2. Background

2.1 Sorting algorithms

One of the basic problems on algorithm design is the sorting problem, defined as
for a given input sequence A of n numbers (ai,as;...,a,) to find a permutation
A’ = (a}, a5, ...,al) that yields ‘v%‘a': 2, el e R

Sorting algorithms are commonly used as intermediate steps for other processes,

making them one of the most fundamental procedures to execute on computing
pro.bleme.-oﬁ&?rategies for solving this problem can vary depending on the input ——=
case constraints. For example, the number of repeated elements, their distribution,

if there is some known info beforehand to accelerate the process, etc.

2.1.1 Types of sorting algorithms

The best reference on how to classify and understand which algorithm is best suitable

for a given case is A survey of adaptive sorting algorithms by Vladimir Estivi B

J
which gathers all the information at that time rega.rdlng wdaptive sorting algorithms N\O\&'

[12], disorder measures and e:rpected-case and worst-case sorting.

A sorting ‘algorithm is said to be adaptive if' the time taken to solve the problem
is a smooth growing function of the size and the measure of disorder of a given
sequence. Note that the term array is not used on this definition as it extrapolates
any generic sequence that is not bound to be configous.

2.1.2 Measuring disorder

The concept of disorder measure is hlghly relative to the problem to be solved and as

expected not all measures work for a.rl cases. One of the nllost common metrics used
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on partition-based algorithms is the number of inversion§ required to sort a given
array. While this holds true for algorithms like insertsort.s hich H/e}their running——=
time affected by how the elements are arranged in the sequence, J#s'not the case ==
of mergesort, which is not an adaptive algorithm given that has a stable running
time regardless on how the elements are distributed. Whilst the running time is a
function of the size: ﬁ;?lot in function of the sequence. Estivil [7] on his survey =
describes ten functions that can be used to measure disorder on an array when used
on adaptive sorting algorithms.
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Expected case and Worst-case adaptive internal sorting

cAO

One of the classification of adaptive sorting algorithms is the Ezpected-case adaptive
(internal) Sorting, on which their design is driven by that worst cases are unlikely ——— l.:
0 happen in practice,jo, there is no harm on using it, in contrast of the definition

of Worst-case adaptive (internal) sorting, which assumes a pessimistic view hence
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the design is driven to ensure a deterministic worst case running time and asymitotic ==
complexity. A2 P ?—{-D 7

The approach taken by such algorithms can be classified as dist 'buiz'o_ J-in which ot
a “natural distribution” of the sequence is expected to be éolvélﬁr randomized@:_-;:":
on which their behﬁour is not related on how the sequence is distributed at atb‘:‘
There is a huge problem when dealing with distributional approaches as they tend
to be very sensible to changes on the sequence distribution, making them suitable oﬂ\lq —_—
to highly constrained problems on specific-purpose algorithmS, —

On the other hand, randomized approaches have the benefit of generality and

being rather simple to Eort to Qt?‘er implementations due to their nature.
v
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) By example, ta:ke-es-g;e;mple the QuickSelecj orithn ik "=
] 5 g w \ g e
5 7 : . useg &2& ﬁnodrthe element g __.—-\‘
ve the k—th position era~given sequence A“This searching algorithm can be classified ==

as partition-based, given that the process in charge of preserving the invariant is the
e M, ﬁ.lw\ A
partition stage. - Y e
2 / d :

As it can be seen¥"the beha@our of quickselect depends on how the element is =
selected in the select procedure. Then, we can implement two versions of select,
namely selec@ted and sele hich yields different values in order to intro- ——=~
duce randomization into quz’ckselec*{ (szLLN'L\
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Algorithm 1 QuickSelect <efinitiort
procedure quickselect(A, 1, j, k)
. pldz + select(i, 7)

?
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3: pldz + partition(A, pldz,i,j)

4: if p/dx = k then return A,

5 if pIdz < k then return quickselect(A, k, j)
6 if pIdz > k then return quickselect(A,1, k)

Algorithm 2 Fixed Selection
1: procedure ge(ect-fixed(i, 7) )

2: return S%Q

In such &:es, whilst the randomized version of QuickSelect will take average

time of to complete the task, we can see that for the fixed pivot version, <«

Yaueﬁ\'w i@(ftrw)

it depends on the distribution of data, which can bias the pivot result. Now, we =—
have two versions of QuickSelect algorithm, with both distributional and randomized
strategies.

