
SCR v1.2.0 User Manual

November 6, 2017

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under
contract DE-AC52-07NA27344.

1

Contents

1 Quick Start 4
1.1 Obtaining the SCR Source . 4
1.2 Building SCR . 4

1.2.1 Spack . 4
1.2.2 CMake . 4

1.3 Building the SCR test api Example . 4
1.4 Running the SCR test api Example . 5
1.5 Getting SCR into Your Application . 5
1.6 Final Thoughts . 7

2 Support 8

3 Introduction 8

4 Assumptions 8

5 Concepts 10
5.1 Jobs, allocations, and runs . 10
5.2 Group, store, and redundancy descriptors . 10
5.3 Control, cache, and prefix directories . 11
5.4 Example of SCR files and directories . 11
5.5 Scalable checkpoint . 13
5.6 Scalable restart . 14
5.7 Catastrophic failures . 14
5.8 Fetch, flush, and scavenge . 14

6 Build SCR 16
6.1 Dependencies . 16
6.2 Spack . 17
6.3 CMake . 17

7 SCR API 17
7.1 General API . 18

7.1.1 SCR Init . 18
7.1.2 SCR Finalize . 18
7.1.3 SCR Get version . 18
7.1.4 SCR Should exit . 18
7.1.5 SCR Route file . 19

7.2 Checkpoint API . 19
7.2.1 SCR Need checkpoint . 19
7.2.2 SCR Start checkpoint . 20
7.2.3 SCR Complete checkpoint . 20

7.3 Restart API . 20
7.3.1 SCR Have restart . 20
7.3.2 SCR Start restart . 21
7.3.3 SCR Complete restart . 21

7.4 Output API . 21
7.4.1 SCR Start output . 22
7.4.2 SCR Complete output . 22

7.5 Space/time semantics . 23
7.6 SCR API state transitions . 23

2

8 Integrate SCR 24
8.1 Using the SCR API . 24

8.1.1 Init/Finalize . 25
8.1.2 Checkpoint . 26
8.1.3 Restart with SCR . 28
8.1.4 Restart without SCR . 29

8.2 Building with the SCR library . 30

9 Run a job 30
9.1 Supported platforms . 30
9.2 Jobs and job steps . 30
9.3 Ignoring node failures . 30
9.4 The SCR wrapper script . 31
9.5 Example batch script for using SCR restart capability . 32

10 Configure a job 32
10.1 Setting parameters . 32
10.2 Group, store, and checkpoint descriptors . 33
10.3 SCR parameters . 34

11 Halt a job 36
11.1 scr halt and the halt file . 36
11.2 Halt after next checkpoint . 36
11.3 Halt before or after a specified time . 37
11.4 Halt immediately . 37
11.5 Catch a hanging job . 38
11.6 Combine, list, change, and unset halt conditions . 38
11.7 Remove the halt file . 38

12 Manage datasets 39

3

1 Quick Start

In this quick start guide, we assume that you already have a basic understanding of SCR and how it works on HPC
systems. We will walk through a bare bones example to get you started quickly. For more in-depth information,
please see subsequent sections in this user’s guide.

1.1 Obtaining the SCR Source

The latest version of the SCR source code is kept at github: https://github.com/LLNL/scr. It can be cloned or
you may download a release tarball.

1.2 Building SCR

SCR has several dependencies. A C compiler, MPI, CMake, and pdsh are required dependencies. The others are
optional, and when they are not available some features of SCR may not be available. SCR uses the standard mpicc
compiler wrapper in its build, so you will need to have it in your PATH. We assume the minimum set of dependencies
in this quick start guide, which can be automatically obtained with either Spack or CMake. For more help on
installing dependencies of SCR or building SCR, please see Section 6.

1.2.1 Spack

The most automated way to build SCR is to use the Spack package manager (https://github.com/spack/spack).
SCR and all of its dependencies exist in a Spack package. After downloading Spack, simply type:

spack install scr

This will download and install SCR and its dependencies automatically.

1.2.2 CMake

To get started with CMake (version 2.8 or higher), the quick version of building SCR is:

git clone git@github.com:llnl/scr.git
mkdir build
mkdir install

cd build
cmake -DCMAKE_INSTALL_PREFIX=../install ../scr
make
make install
make test

Since pdsh is required, the WITH PDSH PREFIX should be passed to CMake if it is installed in a non-standard
location. On most systems, MPI should automatically be detected.

1.3 Building the SCR test api Example

After installing SCR, go to the installation directory, <install dir> above. In the <install dir>/share/scr/examples
directory you will find the example programs supplied with SCR. For this quick start guide, we will use the test api
program. Build it by executing:

make test_api

Upon successful build, you will have an executable in your directory called test api. You can use this test
program to get a feel for how SCR works and to ensure that your build of SCR is working.

4

https://github.com/LLNL/scr
https://github.com/spack/spack

1.4 Running the SCR test api Example

A quick test of your SCR installation can be done by setting a few environment variables in an interactive job
allocation. The following assumes you are running on a SLURM-based system. If you are not using SLURM, then
you will need to modify the allocation and run commands according to the resource manager you are using.

First, obtain a few compute nodes for testing. Here we will allocate 4 compute nodes on a system with a queue
for debugging called pdebug:

salloc -N 4 -p pdebug

Once you have the four compute nodes, you can experiment with SCR using the test api program. First set a
few environment variables. We’re using csh in this example; you’ll need to update the commands if you are using
a different shell.

make sure the SCR library is in your library path
setenv LD_LIBRARY_PATH ${SCR_INSTALL}/lib

tell SCR to not flush to the parallel file system periodically
setenv SCR_FLUSH 0

Now, we can run a simple test to see if your SCR installation is working. Here we’ll run a 4-process run on 4
nodes:

srun -n4 -N4 ./test_api

Assuming all goes well, you should see output similar to the following:

>>: srun -N 4 -n 4 ./test_api
Init: Min 0.033856 s Max 0.033857 s Avg 0.033856 s
No checkpoint to restart from
At least one rank (perhaps all) did not find its checkpoint
Completed checkpoint 1.
Completed checkpoint 2.
Completed checkpoint 3.
Completed checkpoint 4.
Completed checkpoint 5.
Completed checkpoint 6.
FileIO: Min 52.38 MB/s Max 52.39 MB/s Avg 52.39 MB/s Agg 209.55 MB/s

If you did not see output similar to this, there is likely a problem with your environment set up or build of SCR.
Please see the detailed sections of this user guide for more help or email us (See the Support and Contacts section
of this user guide.)

If you want to get into more depth, in the SCR source directory, you will find a directory called testing. In
this directory, there are various scripts we use for testing our code. Perhaps the most useful for getting started are
the TESTING.csh or TESTING.sh files, depending on your shell preference.

1.5 Getting SCR into Your Application

Here we give a simple example of integrating SCR into an application to write checkpoints. Further sections in the
user guide give more details and demonstrate how to perform restart with SCR. You can also look at the source of
the test api program and other programs in the examples directory.

int main(int argc, char* argv[]) {
MPI_Init(argc, argv);

/* Call SCR_Init after MPI_Init */

5

SCR_Init();

for(int t = 0; t < TIMESTEPS; t++)
{
/* ... Do work ... */

int flag;
/* Ask SCR if we should take a checkpoint now */
SCR_Need_checkpoint(&flag);
if (flag)
checkpoint();

}

/* Call SCR_Finalize before MPI_Finalize */
SCR_Finalize();
MPI_Finalize();
return 0;

}

void checkpoint() {
/* Tell SCR that you are getting ready to start a checkpoint phase */
SCR_Start_checkpoint();

int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

char file[256];
/* create your checkpoint file name */
sprintf(file, rank_%d.ckpt, rank);

/* Call SCR_Route_file to request a new file name (scr_file) that will cause
your application to write the file to a fast tier of storage, e.g.,
a burst buffer */

char scr_file[SCR_MAX_FILENAME];
SCR_Route_file(file, scr_file);

/* Use the new file name to perform your checkpoint I/O */
FILE* fs = fopen(scr_file, w);
if (fs != NULL) {
fwrite(state, ..., fs);
fclose(fs);

}

/* Tell SCR that you are done with your checkpoint phase */
SCR_Complete_checkpoint(1);
return;

}

6

1.6 Final Thoughts

This was a really quick introduction to building and running with SCR. For more information, please look at the
more detailed sections in the rest of this user guide or contact us with questions.

