Towards Agda on the Web

Liang-Ting Chen ¢ AIM XXX VII (20 Nov 2023) ¢ Institute of Information Science, Academia Sinica

Problems

Installing Agda is Unreasonably Complicated
#5725, #6866, #ux:installation

* Our TA includes programmers, mathematicians, computer scientists, CS/math
students, and more.

 Familiarity with Haskell toolchain is implicitly assumed.

e Compiling AGDA with text-1cu is tricky because of 1cu4c.

 More information does not help (#6866).

 |LEAN 4’s quick installation has only 3 steps

 Get VS CODE, Open VS CODE, Get LEAN 4 extension

https://github.com/agda/agda/issues/6866
https://github.com/agda/agda/issues/6866
https://agda.readthedocs.io/en/latest/getting-started/installation.html#step-2-installing-the-agda-and-the-agda-mode-programs
https://github.com/agda/agda/issues/6866
https://lean-lang.org/lean4/doc/quickstart.html

Maintaining Binary Distributions for Different Platforms?
#5202

* License (maybe a non-issue?)

* |nstalling from prepackaged Agda is fine ...

e except for Windows users.
* Maintaining a GitHub workflow to compile the Windows bindist is costly.
 Packaging AGDA using Windows installer requires expertise.

o Still requires many steps to set up AGDA and AGDA mode.

 Where is GHCup-equivalent?

Updating Documentation is Costly and not Fun
#6866, again

* More information is sometime less useful.

* Relying on pull requests is not sustainable (less organised).
 hello world example confuses many people.

* | ean 4 has just enough information for casual users

» https://lean-lang.org/lean4/doc/quickstart.html

https://github.com/agda/agda/issues/6866
https://lean-lang.org/lean4/doc/quickstart.html

Agda Mode for Emacs isn’t Eternal
#5917, #6953, #6983

 Agda mode was implemented by Makoto Takeyama (not active) and is
maintained by Nils Anders Danielsson.

e The user base of Emacs is small.

* \ery few Elisp-fluent developers

* Philip Kaludercic (@phikal) has recently contributed a lot of PRs, but many of
them are stalled.

 Agda mode is broken with Emacs >28 and

 WSL only provides Emacs >28 (discussion)

https://github.com/agda/agda/issues/5917
https://github.com/agda/agda/issues/6953
https://github.com/agda/agda/issues/6983
https://github.com/phikal
https://agda.zulipchat.com/#narrow/stream/259644-newcomers/topic/Difficulty.20getting.20Emacs.20to.20find.20Agda

Agda Mode for VS Code is not Maintainable

https://github.com/banacorn/agda-mode-vscode

* Implemented originally by Ting-Gian Lua (@banacorn, only active for AIM) and

* Currently maintained by Zong-You Shih and me.

 Agda mode for VS Code is written in ReScript (!).

* The user base of ReScript is tiny.

https://github.com/banacorn/agda-mode-vscode
https://rescript-lang.org

Summary

* |nstalling Agda is more complicated than the typical practice.
* Maintaining binary distributions is subtle (especially for Windows).
 More information does not help.

* IMO, Agda modes for Emacs and VS Code seem eroding.

Vision

Agda Web

Essential criteria

 Agda should be usable in any modern browser.
e Cross-platform, incl. Linux, macOS, Windows, Android, and iOS
* |nstallation should still be possible and easy.
* Any library from a Git repository should be usable without manual download.

* (License notice is available on Hackage.)

Agda Web

Desirable criteria

» All features supported by the Agda mode for Emacs should also be
supported.

* Only one language should be used for dev.

 No additional repo to maintain— still agda/agda instead of agda/web-agda.

e Can be used for interactive textbook

* e.g., https://lovettsoftware.com/NaturalNumbers/

https://lovettsoftware.com/NaturalNumbers/

But, how?

Technologies

JavaScript backend merged

_ into GHC
G H C J avasc rl pt December 13, 2022 - 20 min read

and WASM Sylvain Henry Jeffrey M. Young

Haskell DevX Engineer @ |I0OG Haskell DevX Engineer @ |IOG
B aAC kend S Luite Stegeman Joshua Meredith
Haskell DevX Engineer @ |I0OG Haskell DevX Engineer @ |IOG

Thanks to Tweag and IOG weritz angermann

WEBASSEMBLY BACKEND MERGED
INTO GHC

22 November 2022 — by Cheng Shao
(O haskeID (O gth (‘ webassembly>

GHC JavaScript and WASM Backends

Haskell for the Web

* \/S Code extensions are JavaScript programs

e ... can be implemented in Haskell using (new) GHC JS backend.
* LSP is a Haskell package for implementing LSP server

e ... and be compiled into WASM to run in a browser.

* In theory, Agda ecosystem can all be written in Haskell and compiled to JS/
WASM.