Estivil [7] on his survey lists 10 different metrics of disorder to be used when
studing adaptive sorting algorithms. For the sake understanding, we will e that (< ¥
S is any sequence of numbers in any order and W1, W, are instances of S yi . &

L} 3 /
Wi =6,2,4,7,3,1,9,5, 10,8 ?é &wg JOM Lk)\
b W, =6,587,10,9,12,11,4,3,2 - \ e €

The definitions are as follows:

Maximum inversion distance (Dis)

Defined as the largest distance determined by an inversion of a pair of elements in
“ a given sequence [6]. By example, in Wy, 5 and 6 are the elements which require
an inversion in order to be locally sorted whom are the most furthest apart in the
sequence, hence Dis(W;) = 7.

Algorithm 3 Random selection

1: procedure select_random(i, j)
2 return random_between(i, j)

* ~
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Maximum sorting distance (Max)"

This metric considers that local disorder is not as important as global disorder, under

the premise that when indexing objects if they are grouped in some way, then it is

easy to find similar elementsj on the other ha.ndsif there is an element belonging to _
a group and it is on another place far away in the sequence then it is hard to find=—"
such element. Then Maxz is defined as the largest distance that X an element of —
the sequence needs to travel in_o;der to be in its sorted position[6]. By example, ————
Maz(W;) = 5,given that if;equirei to move 5 positions to the leftm” order to be, ——
sorted® J “:q i ) i
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‘Minimum number of exchanges (Exc)

Based on the premise that the number of performed operations is important to
evaluate a sorting algorithm, a simple operation to measure is the minimum number
of swaps between indices involved on a given sorting operation.ﬁen Exc is defined ==
as the ,\minimum number of exchanges required to sort the entire sequence[10]. By

example, as it is impossible to sort W, in fewer than 7 exchange operations, then

Ezc(W1) =T. MO WD @ pe
&2 crem Prz/o conand en

: Swaf? »
Minimum elements to be removed (Rem)

Another definition of disorder is as a phenomena produced by the incorrect insertion

of elements in a sequence[8]. In this fashion, we can define the minimum amount of

elements to be removed in order to\ o longest sorted sequence. By example, by ———

removing 5 elements from W; we cai © btain a sorted sequence, then Rem(W;) = 5.

A OAAO/‘L ~-’A¢d—?~

Minimum number of ascending portions (Runs%

: o o
Driven by the definition of partial sorting[5], any sorted subsequence of S 1mphes-/"

that locally has a minimum amount of ascending runs as 1 to be sorted,‘ﬁlen st T
other measure is the minimum number of ascending runs that can be found on any
sequence, given that the elements that compose the sequence must be in the same
order as found in the original sequence. In this case, W, has 5 ascending runs, hence
Runs(Wy) = 5. Knuth defined this phenomena as step-downs 8]. - aa
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Minimum number of shulfled subsequences (SUS)

=
7OA generalization of Runs but ignoring the fact that the elementn the same —— .

SUS is defined as the minimum number of ascenaipg subsequences in awhich welcan+
partition a sequence[4]. In this case W, has 7 ascending runs, then, SUS(Ws) = 5; ~————

o- \ Minimum number of shuffled monotone subsequences (SMS.SUS)

4 \é A generalization of SUS, now the elements can be grouped as a subsequence as long
8 & as they are sorted in any way generating a monotone subsequence. For- W, we
3 3 can get 2 ascending shuffled sequences|4] and 1 descending shuffled sequence, hence ~—s
i SMS(Ws) = 3. ; »
3

o

Sorted lists constructed by Melsort (Enc)

Skiena’s Melsort [16] takes another approach at presortnedness by treating sequences
as a set of enroached lists, which is similar to mergesort but chunks are generated

not by the recursive call itself but rather by a series of deque operations[2]. Then

the number of enroached lists generated by Melsort are a measure of disorder which
Skiena denoted as Enc. For W the number of enroached lists generated is 2, hence
Enc(W1) =2.