7

2 Support

The main repository for SCR is located at:
https://github.com/LLNL/scr.

From this site, you can download the source code and manuals for the current release of SCR.
For information about the project including active research efforts, please visit:

https://computation.llnl.gov/project/scr
To contact the developers of SCR for help with using or porting SCR, please visit:

https://computation.llnl.gov/project/scr/contact.php
There you will find links to join our discussion mailing list for help topics, and our announcement list for getting
notifications of new SCR releases.

3 Introduction

The Scalable Checkpoint / Restart (SCR) library enables MPI applications to utilize distributed storage on Linux
clusters to attain high file I/O bandwidth for checkpointing, restarting, and writing large datasets. With SCR, jobs
run more efficiently, recompute less work upon a failure, and reduce load on shared resources like the parallel file
system. It provides the most benefit to large-scale jobs that write large datasets. SCR utilizes tiered storage in a
cluster to provide applications with the following capabilities:

• guidance for the optimal checkpoint frequency,

• scalable checkpoint bandwidth,

• scalable restart bandwidth,

• scalable output bandwidth,

• asynchronous data transfers to the parallel file system.

SCR originated as a production-level implementation of a multi-level checkpoint system of the type analyzed
by Vaidya [1]. SCR caches checkpoints in scalable storage, which is faster but less reliable than the parallel file
system. It applies a redundancy scheme to the cache such that checkpoints can be recovered after common system
failures. It also copies a subset of checkpoints to the parallel file system to recover from less common but more
severe failures. In many failure cases, a job can be restarted from a checkpoint in cache, and writing and reading
datasets in cache can be orders of magnitude faster than the parallel file system as shown in Figure 1,

When writing a cached dataset to the parallel file system, SCR can transfer data asynchronously. The application
may continue once the data has been written to the cache while SCR copies the data to the parallel file system in
the background. SCR supports general output datasets in addition to checkpoint datasets.

SCR consists of two components: a library and a set of commands. The application registers its dataset files
with the SCR API, and the library maintains the dataset cache. The SCR commands are typically invoked from
the job batch script. They are used to prepare the cache before a job starts, automate the process of restarting a
job, and copy datasets from cache to the parallel file system upon a failure.

4 Assumptions

A number of assumptions are made in the SCR implementation. If any of these assumptions do not hold for a
particular application, that application cannot use SCR. If this is the case, or if you have any questions, please
notify the SCR developers. The goal is to expand the implementation to support a large number of applications.

1. The code must be an MPI application.

2. The code must read and write datasets as a file per process in a globally-coordinated fashion.

8

https://github.com/LLNL/scr
https://computation.llnl.gov/project/scr
https://computation.llnl.gov/project/scr/contact.php

0.1

1

10

100

1000

10000

4 8 16 32 64 128 256 512 992

G
B

/s

Nodes

Single RAM disk
Partner RAM disk
XOR RAM disk
Single SSD
XOR SSD
Partner SSD
Lustre (10GB/s peak)

Figure 1: Aggregate checkpoint write bandwidth on Coastal

3. A process having a particular MPI rank is only guaranteed access to its own dataset files, i.e., a process of
a given MPI rank may not access dataset files written by a process having a different MPI rank within the
same run or across different runs.

4. To use the scalable restart capability, a job must be restarted with the same number of processes as used to
write the checkpoint, and each process must only access the files it wrote during the checkpoint. Note that
this may limit the effectiveness of the library for codes that are capable of restarting from a checkpoint with a
different number of processes than were used to write the checkpoint. Such codes can often still benefit from
the scalable checkpoint capability, but not the scalable restart – they must fall back to restarting from the
parallel file system.

5. It must be possible to store the dataset files from all processes in the same directory. In particular, all files
belonging to a given dataset must have distinct names.

6. SCR maintains a set of meta data files, which it stores in a subdirectory of the directory that contains the
application dataset files. The application must allow for these SCR meta data files to coexist with its own
files.

7. Files cannot contain data that span multiple datasets. In particular, there is no support for appending data
of the current dataset to a file containing data from a previous dataset. Each dataset must be self-contained.

8. On some systems, datasets are cached in RAM disk. This restricts usage of SCR on those machines to
applications whose memory footprint leaves sufficient room to store the dataset files in memory simultaneously
with the running application. The amount of storage needed depends on the number of cached datasets and
the redundancy scheme used. See Section 5.5 for details.

9. SCR occasionally flushes files from cache to the parallel file system. All files must reside under a top-level
directory on the parallel file system called the “prefix” directory that is specified by the application. Under

9

that prefix directory, the application may use file and subdirectory trees. One constraint is that no two
datasets can write to the same file. See Section 5.3 for details.

10. Time limits should be imposed so that the SCR library has sufficient time to flush files from cache to the
parallel file system before the resource allocation expires. Additionally, care should be taken so that the run
does not stop in the middle of a checkpoint. See Section 11 for details.

5 Concepts

This section discusses concepts one should understand about the SCR library implementation including how it
interacts with file systems.

5.1 Jobs, allocations, and runs

A large-scale simulation often must be restarted multiple times in order to run to completion. It may be interrupted
due to a failure, or it may be interrupted due to time limits imposed by the resource scheduler. We use the term
allocation to refer to an assigned set of compute resources that are available to the user for a period of time. A
resource manager typically assigns an identifier to each resource allocation, which we refer to as the allocation id.
SCR uses the allocation id in some directory and file names. Within an allocation, a user may execute a simulation
one or more times. We call each execution a run. For MPI applications, each run corresponds to a single invocation
of mpirun or its equivalent. Finally, multiple allocations may be required to complete a given simulation. We refer
to this series of one or more allocations as a job. To summarize, one or more runs occur within an allocation, and
one or more allocations occur within a job.

5.2 Group, store, and redundancy descriptors

The SCR library must group processes of the parallel job in various ways. For example, if power supply failures are
common, it is necessary to identify the set of processes that share a power supply. Similarly, it is necessary to identify
all processes that can access a given storage device, such as an SSD mounted on a compute node. To represent
these groups, the SCR library uses a group descriptor. Details of group descriptors are given in Section 10.2.

Each group is given a unique name. The library creates two groups by default: NODE and WORLD. The NODE
group consists of all processes on the same compute node, and WORLD consists of all processes in the run. The user
or system administrator can create additional groups via configuration files (Section 10).

The SCR library must also track details about each class of storage it can access. For each available storage
class, SCR needs to know the associated directory prefix, the group of processes that share a device, the capacity
of the device, and other details like whether the associated file system can support directories. SCR tracks this
information in a store descriptor. Each store descriptor refers to a group descriptor, which specifies how processes
are grouped with respect to that class of storage. For a given storage class, it is assumed that all compute nodes
refer to the class using the same directory prefix. Each store descriptor is referenced by its directory prefix.

The library creates one store descriptor by default: /tmp. The assumption is made that /tmp is mounted as a
local file system on each compute node. On Linux clusters, /tmp is often RAM disk or a local hard drive. Additional
store descriptors can be defined by the user or system administrator in configuration files (Section 10).

Finally, SCR defines redundancy descriptors to associate a redundancy scheme with a class of storage devices and
a group of processes that are likely to fail at the same time. It also tracks details about the particular redundancy
scheme used, and the frequency with which it should be applied. Redundancy descriptors reference both store and
group descriptors.

The library creates a default redundancy descriptor. It assumes that processes on the same node are likely to fail
at the same time. It also assumes that datasets can be cached in /tmp, which is assumed to be storage local to each
compute node. It applies an XOR redundancy scheme using a group size of 8. Additional redundancy descriptors
may be defined by the user or system administrator in configuration files (Section 10).

