
Liang-Ting Chen • AIM XXX VII (20 Nov 2023) • Institute of Information Science, Academia Sinica

Towards Agda on the Web
Using GHC WASM backend, Language Server Protocol,
and VS Code for the Web

Problems

Installing Agda is Unreasonably Complicated
#5725, #6866, #ux:installation

• Our TA includes programmers, mathematicians, computer scientists, CS/math
students, and more.

• Familiarity with Haskell toolchain is implicitly assumed.

• Compiling AGDA with text-icu is tricky because of icu4c.

• More information does not help (#6866).

• LEAN 4’s quick installation has only 3 steps

• Get VS CODE, Open VS CODE, Get LEAN 4 extension

https://github.com/agda/agda/issues/6866
https://github.com/agda/agda/issues/6866
https://agda.readthedocs.io/en/latest/getting-started/installation.html#step-2-installing-the-agda-and-the-agda-mode-programs
https://github.com/agda/agda/issues/6866
https://lean-lang.org/lean4/doc/quickstart.html

Maintaining Binary Distributions for Different Platforms?
#5202

• License (maybe a non-issue?)

• Installing from prepackaged Agda is fine …

• except for Windows users.

• Maintaining a GitHub workflow to compile the Windows bindist is costly.

• Packaging AGDA using Windows installer requires expertise.

• Still requires many steps to set up AGDA and AGDA mode.

• Where is GHCup-equivalent?

Updating Documentation is Costly and not Fun
#6866, again

• More information is sometime less useful.

• Relying on pull requests is not sustainable (less organised).

• hello world example confuses many people.

• Lean 4 has just enough information for casual users

• https://lean-lang.org/lean4/doc/quickstart.html

https://github.com/agda/agda/issues/6866
https://lean-lang.org/lean4/doc/quickstart.html

Agda Mode for Emacs isn’t Eternal
#5917, #6953, #6983

• Agda mode was implemented by Makoto Takeyama (not active) and is
maintained by Nils Anders Danielsson.

• The user base of Emacs is small.

• Very few Elisp-fluent developers

• Philip Kaludercic (@phikal) has recently contributed a lot of PRs, but many of
them are stalled.

• Agda mode is broken with Emacs >28 and

• WSL only provides Emacs >28 (discussion)

https://github.com/agda/agda/issues/5917
https://github.com/agda/agda/issues/6953
https://github.com/agda/agda/issues/6983
https://github.com/phikal
https://agda.zulipchat.com/#narrow/stream/259644-newcomers/topic/Difficulty.20getting.20Emacs.20to.20find.20Agda

Agda Mode for VS Code is not Maintainable
https://github.com/banacorn/agda-mode-vscode

• Implemented originally by Ting-Gian Lua (@banacorn, only active for AIM) and

• Currently maintained by Zong-You Shih and me.

• Agda mode for VS Code is written in ReScript (!).

• The user base of ReScript is tiny.

https://github.com/banacorn/agda-mode-vscode
https://rescript-lang.org

Summary

• Installing Agda is more complicated than the typical practice.

• Maintaining binary distributions is subtle (especially for Windows).

• More information does not help.

• IMO, Agda modes for Emacs and VS Code seem eroding.

Vision

Agda Web
Essential criteria

• Agda should be usable in any modern browser.

• Cross-platform, incl. Linux, macOS, Windows, Android, and iOS

• Installation should still be possible and easy.

• Any library from a Git repository should be usable without manual download.

• (License notice is available on Hackage.)

Agda Web
Desirable criteria

• All features supported by the Agda mode for Emacs should also be
supported.

• Only one language should be used for dev.

• No additional repo to maintain— still agda/agda instead of agda/web-agda.

• Can be used for interactive textbook

• e.g., https://lovettsoftware.com/NaturalNumbers/

https://lovettsoftware.com/NaturalNumbers/

But, how?

Technologies

GHC JavaScript
and WASM
Backends
Thanks to Tweag and IOG

GHC JavaScript and WASM Backends
Haskell for the Web

• VS Code extensions are JavaScript programs

• … can be implemented in Haskell using (new) GHC JS backend.

• LSP is a Haskell package for implementing LSP server

• … and be compiled into WASM to run in a browser.

• In theory, Agda ecosystem can all be written in Haskell and compiled to JS/
WASM.

Language
Server Protocol

One ‘Server’ to Rule Them (editors) All

The Matrix Problem
Each editor implements their own language support

The LSP Solution
Each editor (resp. language) needs only one client (resp. server).

Language Server Protocol
A protocol for common IDE features

1. highlighting

2. formatting

3. code action (interactive
programming)

4. type-checking

5. Goto definition, finding references,
renaming identifiers, etc.

• Language clients are implemented
in editors incl. Emacs, Vim, VS
Code, etc.

Visual Studio Code
for the Web
https://vscode.dev/

https://vscode.dev/

Visual Studio Code for the Web
https://vscode.dev/

• Requirements

• Any modern browser

• (Optional) Support for File
System Access API

• Features

• LSP

• Extensions

• Remote GitHub repository

• Local folders on supported
browsers)

• Even on mobile devices!

https://vscode.dev/

Visual Studio Code for the Web

• VS Code for the Web can be ‘installed’ to run locally.

