Description of the serial data stream coming out of the Borgelt B50/B800 variometer

The serial data stream out of the Borgelt varios consists of 3 NMEA sentences sent every second (frequency: 1 Hz)

\$GPGGA	Standard NMEA GGA message
\$GPRMC	Standard NMEA RMC message
\$PBB50	Proprietary Borgelt NMEA message

The messages are sent with a comma (,) as separator and numbers have a dot (.) as a decimal separator.

Field description of the \$PBB50 message

Borgelt uses knots for all velocities and feet for all heights.

The \$PBB50 message consist of 10 (ten) fields and a standard checksum

<u>Field</u>	Description	Format
Field 1	NMEA Header	\$PBB50
Field 2	TAS (Knots)	###.#
Field 3	Vario (Knots)	###.#
Field 4	MC (Knots)	#.#
Field 5	IAS squared (Knots ²)	#####.#
Field 6	Bugs	##
Field 7	Ballast ratio	#.##
Field 8	Cruise/Climb Mode	#
Field 9	OAT (Celcius)	###.#
Field 10	Static (Pressure) height	###*HH (*HH = checksum)

Comments about field 5: IAS squared

The indicated airspeed is passed as a squared number for legacy reasons. Simply take the square root to get the correct number (IAS).

Comments about field 6: Bugs

To get the efficiency number used in LK8000 simply calculate (100 – bugs) and convert to percentage if necessary.

Comments about field 7: Ballast ratio

In LK8000 we define ballast as a percentage of the max water ballast the plane can load. Internally the Borgelt varios handles ballast in exactly the same way, but for legacy reasons, Borgelt passes the number as a ratio. I managed to get hold of the actual code, and dug out the exact calculations.

In our (LK8000) polar files we have as field 1 the gross weight of the glider, w_{gross} , and as field 2 the max water ballast the glider can load, $w_{max \ ballast}$

If we call the current percentage of water loaded to the plane α , the Borgelt ballast ratio is calculated as:

$$\frac{Ballast_{Ratio}}{W_{gross} + W_{max} ballast} = 1 + \alpha \frac{w_{max} ballast}{w_{gross} + w_{max} ballast}$$

This is indeed a bit unusual, but never the less how it is calculated and passed for legacy reasons.

If we want to isolate α (the ballast number used in LK8000), we can rearrange the equation:

$$\alpha = (Ballast_{ratio} - 1) * \frac{w_{gross} + w_{max \ ballast}}{w_{max \ ballast}}$$

In LK8000 we can specify the water ballast in increments (steps) of 5%. In the Borgelt varios, the water ballast is specified in increments (steps) of 10%.

Due to possible smaller differencies in gross weight of the glider and max water ballast between the polar in LK8000 and in the Borgelt vario, I suggest a rounding routine to the nearest 10% applied after the above calculation of α . (Bear in mind, that Borgelt uses 10% increments).

In the attached log file of the serial output from the Borgelt vario the following values were registered (used) in the Borgelt vario:

Gross weight of the glider (w _{gross}):	350
Max water ballast (w _{max ballast}):	175

Comments about field 10: Static (Pressure) height

The height is passed rounded to the nearest 100 feet and concatenated with a "*" together with 2 hexadecimal characters as checksum.

/Soren Braes, 12-08-2021