10

5.3 Control, cache, and prefix directories

SCR manages numerous files and directories to cache datasets and to record its internal state. There are three
fundamental types of directories: control, cache, and prefix directories. For a detailed illustration of how these files
and directories are arranged, see the example presented in Section 5.4.

The control directory is where SCR writes files to store internal state about the current run. This directory is
expected to be stored in node-local storage. SCR writes multiple, small files in the control directory, and it may
access these files frequently. It is best to configure this directory to be stored in a node-local RAM disk.

To construct the full path of the control directory, SCR incorporates a control base directory name along with
the user name and allocation id associated with the resource allocation. This enables multiple users, or multiple
jobs by the same user, to run at the same time without conflicting for the same control directory. The control
base directory is hard-coded into the SCR library at configure time, but this value may be overridden via a system
configuration file. The user may not change the control base directory.

SCR directs the application to write dataset files to subdirectories within a cache directory. SCR also stores its
redundancy data in these subdirectories. The device serving the cache directory must be large enough to hold the
data for one or more datasets plus the associated redundancy data. Multiple cache directories may be utilized in
the same run, which enables SCR to use more than one class of storage within a run (e.g., RAM disk and SSD).
Cache directories should be located on scalable storage.

To construct the full path of a cache directory, SCR incorporates a cache base directory name with the user name
and the allocation id associated with the resource allocation. A set of valid cache base directories is hard-coded
into the SCR library at configure time, but this set can be overridden in a system configuration file. Out of this
set, the user may select a subset of cache base directories to use during a run. A cache directory may be the same
as the control directory.

The user must configure the maximum number of datasets that SCR should keep in each cache directory. It is
up to the user to ensure that the capacity of the device associated with the cache directory is large enough to hold
the specified number of datasets.

SCR refers to each application checkpoint or output set as a dataset. SCR assigns a unique sequence number to
each dataset called the dataset id. It assigns dataset ids starting from 1 and counts up with each successive dataset
written by the application. Within a cache directory, a dataset is written to its own subdirectory called the dataset
directory.

Finally, the prefix directory is a directory on the parallel file system that the user specifies. SCR copies datasets
to the prefix directory for permanent storage (Section 5.8). The prefix directory should be accessible from all
compute nodes, and the user must ensure that the prefix directory is unique for each job. For each dataset stored in
the prefix directory, SCR creates and manages a dataset directory. The dataset directory holds all SCR redundancy
files and meta data associated with a particular dataset. SCR maintains an index file within the prefix directory,
which records information about each dataset stored there.

Note that the term “dataset directory” is overloaded. In some cases, we use this term to refer to a directory
in cache and in other cases we use the term to refer to a directory within the prefix directory on the parallel file
system. In any particular case, the meaning should be clear from the context.

5.4 Example of SCR files and directories

To illustrate how files and directories are arranged in SCR, consider the example shown in Figure 2. In this
example, a user named “user1” runs a 4-task MPI job with one task per compute node. The base directory
for the control directory is /tmp, the base directory for the cache directory is /ssd, and the prefix directory is
/p/lscratchb/user1/simulation123. The control and cache directories are storage devices local to the compute
node.

The full path of the control directory is /tmp/user1/scr.1145655. This is derived from the concatenation of
the control base directory (/tmp), the user name (user1), and the allocation id (1145655). SCR keeps files to
persist its internal state in the control directory, including filemap files as shown.

Similarly, the cache directory is /ssd/user1/scr.1145655, which is derived from the concatenation of the
cache base directory (/ssd), the user name (user1), and the allocation id (1145655). Within the cache directory,

11

0 1 2 3

Compute nodes with node-local storage

Prefix
directory

Parallel file system

/p/lscratchb/user1/simulation123/

Control
directory

Cache
directory

index.scr
halt.scr
flush.scr
nodes.scr

rank_0.ckpt
rank_1.ckpt
rank_2.ckpt
rank_3.ckpt

ckpt.18/

Dataset
directories

Application dataset
(directory and files)

Summary and
rank2file files

Hidden .scr
directory in prefix

/tmp/user1/scr.1145655/

filemap.scrinfo
filemap_0.scrinfo

/tmp/user1/scr.1145655/

filemap.scrinfo
filemap_0.scrinfo

/tmp/user1/scr.1145655/
filemap.scrinfo
filemap_0.scrinfo

/tmp/user1/scr.1145655/
filemap.scrinfo
filemap_0.scrinfo

/ssd/user1/scr.1145655/

.scr/
 2_of_4_in_0.xor
rank_1.ckpt

dataset.17/

index.0/
dataset.18/

index.0/
/ssd/user1/scr.1145655/

.scr/
 1_of_4_in_0.xor
rank_0.ckpt

dataset.17/

dataset.18/

/ssd/user1/scr.1145655/

.scr/
 3_of_4_in_0.xor
rank_2.ckpt

dataset.17/

index.0/
dataset.18/

Index, Halt, Flush,
and Nodes files

scr.dataset.18/

.scr/

summary.scr
rank2file.scr
rank2file.0.0.scr

SCR
dataset
directory

Hidden .scr
directory in
dataset

Figure 2: Example of SCR Directories

12

SCR creates a subdirectory for each dataset. In this example, there are two datasets with ids 17 and 18. The
application dataset files and SCR redundancy files are stored within their corresponding dataset directory. On the
node running MPI rank 0, there is one application dataset file (rank 0.ckpt) and one XOR redundancy data file
(1 of 4 in 0.xor).

Finally, the full path of the prefix directory is /p/lscratchb/user1/simulation123. This is a path on the
parallel file system that is specified by the user. It is unique to the particular simulation the user is running
(simulation123). The prefix directory contains application datasets, like ckpt.18.

The prefix directory also contains a hidden .scr directory where SCR writes the index file to record info for each
of the datasets (Section 12). The SCR library writes other files to this hidden directory, including the “halt” file
(Section 11). SCR also creates dataset directories of the pattern “scr.dataset.<id>” within the hidden directory.
The dataset directory contains redundancy files and other SCR files that are specific to the dataset.

5.5 Scalable checkpoint

In practice, it is common for multiple processes to fail at the same time, but most often this happens because those
processes depend on a single, failed component. It is not common for multiple, independent components to fail
simultaneously. By expressing the groups of processes that are likely to fail at the same time, the SCR library can
apply redundancy schemes to withstand common, multi-process failures. We refer to a set of processes likely to fail
at the same time as a failure group.

SCR must also know which groups of processes share a given storage device. This is useful so the group can
coordinate its actions when accessing the device. For instance, if a common directory must be created before each
process writes a file, a single process can create the directory and then notify the others. We refer to a set of
processes that share a storage device as a storage group.

Users and system administrators can pass information about failure and storage groups to SCR in descriptors
defined in configuration files (See Section 10.2). Given this knowledge of failure and storage groups, the SCR library
implements three redundancy schemes which trade off performance, storage space, and reliability:

• Single - each checkpoint file is written to storage accessible to the local process
• Partner - each checkpoint file is written to storage accessible to the local process, and a full copy of each file

is written to storage accessible to a partner process from another failure group
• XOR - each checkpoint file is written to storage accessible to the local process, XOR parity data are computed

from checkpoints of a set of processes from different failure groups, and the parity data are stored among the
set.

With Single, SCR writes each checkpoint file in storage accessible to the local process. It requires sufficient
space to store the maximum checkpoint file size. This scheme is fast, but it cannot withstand failures that disable
the storage device. For instance, when using node-local storage, this scheme cannot withstand failures that disable
the node, such as when a node loses power or its network connection. However, it can withstand failures that kill
the application processes but leave the node intact, such as application bugs and file I/O errors.

With Partner, SCR writes checkpoint files to storage accessible to the local process, and it also copies each
checkpoint file to storage accessible to a partner process from another failure group. This scheme is slower than
Single, and it requires twice the storage space. However, it is capable of withstanding failures that disable a storage
device. In fact, it can withstand failures of multiple devices, so long as a device and the device holding the copy do
not fail simultaneously.

