjsteriy) T d(d,X), (A2)  exact neighbors closer tq than this threshold, since all
points belonging to clusters up to this distance have been
d(c. .q)=d(c; ,x)+d(q,x), A3 exhaustively searched. Le¢tdenote the highest indexfor
(€ @)=d(c;.x)+d(q.x) (A3) which this cond(i)tion holds, otherwise sgtto 0. For i
_ _ o =1,...J, m=n; and therefore conditiof2) of Sec. IV F
(Al +(A2)=d(c ,X)+g,$d(q,cs,ste,(|))+d(q,x),(A4) is trivially fulfilled. We also know that
d(my,q)
(A3)=d(c;,q)—d(g,x)=<d(c;,x), (A5) 3 ~dmjg)<-=<d(my,) (A6)
(A4)+ (A5)=d(c;,q) —d(Q,Csjsteriy) T gi=2d(q,X). as well as
Proof 3 From the triangle inequality we know th&tx d(my,q)
belonging to the current clust€&; (see Fig. 12 ?$d(n?ﬂ,q)$'--$d(n8,q)
d(c;,x)=<d(c;,q)+d(g,x), <d(mg,q)=d(my,q)=<(1+e)d(n},,.q).
d(ci,q)=d(c x) +d(q,%), a
Combining Eqs(A6) and (A7) results in
=1d(c;,q) —d(c; ,x)|=<d(q,x).
ld(er.@)—dte; x)|=d(a.x) d(my 1, 0)==d(m, ) =(1+)d(n?;.q).
Proof 4 Let n’eX (i=1,... k) be the exact nearest Thus the preliminary neighbors fulfill condition 2 of Sec.

neighbors to query poing such that IVFfori=j+1,... k.
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