Oscilation of elements in a sequence (Osc)

Defined by Levcopoulos as a metric of presortnedness for heapsort, Osc is defined for

each element as the number of intersections for a given element over the cartesian

tree of a sequence[9], motivated by the geometric interpretation of the sequence itself./'_—\
In the case of Wlsas the cartesian tree manifests 5 crosses between its elements, ==

iy ¢ %,.._’ o vn ar nam ‘\'1‘6?15
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Regional insertion sort (Reg)

-

o “
Based on the internal workings of regional insertion sort[l] which is a histox;g'a’l —

sorting algorithm. Then Reg is the value of the time dims&sion required to sort g
. w ! 3 ¢
certain sequence. Q«[ & Yl Qi men VoS . 5
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2.2 Incremental Sortin

While sorting algorithms can be feen as a straightforward process, the definition of
W s&rting can be extende(.i&s partial sorting and incremental sorting, as in practice, -
7S L ® sorting is used as e intermediate step of many procedures, it is not mandatory =/ __

to always sort the entire array, just™ort a fragment of interest. 8

/"' As partitions of a sequence can be seen as a equivalence relationship between the

pivot and the leftmost and rightmost segments|5], then for a given sequence A€ A, -

,  we can define a partial order if the relationship on the elements of A is reflexive, _

L3

3

L antisymmetric and transitive and then A’ is called a partially ordered sequence.

egre
Rk

S
A

Using this very same definition of partial order, if we retrieve the elements of a

3 sequence and store them as A, -a partially sorted sequence of A, if the elements are,

<~

retrieved in a way that subsecuential pushes to the A, is always ordered, then it is
said that A is being incrementally sorted. -
A good example of the uses of this kind of sorting are the results given by a web
search engine. When a user inputs a query, regardless of the size of the database,
the search engine paginates the results and presents only the first page of results.
It is not actually needed to sort all the results, rather to get the most relevants,
then there is no need to waste time sorting all the elements for a query that can be

executed only one time.

2 F TR Twremoan bl Quidesont

Incremental QuickSort (IQS) [14] is a variant of QuickSelect designed for usage on

incremental sorting problems, intended to be a direct replacement of HeapSort on
Kruskal’s algorithm. ’

L 2
\&E executing sequentially QuickSelect for 1,2, 3, ...,n in order, as it is yielding each one /?
6 2 of those elements in A already ordered. The advantage of using IQS is that since the
\4), . stack stores all the previous call results, in average all subsecuential calls are cheaper 4
3\ N than the first dife, hence the n * loge(n) Tupning time.
. ‘e % . P Ny e * A v
%
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Algorithm 4 IncrementalQuickSort
procedure igs(A, i, S)
if < S.top() then
S.pop() return A[i]

1;

2

3

4 pivot + select(i, S.top() — 1)
5

6

7

pivot’ < partition(A, pivot, i, S.top() — 1)
: S.push(pivot’)
:  return igs(A,i, S)

orst case % Com> h-' Lan LLAL\a ) v € P‘-‘O'Ld.
dor erle coave % blaplal
A way to force a worst case execution is to force the pivot selection to choose each
time a pivot that makes a whole partition of the array and leaves it at the end. To

force this we use a sequence of elements ordered in a decreasing way and we force
the pivot selection to always select the first element of the sequence.

222 HGS Expande [uia it (Tantvos ‘ ""‘-u
b\l_'\ Aw‘ Sligﬁ:lyyl vu‘bo AMUW\“"‘( UACL o 42,

more complex version of IQS, intented to avoid Worst case running time ————
o#4Q5>by changing the pivot selection strategy on function of how many recursive ——
calls has executed so far[15].