With XOR, SCR defines sets of processes where members within a set are selected from different failure groups.
The processes within a set collectively compute XOR parity data which is stored in files along side the application
checkpoint files. This algorithm is based on the work found in [2], which in turn was inspired by RAID5 [3]. This
scheme can withstand multiple failures so long as two processes from the same set do not fail simultaneously.

Computationally, XOR is more expensive than Partner, but it requires less storage space. Whereas Partner
must store two full checkpoint files, XOR stores one full checkpoint file plus one XOR parity segment, where the
segment size is roughly 1/(N − 1) times the size of a checkpoint file for a set of size N . Larger sets demand less
storage, but they also increase the probability that two processes in the same set will fail simultaneously. Larger
sets may also increase the cost of recovering files in the event of a failure.

13

5.6 Scalable restart

So long as a failure does not violate the redundancy scheme, a job can restart within the same resource allocation
using the cached checkpoint files. This saves the cost of writing checkpoint files out to the parallel file system only
to read them back during the restart. In addition, SCR provides support for the use of spare nodes. A job can
allocate more nodes than it needs and use the extra nodes to fill in for any failed nodes during a restart. SCR
includes a set of scripts which encode much of the restart logic (Section 9).

Upon encountering a failure, SCR relies on the MPI library, the resource manager, or some other external service
to kill the current run. After the run is killed, and if there are sufficient healthy nodes remaining, the same job can
be restarted within the same allocation. In practice, such a restart typically amounts to issuing another “mpirun”
in the job batch script.

Of the set of nodes used by the previous run, the restarted run should use as many of the same nodes as it can
to maximize the number of files available in cache. A given MPI rank in the restarted run does not need to run on
the same node that it ran on in the previous run. SCR distributes cached files among processes according to the
process mapping of the restarted run.

By default, SCR inspects the cache for existing checkpoints when a job starts. It attempts to rebuild all datasets
in cache, and then it attempts to restart the job from the most recent checkpoint. If a checkpoint fails to rebuild,
SCR deletes it from cache. To disable restarting from cache, set the SCR DISTRIBUTE parameter to 0. When
disabled, SCR deletes all files from cache and restarts from a checkpoint on the parallel file system.

An example restart scenario is illustrated in Figure 3 in which a 4-node job using the Partner scheme allocates
5 nodes and successfully restarts within the allocation after a node fails.

5.7 Catastrophic failures

There are some failures from which the SCR library cannot recover. In such cases, the application is forced to fall
back to the latest checkpoint successfully written to the parallel file system. Such catastrophic failures include the
following:

Multiple node failure which violates the redundancy scheme. If multiple nodes fail in a pattern which vi-
olates the cache redundancy scheme, data are irretrievably lost.

Failure during a checkpoint. Due to cache size limitations, some applications can only fit one checkpoint in
cache at a time. For such cases, a failure may occur after the library has deleted the previous checkpoint but
before the next checkpoint has completed. In this case, there is no valid checkpoint in cache to recover.

Failure of the node running the job batch script. The logic at the end of the allocation to scavenge the latest
checkpoint from cache to the parallel file system executes as part of the job batch script. If the node executing
this script fails, the scavenge logic will not execute and the allocation will terminate without copying the latest
checkpoint to the parallel file system.

Parallel file system outage. If the application fails when writing output due to an outage of the parallel file
system, the scavenge logic may also fail when it attempts to copy files to the parallel file system.

There are other catastrophic failure cases not listed here. Checkpoints must be written to the parallel file system
with some moderate frequency so as not to lose too much work in the event of a catastrophic failure. Section 5.8
provides details on how to configure SCR to make occasional writes to the parallel file system.

By default, the current implementation stores only the most recent checkpoint in cache. One can change
the number of checkpoints stored in cache by setting the SCR CACHE SIZE parameter. If space is available, it is
recommended to increase this value to at least 2.

5.8 Fetch, flush, and scavenge

SCR manages the transfer of datasets between the prefix directory on the parallel file system and the cache. We use
the term fetch to refer to the action of copying a dataset from the parallel file system to cache. When transferring

14

Figure 3: Example restart after a failed node with Partner

15

data in the other direction, there are two terms used: flush and scavenge. Under normal circumstances, the library
directly copies files from cache to the parallel file system, and this direct transfer is known as a flush. However,
sometimes a run is killed before the library can complete this transfer. In these cases, a set of SCR commands
is executed after the final run to ensure that the latest checkpoint is copied to the parallel file system before the
allocation expires. We say that these scripts scavenge the latest checkpoint.

Each time an SCR job starts, SCR first inspects the cache and attempts to distribute files for a scalable restart
as discussed in Section 5.6. If the cache is empty or the distribute operation fails or is disabled, SCR attempts to
fetch a checkpoint from the prefix directory to fill the cache. SCR reads the index file and attempts to fetch the
most recent checkpoint, or otherwise the checkpoint that is marked as current within the index file. For a given
checkpoint, SCR records whether the fetch attempt succeeds or fails in the index file. SCR does not attempt to
fetch a checkpoint that is marked as being incomplete nor does it attempt to fetch a checkpoint for which a previous
fetch attempt has failed. If SCR attempts but fails to fetch a checkpoint, it prints an error and continues the run.

To disable the fetch operation, set the SCR FETCH parameter to 0. If an application disables the fetch feature,
the application is responsible for reading its checkpoint set directly from the parallel file system upon a restart.

To withstand catastrophic failures, it is necessary to write checkpoint sets out to the parallel file system with
some moderate frequency. In the current implementation, the SCR library writes a checkpoint set out to the parallel
file system after every 10 checkpoints. This frequency can be configured by setting the SCR FLUSH parameter. When
this parameter is set, SCR decrements a counter with each successful checkpoint. When the counter hits 0, SCR
writes the current checkpoint set out to the file system and resets the counter to the value specified in SCR FLUSH.
SCR preserves this counter between scalable restarts, and when used in conjunction with SCR FETCH, it also preserves
this counter between fetch and flush operations such that it is possible to maintain periodic checkpoint writes across
runs. Set SCR FLUSH to 0 to disable periodic writes in SCR. If an application disables the periodic flush feature,
the application is responsible for writing occasional checkpoint sets to the parallel file system.

By default, SCR computes and stores a CRC32 checksum value for each checkpoint file during a flush. It
then uses the checksum to verify the integrity of each file as it is read back into cache during a fetch. If data
corruption is detected, SCR falls back to fetch an earlier checkpoint set. To disable this checksum feature, set the
SCR CRC ON FLUSH parameter to 0.

6 Build SCR

6.1 Dependencies

SCR has several dependencies. A C compiler, MPI, CMake, and pdsh are required dependencies. The others are
optional, and when they are not available some features of SCR may not be available.

• CMake, Version 2.8+

• Compiler (C, C++, and Fortran)

• MPI

• pdsh (https://github.com/grondo/pdsh)

• DTCMP (optional, used for user-defined directory structure feature)(https://github.com/llnl/dtcmp)

• LWGRP (optional, used for user-defined directory structure feature) (https://github.com/LLNL/lwgrp)

• libyogrt (optional, used for determining length of time left in the current allocation) (https://github.com/
llnl/libyogrt)

• MySQL (optional, used for logging SCR activities)

16

https://github.com/grondo/pdsh
https://github.com/llnl/dtcmp
https://github.com/LLNL/lwgrp
https://github.com/llnl/libyogrt
https://github.com/llnl/libyogrt

6.2 Spack

The most automated way to build SCR is to use the Spack package manager (https://github.com/spack/spack).
SCR and all of its dependencies exist in a Spack package. After downloading Spack, simply type:

spack install scr

This will install the DTCMP, LWGRP, and pdsh packages (and possibly an MPI and a C compiler if needed).