L anguage
Server Protocol

hem (editors) A

The Matrix Problem

Each editor implements their own language support

The problem: "The Matrix"

Go Java TypeScript
Emacs
Vim

VSCode

The LSP Solution

Each editor (resp. language) needs only one client (resp. server).

The solution: lang servers and clients

Go v Emacs v
Java v Vim v

TypeScript 4 VSCode <

A protocol for common IDE features

1.

highlighting

. formatting

. code action (interactive

programming)

. type-checking

. Goto definition, finding references,

renaming identifiers, etc.

Language Server Protocol

 |anguage clients are implemented
in editors incl. Emacs, Vim, VS
Code, etc.

eoe [+ < ®@ © @ vscode.dev ¢ © M +
g)G Welcome — Workspace — Visual Studio Code
= &« S £ Workspace O 8 [0 08

¢ Welcome X [

Visual Studio Code e

c_)l-_bl Open File... Discover the best
customizations to make VS
o I e e = Open Folder... Code for the Web yours.

32 Open Repository...
https://vscode.dev/

>< Open Tunnel ' Learn the Fundamentals

Recent S Boost your Productivity

pygments L-TChen [GitHub]
smalltt L-TChen [GitHub] @ Browse & Edi...

vscode-docs microsoft [GitHub]

Show welcome page on startup

Layout: U.S. Q)

https://vscode.dev/

Visual Studio Code for the Web

https.//vscode.dev/

 Requirements
 Any modern browser

e (Optional) Support for File
System Access API

Features

LSP
Extensions
Remote GitHub repository

Local folders on supported
browsers)

Even on mobile devices!

https://vscode.dev/

Visual Studio Code for the Web

https.//vscode.dev/

* VS Code for the Web can be ‘installed’ to run locally.
e Supported by

« Safari on macOS/i0S, or

* Chrome on Windows/macOS/Linux

o JavaScript/WASM is the new Java (with WebAssembly System Interface).

https://vscode.dev/

Github.dev

A variant of VS Code Web

 Press . inany

GitHub repository

o https://docs.github.com/en/

codespaces/the-githubdev-web-

based-editor

eoe [+ <

5}

B % < v i

@ &l

®
e

EXT.. Y O

Il||
X

haskel1

Haskell language sup...

A

Syntax support for th...
A

An extension to use h...

A

Haskell GHCi Debug ...
A

Haskell language sup...

A

Simple Haskell suppo...
A

Integrate ghcid into V...
A\

Provides language su...

A

Integrates stylish-has...

A

Haskell NSIS & 23K

Haskell snippets for ...
TR

idlaharn

B s 00020

¥ @ github.dev ¢

\:\ Benchmarking.hs — agda [GitHub] — Visual Studio Code — GitHub

¢« L agda [GitHub]

[Preview] README.md » Benchmarking.hs X

src » full > Agda > » Benchmarking.hs

1 {-# OPTIONS_GHC -Wunused-imports #-}

2

3 {-# OPTIONS_GHC -fno-warn-orphans #-}

4

5 —— | Agda-specific benchmarking structure.
6

7 module Agda.Benchmarking where

8

9 import Control.DeepSeq
10 import qualified Control.Exception as E
11
12 import Data.IORef
13
14 import GHC.Generics (Generic)
15
16 import System.IO.Unsafe
17

18 import Agda.Syntax.Concrete.Pretty () --instance only

19 import Agda.Syntax.Abstract.Name

20 import Agda.Syntax.TopLevelModuleName (TopLevelModuleName)
21 import Agda.Utils.Benchmark (MonadBench(..))

22 import qualified Agda.Utils.Benchmark as B

23 import Agda.Utils.Null

24 import Agda.Syntax.Common.Pretty

25

26 -—— | Phases to allocate CPU time to.

27 data Phase

28 = Parsing

29 —— ”~ Happy parsing and operator parsing.

30 | Import

31 —— ~ Import chasing.

32 | Deserialization

33 —-— ”~ Reading interface files.

34 | Scoping

35 —— ”~ Scope checking and translation to abstract syntax.
36 | Typing

37 —— ~ Type checking and translation to internal syntax.
38 | Termination

39 —— ”~ Termination checking.

40 | Positivity

Ln 1, Col1 Spaces: 2

UTF-8

LF

Plain Text

UM EEREINS

Layout: U.S.

Al

https://docs.github.com/en/codespaces/the-githubdev-web-based-editor
https://docs.github.com/en/codespaces/the-githubdev-web-based-editor
https://docs.github.com/en/codespaces/the-githubdev-web-based-editor

CodeMirror

CodeMirror

https://codemirror.net

Case Studies

Agda Pad

 Agda Pad is a VNC server running on

an Emacs instance.