TD A‘P S0 / ‘6«@1& partition algorithm uses the information of the relative position of the given
pivot he partition stage to determine if the pivot obtained can be refined or ——
not by using another pivot selection techm'que.fl this case the used algorithm is ==
the median of medians 3], which guarantees that the medias} selected will belong to
P7onP30.<,.o<,f\£c« (e & epo  —

If the median returned by select does not belong to that segment, then median
of medians is executed in order to guarantee a decrease of the search space for the

next call.

Algorithm overview ‘b

The reason behind why use median of medians is that has O(n) complexity, same as —
partition, preventing the asymtotic complexity to increase if such algorithm is used.
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2.3 Experimental algorithmics

Experimental algorithmics can be seen as a spin-off of Design of experiments,which———
is a statistic technique applied to understand how a process is affected by the rela-
tionships between its variables and external factors, by sistematically studying and
explaining the variation of information provided by altering the environment of the

same process|[17].
Mostly in algorithm design, pure mathematical and theoretical approaches are
taken in order to devise how to create, develop and optimize new algorithms, but
the gap between theoretical analysis and the actual implementation is still huge . with
-(/L\.L rise of new platforms and compute architectures nowadays. p— T
: M In the case of computer science, computational experiments g#e" by any means ..
—————are-not to replace theoretical analysis but rather to complement and speed up the
discovery process by guiding{via*results\their resea,rclftuning and implementatio’h <
The most complete recopilation of techniques and recommendations on how to
apply design of experiments to algorithm design is currently made by Cétherine
* McGeoch on her book A guide to experimental Algorithmics[11], gon which she in- —-
troduces a comphrensive guide on how to apply this method by introducing a fair

ol

.~

amount of guidelines for computer scientists.

2.3.1 Methodology overview

On experimental algorithmics the first step is to plan the involved experiments by
following the following steps in a cyclic way:

Planning

e Formulate a question.
e Assemble or build the test environment.

e Experiment design to address the duestiop. i

oo wot

At this stage we demd analyse any data yet as we only design the process to —=
study at a later stage. Given that the experimental sefup can alter the question at g
hand, this process tends to repeat until the experiment is fully assembled.
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In order/to determine if a given experiment is\viable £amely the workhorse ——=
experimenty the practitioner must perform a series of(pilot experiments)beforehand, i
in order to understand the environment, implementation challenges and the problem
itself. Pilot experiments are expected to be small experiments which answer a highly ——
coxﬁrained and specific question that drives towards the contruction of the workhorse
experiment, as workhorse experiments are expected to be complex in both setup,
execution and analysis.

At this stegit is expected that the practitioner develops metrics, indicators and ->—

setups which leads to a deeper understanding of the original question proposed.

Execution

€ 4m

\3" | Whilst this step is taken locally as a sequential process, execution step is require |
J during the planning stage for the pilot experiments as well as the execution state

\E g of the workhorse experiment by executing the experiment and gathering data by
» running tests and then analysing the data in order to glean information and insight.

If the question at hand is answered then the process is finished, otherwise the process

starts again from the planning stage taking the results from this stage as input.

2.3.2 Result dri'ven development

As results from experiment execution and analysis yield data from all the levels of

algorithm design, those results are used to tune up existing algorithms in order to

optimize their execution for certain cases, specific architectures or given contraints.
e One of the key benefits of this strategy is that whilst a pure theoretical approach
can be difficult or unfeasible in some cases, a systematic experimental approach can
\(0-.-; help to both guide theoretical analysis by giving insight and validating theoretical
\\3 results.
\3 This approach is widely used on metaheuristics tunning, as experiments are used
~% to fill the gap py simplyfing asumptions necessary to theory and the realistic use ==
9

'44‘ v

case, ¢ acterigd and profil

= —

average, and worst cases, suggestinew theorems ———
~——
—

%ﬁg"oretical analyses to realistic inputs. e ——

designed to support indexing and fast lookup. Navarro used experiments to guide

the choices of during the implementasion process and compare the finished product
?&Lhw: MmNy \Dc\()(, gNU“‘J MJ : A/LL‘\'\OMJ L«a‘oymumd
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