6.3 CMake

To get started with CMake (version 2.8 or higher), the quick version of building SCR is:

git clone git@github.com:llnl/scr.git
mkdir build
mkdir install

cd build
cmake -DCMAKE_INSTALL_PREFIX=../install ../scr
make
make install
make test

Some useful CMake command line options are:

• -DCMAKE INSTALL PREFIX=[path]: Place to install the SCR library

• -DCMAKE BUILD TYPE=[Debug/Release]: Build with debugging or optimizations

• -DBUILD PDSH=[OFF/ON]: CMake can automatically download and build the PDSH dependency

• -DWITH PDSH PREFIX=[path to PDSH]: Path to an existing PDSH installation (should not be used with
BUILD PDSH)

• -DWITH DTCMP PREFIX=[path to DTCMP]

• -DWITH YOGRT PREFIX=[path to YOGRT]

• -DSCR ASYNC API=[CRAY DW/INTEL CPPR/IBM BBAPI/NONE]

• -DSCR RESOURCE MANAGER=[SLURM/APRUN/PMIX/LSF/NONE]

7 SCR API

SCR is designed to support MPI applications that write application-level checkpoints and output datasets. Both
types of datasets (checkpoints and output) must be stored as a file-per-process, and they must be accessed in a
globally-coordinated fashion. In a given dataset, each process may actually write zero or more files, but the current
implementation assumes that each process writes roughly the same amount of data.

Parallel file systems allow any process in an MPI job to read/write any byte of a file at any time. However,
most applications do not require this full generality. SCR supplies API calls that enable the application to specify
limits on its data access in both time and space. Start and complete calls indicate when an application needs to
write or read its data. Data cannot be accessed outside of these markers. Additionally, each MPI process may only
read files written by itself or another process having the same MPI rank in a previous run. An MPI process cannot
read files written by a process having a different MPI rank.

The API is designed to be simple, scalable, and portable. It consists of a small number of function calls to
wrap existing application I/O logic. Unless otherwise stated, SCR functions are collective, meaning all processes

17

https://github.com/spack/spack

must call the function synchronously. The underlying implementation may or may not be synchronous, but to be
portable, an application must treat a collective call as though it is synchronous. This constraint enables the SCR
implementation to utilize the full resources of the job in a collective manner to optimize performance at critical
points such as computing redundancy data.

In the sections below, we show the function prototypes for C and Fortran, respectively. Applications written in
C should include “scr.h”, and Fortran should include “scrf.h”. All functions return SCR SUCCESS if successful.

7.1 General API

7.1.1 SCR Init

int SCR_Init();

SCR_INIT(IERROR)

INTEGER IERROR

Initialize the SCR library. This function must be called after MPI Init, and it is good practice to call this
function immediately after MPI Init. A process should only call SCR Init once during its execution. No other SCR
calls are valid until a process has returned from SCR Init.

7.1.2 SCR Finalize

int SCR_Finalize();

SCR_FINALIZE(IERROR)

INTEGER IERROR

Shut down the SCR library. This function must be called before MPI Finalize, and it is good practice to call
this function just before MPI Finalize. A process should only call SCR Finalize once during its execution.

If SCR FLUSH is enabled, SCR Finalize flushes any datasets to the prefix directory if necessary. It updates
the halt file to indicate that SCR Finalize has been called. This halt condition prevents the job from restarting
(Section 11).

7.1.3 SCR Get version

char* SCR_Get_version(void);

SCR_GET_VERSION(VERSION, IERROR)
CHARACTER*(*) VERSION
INTEGER IERROR

This function returns a string that indicates the version number of SCR that is currently in use.

7.1.4 SCR Should exit

int SCR_Should_exit(int* flag);

SCR_SHOULD_EXIT(FLAG, IERROR)

INTEGER FLAG, IERROR

SCR Should exit provides a portable way for an application to determine whether it should halt its execution.
This function is passed a pointer to an integer in flag. Upon returning from SCR Should exit, flag is set to the
value 1 if the application should stop, and it is set to 0 otherwise. The call returns the same value in flag on all
processes. It is recommended to call this function after each checkpoint.

18

Since datasets in cache may be deleted by the system at the end of an allocation, it is critical for a job to stop
early enough to leave time to copy datasets from cache to the parallel file system before the allocation expires. By
default, the SCR library automatically calls exit at certain points. This works especially well in conjunction with
the SCR HALT SECONDS parameter. However, this default behavior does not provide the application a chance to exit
cleanly. SCR can be configured to avoid an automatic exit using the SCR HALT ENABLED parameter.

This call also enables a running application to react to external commands. For instance, if the application has
been instructed to halt using the scr halt command, then SCR Should exit relays that information.

7.1.5 SCR Route file

int SCR_Route_file(const char* name, char* file);

SCR_ROUTE_FILE(NAME, FILE, IERROR)

CHARACTER*(*) NAME, FILE

INTEGER IERROR

When files are under control of SCR, they may be written to or exist on different levels of the storage hierarchy
at different points in time. For example, a checkpoint might be written first to the RAM disk of a compute node
and then later transferred to a burst buffer or the parallel file system by SCR. In order for an application to discover
where a file should be written to or read from, we provide the SCR Route file routine.

A process calls SCR Route file to obtain the full path and file name it must use to access a file under SCR
control. The name of the file that the process intends to access must be passed in the name argument. A pointer
to a character buffer of at least SCR MAX FILENAME bytes must be passed in file. When a call to SCR Route file
returns, the full path and file name to access the file named in name is written to the buffer pointed to by file.
The process must use the character string returned in file to access the file. A process does not need to create any
directories listed in the string returned in file. The SCR implementation creates any necessary directories before
returning from the call. A call to SCR Route file is local to the calling process; it is not a collective call.

SCR Route file can only be called within a Start/Complete pair for restart, checkpoint, or output. Within a
restart operation, the input parameter name only requires a file name. No path component is needed. SCR will
return a full path to the file from the most recent checkpoint having the same name. It will return an error if no file
by that name exists. Within checkpoint and output operations, the input parameter name also specifies the final
path on the parallel file system. The caller may provide either absolute or relative path components in name. If the
path is relative, SCR prepends the current working directory to name at the time that SCR Route file is called.
With either an absolute or relative path, all paths must resolve to a location within the subtree rooted at the SCR
prefix directory.

In the current implementation, SCR only changes the directory portion of name. It extracts the base name of
the file by removing any directory components in name. Then it prepends a directory to the base file name and
returns the full path and file name in file.

7.2 Checkpoint API

Here we describe the SCR API functions that are used for writing checkpoints.

7.2.1 SCR Need checkpoint

int SCR_Need_checkpoint(int* flag);

SCR_NEED_CHECKPOINT(FLAG, IERROR)

INTEGER FLAG, IERROR

Since the failure frequency and the cost of checkpointing vary across platforms, SCR Need checkpoint provides
a portable way for an application to determine whether a checkpoint should be taken. This function is passed a
pointer to an integer in flag. Upon returning from SCR Need checkpoint, flag is set to the value 1 if a checkpoint
should be taken, and it is set to 0 otherwise. The call returns the same value in flag on all processes.

19

7.2.2 SCR Start checkpoint

int SCR_Start_checkpoint();

SCR_START_CHECKPOINT(IERROR)

INTEGER IERROR

Inform SCR that a new checkpoint is about to start. A process must call this function before it opens any
files belonging to the new checkpoint. SCR Start checkpoint must be called by all processes, including processes
that do not write files as part of the checkpoint. This function should be called as soon as possible when initiating
a checkpoint. The SCR implementation uses this call as the starting point to time the cost of the checkpoint in
order to optimize the checkpoint frequency via SCR Need checkpoint. Each call to SCR Start checkpoint must
be followed by a corresponding call to SCR Complete checkpoint.

In the current implementation, SCR Start checkpoint holds all processes at an MPI Barrier to ensure that all
processes are ready to start the checkpoint before it deletes cached files from a previous checkpoint.

7.2.3 SCR Complete checkpoint

int SCR_Complete_checkpoint(int valid);

SCR_COMPLETE_CHECKPOINT(VALID, IERROR)

INTEGER VALID, IERROR

Inform SCR that all files for the current checkpoint are complete (i.e., done writing and closed) and whether they
are valid (i.e., written without error). A process must close all checkpoint files before calling SCR Complete checkpoint.
SCR Complete checkpoint must be called by all processes, including processes that did not write any files as part
of the checkpoint.