» https://agdapad.quasicoherent.io/

uZ

U FER ST I

File Edit Options Buffers Tools Agda Help

D)

HExEH 9 ¥$HD N

— I

-}

welcome to Agda! :-|J]

If you are new to Agda, you could play The HoTT Game, a tutorial for learning
Agda and homotopy type theory. You can start the game using the "Help" menu
and then navigating to a file such as 1FundamentalGroup/Quest0.agda. You

will also need to open the accompanying guide 1in your browser:
https://thehottgameguide. readthedocs.10/

This editor runs on agdapad.quasicoherent.1o0. Your Agda code 1s stored on
this server and should be available when you revisit the same Agdapad session.
However, absolutely no guarantees are made. You should make backups by
downloading (see the clipboard 1con i1n the lower right corner).

C-c C-1 check file

C-c C-SPC check hole

C-c C-, display goal and context

C-c C-c split cases

C-c C-r fill 1n boilerplate from goal
C-c C-d display type of expression

C-c C-v evaluate expression (normally this 1s C-c C-n)
C-c C-a try to find proof automatically
C-z enable Vi keybindings

C-x C-+ increase font size

\bN \alpha \to math symbols

"C-c" means "<Ctrl key> + c". In case your browser 1s intercepting C-c,
you can also use C-o. In case your browser in intercepting C-SPC, you can
also use C-p. For pasting code into the Agdapad, see the clipboard

1con 1n the lower right corner.

In text mode, use <F10> to access the menu bar, not the mouse.

data M : Set where

zero : N
succ : N - N

pred : N - N
pred zero = zero
pred (succ k)

]
>

Idris Playground

 |dris runs on a server (Google
Cloud Run)

» Costly—Servers are billed when
someone is using the website.

e The interface Is nicer.

e https://learn-idris.net/play

M

N |dris Playground

Learn Idris & Problem Login with
list Playground GitHub

ldris Playground

add : Nat -> Nat -> Nat
add (S m) n=S (add m n)

Idris ¥} v2 4 Check

4 Case + Add @ Gen Q Proof @ Type
split clause def search of

[+ Permalink

add is not covering. Missing cases:

add 0 _
Error(s) building file
/tmp/tmpa_efazfl/play.idr: play.idr:1:1-
-2:1:Main.add 1is not covering:

Missing cases:

($resolvedl166 $resolvedl1007 { :245})

&3 Help

https://learn-idris.net/play

Lea n 3 We b M N L Lean 4 Web Lean 3 Web Editor

¥ Lean is ready!

] Load .lean from URL.: Load
— Load .lean from disk: Choose File no file selected
? Live in-browser version of the Lean theorem prover. Save

1 —- Live WebAssembly version of Lean 2:0: information: eval result =
2 #eval let v := lean.version in let s :=

» https://github.com/leanprover- T p———— | | rLean (version 3.51.1, comnit

; "M v.2.2.repr cce7990ea86a)"
Lannohaocssosoossood.

Community/lean—web_editOr 4 lean.special_version_desc : string

Additional version description like "nightly-2018-03-11"

5 Vi NxNxN := lean.version
5 F string

 |Lean 3 compiled to WASM and
runs in the browser

| anguage server is supported.

* Built by Emscripten.

https://github.com/leanprover-community/lean-web-editor
https://github.com/leanprover-community/lean-web-editor

Lean 4 Web

o https://github.com/leanprover-
community/lean4web

e Runs on a web server, not in the
browser

O ® [J v < @ O, lean.math.hhu.de
M M L Lean 4 Web

1 import Mathlib.Logic.Basic -- basic facts in logic

2 import Mathlib.Tactic.LibrarySearch —-- a tactic which searches for

3 — theorems in Lean's mathematics library

4

5 - Let P and Q be true-false statements

6 variable (P Q : Prop)

7

8 —— The following is a basic result in logic
9 example : = (PAQ) e =P v -=0Q := by

10| —-- its proof is already in Lean's mathematics library

11| exact not_and_or

12

13 —— Here 1is another basic result in logic

14 example : = (P v Q) e =P A -Q := by

15 library_search -- we can search for the proof in the library
16 —-- we can also replace " library_search™ with its output

17

G h + ©

W Examples X Load =

¥ LeanProject.lean:11:18
= 10O

€ Vv Y

V¥ Tactic state
No goals

Vv Expectedtype €€ | Y

B P Q : Prop
F=(PAQ)«< PV-Q

4 V¥ All Messages (2) 1

V¥ LeanProject.lean:15:2

TV €€ &
library_search’ has
been renamed to “apply?" (or
‘exact? if you only want solutions
closing the goal)

¥ LeanProject.lean:15:2

TV € @
Try this: exact

not_or

https://github.com/leanprover-community/lean4web
https://github.com/leanprover-community/lean4web