• Supported by

• Safari on macOS/iOS, or

• Chrome on Windows/macOS/Linux

• JavaScript/WASM is the new Java (with WebAssembly System Interface).

https://vscode.dev/

https://vscode.dev/

A variant of VS Code Web

• Press `.` in any GitHub repository

• https://docs.github.com/en/
codespaces/the-githubdev-web-
based-editor

Github.dev

https://docs.github.com/en/codespaces/the-githubdev-web-based-editor
https://docs.github.com/en/codespaces/the-githubdev-web-based-editor
https://docs.github.com/en/codespaces/the-githubdev-web-based-editor

CodeMirror
CodeMirror

https://codemirror.net

Case Studies

• Agda Pad is a VNC server running on
an Emacs instance.

• https://agdapad.quasicoherent.io/

Agda Pad

• Idris runs on a server (Google
Cloud Run)

• Costly—Servers are billed when
someone is using the website.

• The interface is nicer.

• https://learn-idris.net/play

Idris Playground

https://learn-idris.net/play

• https://github.com/leanprover-
community/lean-web-editor

• Lean 3 compiled to WASM and
runs in the browser

• Language server is supported.

• Built by Emscripten.

Lean 3 Web

https://github.com/leanprover-community/lean-web-editor
https://github.com/leanprover-community/lean-web-editor

• https://github.com/leanprover-
community/lean4web

• Runs on a web server, not in the
browser

Lean 4 Web

https://github.com/leanprover-community/lean4web
https://github.com/leanprover-community/lean4web

A proof assistant for ∞-category theory

• Based on CodeMirror

• GHCJS is used to compile Rzk

• Released via GitHub workflow

• https://rzk-lang.github.io/rzk/
develop/playground/

Rzk’s Online Playground

https://rzk-lang.github.io/rzk/develop/playground/
https://rzk-lang.github.io/rzk/develop/playground/

Clarity
Everything works in VS Code
for the Web

https://www.hiro.so/blog/write-clarity-smart-contracts-with-zero-installations-how-we-built-an-in-browser-language-server-using-wasm

Polar
Everything works in VS Code
for the Web

https://www.osohq.com/post/building-vs-code-extension-with-rust-wasm-typescript

Plan

Overview
Web Agda should be Fully Functional, not a Playground

• Use Haskell to implement the entire ecosystem, incl.

• Language server for Agda (editor-independent)

• VS Code extension for Agda

• The Quickstart should include only one step:

• Go to http://agda.github.io/web-agda/

• Use Git repository to import libraries

• Native binaries can be compiled from the same codebase.

http://agda.github.io/web-agda/

Things to Do

• Replace Haskell bindings to other
languages with bindings to WASM

• Refactor Agda into smaller packages
to reduce its size

• agda-utils

• agda-type (syntaxes)

• agda-core (for parsing, type
checking, termination, interaction)

• agda-int (for interaction instances)

• agda-backend

• Lots of performance tuning 

• Implement the language server for
Agda with GHC WASM (agda-lsp)

• Implement a new VS Code extension
for Agda with GHCJS

• Add the Git support for library
management and

• …etc.

Discussion

Useful Information

GHC JS

• Available through GHCup-0.1.19.5 RC

• https://discourse.haskell.org/t/ann-ghcup-0-1-19-5-release-candidate-ghc-js-
cross-support/6995

https://discourse.haskell.org/t/ann-ghcup-0-1-19-5-release-candidate-ghc-js-cross-support/6995
https://discourse.haskell.org/t/ann-ghcup-0-1-19-5-release-candidate-ghc-js-cross-support/6995

GHC WASM

• Bindist for Linux is available as CI/CD artefacts

• https://gitlab.haskell.org/ghc/ghc-wasm-meta/-/artifacts

• macOS users need to compile their own binaries.

• https://gitlab.haskell.org/ghc/ghc-wasm-meta

https://gitlab.haskell.org/ghc/ghc-wasm-meta/-/artifacts
https://gitlab.haskell.org/ghc/ghc-wasm-meta

Cabal

• Cabal can be configured to compile a package with GHC JS/WASM

• Options: with-compiler, with-hc-pkg

• https://cabal.readthedocs.io/en/3.4/cabal-project.html

https://cabal.readthedocs.io/en/3.4/cabal-project.html

Language Server Protocol

• lsp Haskell package: https://hackage.haskell.org/package/lsp

• The official homepage: https://microsoft.github.io/language-server-protocol/

• Agda language server: https://github.com/banacorn/agda-language-server

https://hackage.haskell.org/package/lsp
https://microsoft.github.io/language-server-protocol/
https://github.com/banacorn/agda-language-server

VS Code Extension

• Your first VS code extension: https://code.visualstudio.com/api/get-started/
your-first-extension

https://code.visualstudio.com/api/get-started/your-first-extension
https://code.visualstudio.com/api/get-started/your-first-extension
https://code.visualstudio.com/api/get-started/your-first-extension
https://code.visualstudio.com/api/get-started/your-first-extension