The parameter valid should be set to 1 if either the calling process wrote all of its files successfully or it wrote
no files during the checkpoint. Otherwise, the process should call SCR Complete checkpoint with valid set to 0.
SCR will determine whether all processes wrote their checkpoint files successfully.

The SCR implementation uses this call as the stopping point to time the cost of the checkpoint that started
with the preceding call to SCR Start checkpoint. Each call to SCR Complete checkpoint must be preceded by a
corresponding call to SCR Start checkpoint.

In the current implementation, SCR applies the redundancy scheme during SCR Complete checkpoint. Before
returning from the function, MPI rank 0 determines whether the job should be halted and signals this condition to
all other ranks (Section 11). If the job should be halted, rank 0 records a reason in the halt file, and then all tasks
call exit, unless the auto exit feature is disabled.

7.3 Restart API

Here we describe the SCR API functions used for restarting applications.

7.3.1 SCR Have restart

int SCR_Have_restart(int* flag, char* name);

SCR_HAVE_RESTART(FLAG, NAME, IERROR)

INTEGER FLAG

CHARACTER*(*) NAME

INTEGER IERROR

This function indicates whether SCR has a checkpoint available for the application to read. This function is
passed a pointer to an integer in flag. Upon returning from SCR Have restart, flag is set to the value 1 if a
checkpoint is available, and it is set to 0 otherwise. The call returns the same value in flag on all processes.

20

A pointer to a character buffer of at least SCR MAX FILENAME bytes can be passed in name. If there is a checkpoint,
and if that checkpoint was assigned a name when it was created, SCR Have restart returns the name of that
checkpoint in name. The value returned in name is the same string that was passed to SCR Start output when the
checkpoint was created. In C, one may optionally pass NULL to this function to avoid returning the name. The
same value is returned in name on all processes.

7.3.2 SCR Start restart

int SCR_Start_restart(char* name);

SCR_START_RESTART(NAME, IERROR)

CHARACTER*(*) NAME

INTEGER IERROR

This function informs SCR that a restart operation is about to start. A process must call this function before
it opens any files belonging to the restart. SCR Start restart must be called by all processes, including processes
that do not read files as part of the restart.

SCR returns the name of loaded checkpoint in name. A pointer to a character buffer of at least SCR MAX FILENAME
bytes can be passed in name. The value returned in name is the same string that was passed to SCR Start output
when the checkpoint was created. In C, one may optionally pass NULL to this function to avoid returning the name.
The same value is returned in name on all processes.

One may only call SCR Start restart when SCR Have restart indicates that there is a checkpoint to read.
SCR Start restart returns the same value in name as the preceding call to SCR Have restart.

Each call to SCR Start restart must be followed by a corresponding call to SCR Complete restart.

7.3.3 SCR Complete restart

int SCR_Complete_restart(int valid);

SCR_COMPLETE_RESTART(VALID, IERROR)

INTEGER VALID, IERROR

This call informs SCR that the process has finished reading its checkpoint files. A process must close all
restart files before calling SCR Complete restart. SCR Complete restart must be called by all processes, including
processes that did not read any files as part of the restart.

The parameter valid should be set to 1 if either the calling process read all of its files successfully or it read no
files during the checkpoint. Otherwise, the process should call SCR Complete restart with valid set to 0. SCR
will determine whether all processes read their checkpoint files successfully based on the values supplied in the
valid parameter. If any process failed to read its checkpoint files, then SCR will abort.

Each call to SCR Complete restart must be preceded by a corresponding call to SCR Start restart.

7.4 Output API

As of SCR version 1.2.0, SCR has the ability to manage application output datasets in addition to checkpoint
datasets. Using a combination of bit flags, a dataset can be designated as a checkpoint, output, or both. The
checkpoint property means that the dataset can be used to restart the application. The output property means
that the dataset must be written to the prefix directory. This enables an application to utilize asynchronous transfers
to the parallel file system for both its checkpoints and large output sets, so that it can return to computation while
the dataset migrates to the parallel file system in the background.

If a user specifies that a dataset is a checkpoint only, then the dataset will be managed with the SCR Output
API as it would be if the SCR Checkpoint API were used. In particular, SCR may delete the checkpoint when a
more recent checkpoint is established.

If a user specifies that a dataset is for output only, the dataset will first be cached on a tier of storage specified
in the configuration file for the run and protected with the corresponding redundancy scheme. Then, the dataset

21

will be moved to the prefix directory. When the transfer to the prefix directory is complete, the cached copy of the
output dataset will be deleted.

If the user specifies that the dataset is both output and checkpoint, then SCR will use a hybrid approach.
Files in the dataset will be cached and redundancy schemes will be used to protect the files. The dataset will be
copied to the prefix directory, but it will also be kept in cache according to the policy set in the configuration for
checkpoints. For example, if the user has set the configuration to keep three checkpoints in cache, then the dataset
will be preserved until it is replaced by a newer checkpoint after three more checkpoint phases.

7.4.1 SCR Start output

int SCR_Start_output(char* name, int flags);

SCR_START_OUTPUT(NAME, FLAGS, IERROR)

CHARACTER*(*) NAME

INTEGER FLAGS, IERROR

Inform SCR that a new output phase is about to start. A process must call this function before it opens any
files belonging to the dataset. SCR Start output must be called by all processes, including processes that do not
write files as part of the dataset.

The caller can provide a name for the dataset in name. This name is used in two places. First, for checkpoints,
it is returned as the name value in the SCR Restart API. Second, it is exposed to the user when listing datasets
using the scr index command, and the user may specify the name as a command line argument at times. For this
reason, it is recommended to use short but meaningful names that are easy to type. The name value must be less
than SCR MAX FILENAME characters. All processes should provide identical values in name. In C, the application
may pass NULL for name in which case SCR generates a default name for the dataset based on its internal dataset
id.

The dataset can be output, a checkpoint, or both. The caller specifies these properties using SCR FLAG OUTPUT
and SCR FLAG CHECKPOINT bit flags. Additionally, a SCR FLAG NONE flag is defined for initializing variables. In C,
these values can be combined with the | bitwise OR operator. In Fortran, these values can be added together using
the + sum operator. Note that with Fortran, the values should be used at most once in the addition. All processes
should provide identical values in flags.

This function should be called as soon as possible when initiating a dataset output. It is used internally within
SCR for timing the cost of output operations. Each call to SCR Start output must be followed by a corresponding
call to SCR Complete output.

In the current implementation, SCR Start output holds all processes at an MPI Barrier to ensure that all
processes are ready to start the output before it deletes cached files from a previous checkpoint.

7.4.2 SCR Complete output

int SCR_Complete_output(int valid);

SCR_COMPLETE_OUTPUT(VALID, IERROR)

INTEGER VALID, IERROR

Inform SCR that all files for the current dataset output are complete (i.e., done writing and closed) and
whether they are valid (i.e., written without error). A process must close all files in the dataset before calling
SCR Complete output. SCR Complete output must be called by all processes, including processes that did not
write any files as part of the output.

The parameter valid should be set to 1 if either the calling process wrote all of its files successfully or it wrote
no files during the output phase. Otherwise, the process should call SCR Complete output with valid set to 0.
SCR will determine whether all processes wrote their output files successfully.

Each call to SCR Complete output must be preceded by a corresponding call to SCR Start output.
For the case of checkpoint datasets, SCR Complete output behaves similarly to SCR Complete checkpoint.

22

7.5 Space/time semantics

SCR imposes the following semantics:

1. A process of a given MPI rank may only access files previously written by itself or by processes having the
same MPI rank in prior runs. We say that a rank “owns” the files it writes. A process is never guaranteed
access to files written by other MPI ranks.

2. During a checkpoint, a process may only access files of the current checkpoint between calls to SCR Start checkpoint()
and SCR Complete checkpoint(). Once a process calls SCR Complete checkpoint() it is no longer guaran-
teed access to any file that it registered as part of that checkpoint via SCR Route file().