Rzk’s Online Playground
poe M+ [® O rzk-lang.github.io @ ¢ h +

A proof assistant for «o-category theory e

 Based on CodeMirror
e GHCJS is used to compile Rzk

 Released via GitHub workflow

o https://rzk-lang.github.io/rzk/
deveIOp/pIaMg round/ TYPECHECK (SHIFT + ENTER)

Fverything 1s OK!

https://rzk-lang.github.io/rzk/develop/playground/
https://rzk-lang.github.io/rzk/develop/playground/

® © ® [([] Web-baed proof assistants v @ hiro.so G C ©) fI] + O

3 0 €M™ M < (0 2 60 6 6O = @ witecarit.. @ T M < 0 0 0O O 0B

/-/iro : MempOO]_ Q Search the Hiro Mempool.. Browse by topic ¥ Browse by type ¥

Write Clarity Smart
Contracts With Zero
Installations: How

Clarity We Built an In-
Browser Language

Everything works in VS Code Server Using WASM

fo r t h e We b In order to offer maximum flexibility and convenience to our

developers, we built one of the first LSP extensions that is compatible
with github.dev and vscode.dev. This redesigned extension brings

support for Clarity right in the web browser, without installing anything.

https://www.hiro.so/blog/write-clarity-smart-contracts-with-zero-installations-how-we-built-an-in-browser-language-server-using-wasm

Polar
Everything works in VS Code
for the Web

E[J web-baed proof assistants v 7 @ &) & osohg.com G C ©) ﬁ] -

» »e € (H | (H] v o (@) o Howwebu.. [» s »e E H | H) (M] (W] (s] 3

Rules Use - Try Book™a
Pricing Developers + Company -
Modeler Cases Oso Demo

Internals January 10, 2022

How we built a \/S.Code extension
with Rust, WebAssembly, and
TypeScript

Gabe Jackson

We build Oso, a batteries-included framework for building
authorization in your application. At the core of Oso is Polar, a

https://www.osohq.com/post/building-vs-code-extension-with-rust-wasm-typescript

Plan

Overview
Web Agda should be Fully Functional, not a Playground

 Use Haskell to implement the entire ecosystem, incl.
* Language server for Agda (editor-independent)
* VS Code extension for Agda

* The Quickstart should include only one step:

* (Go to http://agda.qgithub.io/web-agda/
* Use Git repository to import libraries

 Native binaries can be compiled from the same codebase.

http://agda.github.io/web-agda/

Things to Do

 Replace Haskell bindings to other
languages with bindings to WASM

 Refactor Agda into smaller packages
to reduce Its size

e agda-utils
e agda-type (syntaxes)

e agda-core (for parsing, type
checking, termination, interaction)

e agda-int (for interaction instances)

e agda-backend
Lots of performance tuning

Implement the language server for
Agda with GHC WASM (agda-1sp)

Implement a new VS Code extension
for Agda with GHCJS

Add the Git support for library
management and

...etlc.

Discussion

Useful Information

GHC JS

* Available through GHCup-0.1.19.5 RC

» https:.//discourse.haskell.org/t/ann-ghcup-0-1-19-5-release-candidate-ghc-js-
Cross-support/6995

https://discourse.haskell.org/t/ann-ghcup-0-1-19-5-release-candidate-ghc-js-cross-support/6995
https://discourse.haskell.org/t/ann-ghcup-0-1-19-5-release-candidate-ghc-js-cross-support/6995

GHC WASM

 Bindist for Linux is available as Cl/CD artefacts

o https://qgitlab.haskell.org/ghc/ghc-wasm-meta/-/artifacts

* macOS users need to compile their own binaries.

» https://qgitlab.haskell.org/ghc/ghc-wasm-meta

https://gitlab.haskell.org/ghc/ghc-wasm-meta/-/artifacts
https://gitlab.haskell.org/ghc/ghc-wasm-meta

Cabal

* Cabal can be configured to compile a package with GHC JS/WASM
* Options: with-compiler, with-hc-pkg
e https://cabal.readthedocs.io/en/3.4/cabal-project.html

https://cabal.readthedocs.io/en/3.4/cabal-project.html

Language Server Protocol

» |sp Haskell package: https://hackage.haskell.org/package/lsp

* The official homepage: https.//microsoft.github.io/language-server-protocol/

 Agda language server: https://qgithub.com/banacorn/agda-language-server

https://hackage.haskell.org/package/lsp
https://microsoft.github.io/language-server-protocol/
https://github.com/banacorn/agda-language-server

VS Code Extension

* Your first VS code extension: https://code.visualstudio.com/api/get-started/
your-first-extension

https://code.visualstudio.com/api/get-started/your-first-extension
https://code.visualstudio.com/api/get-started/your-first-extension
https://code.visualstudio.com/api/get-started/your-first-extension
https://code.visualstudio.com/api/get-started/your-first-extension