3. During a restart, a process may only access files from its “most recent” checkpoint, and it must access those files
between calls to SCR Start restart() and SCR Complete restart(). Once a process calls SCR Complete restart()
it is no longer guaranteed access to its restart files. SCR selects which checkpoint is considered to be the
“most recent”.

These semantics enable SCR to cache files on devices that are not globally visible to all processes, such as
node-local storage. Further, these semantics enable SCR to move, reformat, or delete files as needed, such that it
can manage this cache.

7.6 SCR API state transitions

SCR

Uninitialized

SCR_Init

SCR_Finalize

SCR

Idle

SCR_Start_Checkpoint

SCR_Complete_Checkpoint

SCR_Start_Restart

SCR_Complete_Restart

SCR_Start_Output

SCR_Complete_Output

SCR Idle

SCR_Get_version

SCR_Have_restart

SCR_Need_checkpoint

SCR_Should_exit

SCR

Checkpoint

SCR

Restart

SCR

Output

SCR Checkpoint

SCR Restart

SCR Output

SCR_Route_file

Figure 4: SCR API State Transition Diagram

Figure 4 illustrates the internal states in SCR and which API calls can be used from within each state. The
application must call SCR Init before it may call any other SCR function, and it may not call SCR functions
after calling SCR Finalize. Some calls transition SCR from one state to another as shown by the edges between
states. Other calls are only valid when in certain states as shown in the boxes. For example, SCR Route file
is only valid within the Checkpoint, Restart, or Output states. All SCR functions are implicitly collective across
MPI COMM WORLD, except for SCR Route file and SCR Get version.

23

8 Integrate SCR

This section provides details on how to integrate the SCR API into an application.

8.1 Using the SCR API

Before adding calls to the SCR library, consider that an application has existing checkpointing code that looks like
the following:

int main(int argc, char* argv[]) {

MPI_Init(&argc, &argv);

/* initialize our state from checkpoint file */

state = restart();

for (t = 0; t < TIMESTEPS; t++) {

/* ... do work ... */

/* every so often, write a checkpoint */

if (t % CHECKPOINT_FREQUENCY == 0)

checkpoint();

}

MPI_Finalize();

return 0;

}

void checkpoint() {

/* rank 0 creates a directory on the file system,

* and then each process saves its state to a file */

/* get rank of this process */

int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* rank 0 creates directory on parallel file system */

if (rank == 0) mkdir(checkpoint_dir);

/* hold all processes until directory is created */

MPI_Barrier(MPI_COMM_WORLD);

/* build file name of checkpoint file for this rank */

char checkpoint_file[256];

sprintf(checkpoint_file, "%s/rank_%d".ckpt",

checkpoint_dir, rank

);

/* each rank opens, writes, and closes its file */

FILE* fs = fopen(checkpoint_file, "w");

if (fs != NULL) {

fwrite(checkpoint_data, ..., fs);

fclose(fs);

}

/* wait for all files to be closed */

MPI_Barrier(MPI_COMM_WORLD);

24

/* rank 0 updates the pointer to the latest checkpoint */

FILE* fs = fopen("latest", "w");

if (fs != NULL) {

fwrite(checkpoint_dir, ..., fs);

fclose(fs);

}

}

void* restart() {

/* rank 0 broadcasts directory name to read from,

* and then each process reads its state from a file */

/* get rank of this process */

int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* rank 0 reads and broadcasts checkpoint directory name */

char checkpoint_dir[256];

if (rank == 0) {

FILE* fs = fopen("latest", "r");

if (fs != NULL) {

fread(checkpoint_dir, ..., fs);

fclose(fs);

}

}

MPI_Bcast(checkpoint_dir, sizeof(checkpoint_dir), MPI_CHAR, ...);

/* build file name of checkpoint file for this rank */

char checkpoint_file[256];

sprintf(checkpoint_file, "%s/rank_%d".ckpt",

checkpoint_dir, rank

);

/* each rank opens, reads, and closes its file */

FILE* fs = fopen(checkpoint_file, "r");

if (fs != NULL) {

fread(state, ..., fs);

fclose(fs);

}

return state;

}

There are three steps to consider when integrating the SCR API into an application: Init/Finalize, Checkpoint,
and Restart. One may employ the scalable checkpoint capability of SCR without the scalable restart capability.
While it is most valuable to utilize both, some applications cannot use the scalable restart.

The following code exemplifies the changes necessary to integrate SCR. Each change is numbered for further
discussion below.

8.1.1 Init/Finalize

You must add calls to SCR Init and SCR Finalize in order to start up and shut down the library. The SCR library
uses MPI internally, and all calls to SCR must be from within a well defined MPI environment, i.e., between MPI Init
and MPI Finalize. It is recommended to call SCR Init immediately after MPI Init and to call SCR Finalize just
before MPI Finalize. For example, modify the source to look something like this:

25

int main(int argc, char* argv[]) {

MPI_Init(&argc, &argv);

/**** change #1 ****/

SCR_Init();

/**** change #2 ****/

int have_restart;

SCR_Have_restart(&have_restart, NULL);

if (have_restart)

state = restart();

else

state = new_run_state;

for (t = 0; t < TIMESTEPS; t++) {

/* ... do work ... */

/**** change #3 ****/

int need_checkpoint;

SCR_Need_checkpoint(&need_checkpoint);

if (need_checkpoint)

checkpoint();

}

/**** change #4 ****/

SCR_Finalize();

MPI_Finalize();

return 0;

}

First, as shown in change #1, one must call SCR Init() to initialize the SCR library before it can be used.
SCR uses MPI, so SCR must be initialized after MPI has been initialized. Similarly, as shown in change #4, one
should shut down the SCR library by calling SCR Finalize(). This must be done before calling MPI Finalize().
Internally, SCR duplicates MPI COMM WORLD during SCR Init, so MPI messages from the SCR library do not mix
with messages sent by the application.

Some applications contain multiple calls to MPI Finalize. In such cases, be sure to account for each call. The
same applies to MPI Init if there are multiple calls to this function.

In change #2, the application can call SCR Have restart() to determine whether there is a checkpoint to read
in. If so, it calls its restart function, otherwise it assumes it is starting from scratch. This should only be called if
the application is using the scalable restart feature of SCR.

As shown in change #3, the application may rely on SCR to determine when to checkpoint by calling SCR Need checkpoint().
SCR can be configured with information on failure rates and checkpoint costs for the particular host platform, so
this function provides a portable method to guide an application toward an optimal checkpoint frequency. For this,
the application should call SCR Need checkpoint at each natural opportunity it has to checkpoint, e.g., at the end
of each time step, and then initiate a checkpoint when SCR advises it to do so. An application may ignore the out-
put of SCR Need checkpoint, and it does not have to call the function at all. The intent of SCR Need checkpoint
is to provide a portable way for an application to determine when to checkpoint across platforms with different
reliability characteristics and different file system speeds.

8.1.2 Checkpoint

To actually write a checkpoint, there are three steps. First, the application must call SCR Start checkpoint to
define the start boundary of a new checkpoint. It must do this before it opens any file belonging to the new check-
point. Then, the application must call SCR Route file for each file that it will write in order to register the file with

26

SCR and to determine the full path and file name to open each file. Finally, it must call SCR Complete checkpoint
to define the end boundary of the checkpoint.

If a process does not write any files during a checkpoint, it must still call SCR Start checkpoint and SCR Complete checkpoint
as these functions are collective. All files registered through a call to SCR Route file between a given SCR Start checkpoint
and SCR Complete checkpoint pair are considered to be part of the same checkpoint file set. Some example SCR
checkpoint code looks like the following:

void checkpoint() {

/* each process saves its state to a file */

/**** change #5 ****/

SCR_Start_checkpoint();

/* get rank of this process */

int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/**** change #6 ****/

/*

if (rank == 0)

mkdir(checkpoint_dir);

/* hold all processes until directory is created */

MPI_Barrier(MPI_COMM_WORLD);

*/

/* build file name of checkpoint file for this rank */

char checkpoint_file[256];

sprintf(checkpoint_file, "%s/rank_%d".ckpt",

checkpoint_dir, rank

);

/**** change #7 ****/

char scr_file[SCR_MAX_FILENAME];

SCR_Route_file(checkpoint_file, scr_file);

/**** change #8 ****/

/* each rank opens, writes, and closes its file */

FILE* fs = fopen(scr_file, "w");

if (fs != NULL) {

fwrite(checkpoint_data, ..., fs);

fclose(fs);

}

/**** change #9 ****/

/*

/* wait for all files to be closed */

MPI_Barrier(MPI_COMM_WORLD);

/* rank 0 updates the pointer to the latest checkpoint */

FILE* fs = fopen("latest", "w");

if (fs != NULL) {

fwrite(checkpoint_dir, ..., fs);

fclose(fs);

}

*/

27

/**** change #10 ****/

SCR_Complete_checkpoint(valid);

/**** change #11 ****/

/* Check whether we should stop */

int should_exit;

SCR_Should_exit(&should_exit);

if (should_exit) {

exit(0);

}

}

As shown in change #5, the application must inform SCR when it is starting a new checkpoint by calling
SCR Start checkpoint(). Similarly, it must inform SCR when it has completed the checkpoint with a correspond-
ing call to SCR Complete checkpoint() as shown in change #10. When calling SCR Complete checkpoint(), each
process sets the valid flag to indicate whether it wrote all of its checkpoint files successfully.

SCR manages checkpoint directories, so the mkdir operation is removed in change #6. Additionally, the ap-
plication can rely on SCR to track the latest checkpoint, so the logic to track the latest checkpoint is removed in
change #9.

Between the call to SCR Start checkpoint() and SCR Complete checkpoint(), the application must register
each of its checkpoint files by calling SCR Route file() as shown in change #7. SCR “routes” the file by replacing
any leading directory on the file name with a path that points to another directory in which SCR caches data for
the checkpoint. As shown in change #8, the application must use the exact string returned by SCR Route file()
to open its checkpoint file.

Also note how the application can call SCR Should exit after a checkpoint to determine whether it is time to
stop shown in change #11. This is important so that an application stops with sufficient time remaining to copy
datasets from cache to the parallel file system before the allocation expires.

8.1.3 Restart with SCR

There are two options to access files during a restart: with and without SCR. If an application is designed to restart
such that each MPI task only needs access to the files it wrote during the previous checkpoint, then the application
can utilize the scalable restart capability of SCR. This enables the application to restart from a cached checkpoint
in the existing resource allocation, which saves the cost of writing to and reading from the parallel file system.

To use SCR for restart, the application can call SCR Have restart to determine whether SCR has a previous
checkpoint loaded. If there is a checkpoint available, the application can call SCR Start restart to tell SCR that
a restart operation is beginning. Then, the application must call SCR Route file to determine the full path and
file name to each of its checkpoint files that it will read for restart. The input file name to SCR Route file does
not need a path during restart, as SCR will identify the file just based on its file name. After the application reads
in its checkpoint files, it must call SCR Complete restart to indicate that it has completed reading its checkpoint
files. Some example SCR restart code may look like the following:

void* restart() {

/* each process reads its state from a file */

/**** change #12 ****/

SCR_Start_restart(NULL);

/* get rank of this process */

int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/**** change #13 ****/

/*

28

/* rank 0 reads and broadcasts checkpoint directory name */

char checkpoint_dir[256];

if (rank == 0) {

FILE* fs = fopen("latest", "r");

if (fs != NULL) {

fread(checkpoint_dir, ..., fs);

fclose(fs);

}

}

MPI_Bcast(checkpoint_dir, sizeof(checkpoint_dir), MPI_CHAR, ...);

*/

/**** change #14 ****/

/* build file name of checkpoint file for this rank */

char checkpoint_file[256];

sprintf(checkpoint_file, "rank_%d".ckpt",

rank

);

/**** change #15 ****/

char scr_file[SCR_MAX_FILENAME];

SCR_Route_file(checkpoint_file, scr_file);

/**** change #16 ****/

/* each rank opens, reads, and closes its file */

FILE* fs = fopen(scr_file, "r");

if (fs != NULL) {

fread(state, ..., fs);

fclose(fs);

}

/**** change #17 ****/

SCR_Complete_restart(valid);

return state;

}

As shown in change #12, the application calls SCR Start restart() to inform SCR that it is beginning its
restart. SCR automatically loads the most recent checkpoint, so the application logic to identify the latest checkpoint
is removed in change #13. During a restart, the application only needs the file name, so the checkpoint directory
can be dropped from the path in change #14. Instead, the application gets the path to use to open the checkpoint
file via a call to SCR Route file() in change #15. It then uses that path to open the file for reading in change
#16. After the process has read each of its checkpoint files, it informs SCR that it has completed reading its data
with a call to SCR Complete restart() in change #17. When calling SCR Complete restart(), each process sets
the valid flag to indicate whether it read all of its checkpoint files successfully.

8.1.4 Restart without SCR

If the application does not use SCR for restart, it should not make calls to SCR Have restart, SCR Start restart,
SCR Route file, or SCR Complete restart during the restart. Instead, it should access files directly from the
parallel file system. When restarting without SCR, the value of the SCR FLUSH counter will not be preserved between
restarts. The counter will be reset to its upper limit with each restart. Thus, each restart may introduce some fixed
offset in a series of periodic SCR flushes. When not using SCR for restart, one should set the SCR FLUSH ON RESTART
parameter to 1, which will cause SCR to flush any cached checkpoint to the file system during SCR Init.

29

8.2 Building with the SCR library

To compile and link with the SCR library, add the flags in Table 1 to your compile and link lines. The value of the
variable SCR INSTALL DIR should be the path to the installation directory for SCR.

Table 1: SCR build flags

Compile Flags -I$(SCR INSTALL DIR)/include
C Dynamic Link Flags -L$(SCR INSTALL DIR)/lib64 -lscr -Wl,-rpath,$(SCR INSTALL DIR)/lib64
C Static Link Flags -L$(SCR INSTALL DIR)/lib64 -lscr -lz
Fortran Dynamic Link Flags -L$(SCR INSTALL DIR)/lib64 -lscrf -Wl,-rpath,$(SCR INSTALL DIR)/lib64
Fortran Static Link Flags -L$(SCR INSTALL DIR)/lib64 -lscrf -lz

9 Run a job

In addition to the SCR library, one must properly configure the batch system and include a set of SCR commands
in the job batch script. In particular, one must: 1) inform the batch system that the allocation should remain
available even after a failure and 2) replace the command to execute the application with an SCR wrapper script.
The precise set of options and commands to use depends on the system resource manager.

The SCR commands prepare the cache, scavenge files from cache to the parallel file system, and check that the
scavenged dataset is complete among other things. These commands are located in the /bin directory where SCR
is installed. There are numerous SCR commands. Any command not mentioned in this document is not intended
to be executed by users.

9.1 Supported platforms

At the time of this writing, SCR supports specific combinations of resource managers and job launchers. The
descriptions for using SCR in this section apply to these specific configurations, however the following description is
helpful to understand how to run SCR on any system. Please contact us for help in porting SCR to other platforms.
(See Section 2 for contact information).

9.2 Jobs and job steps

First, we differentiate between a job allocation and a job step. Our terminology originates from the SLURM resource
manager, but the principles apply generally across SCR-supported resource managers.

When a job is scheduled resources on a system, the batch script executes inside of a job allocation. The job
allocation consists of a set of nodes, a time limit, and a job id. The job id can be obtained by executing the squeue
command on SLURM, the apstat command on ALPS, and the bjobs command on LSF.

Within a job allocation, a user may run one or more job steps, each of which is invoked by a call to srun on
SLURM, aprun on ALPS, or mpirun on LSF. Each job step is assigned its own step id. On SLURM, within each
job allocation, job step ids start at 0 and increment with each issued job step. Job step ids can be obtained by
passing the -s option to squeue. A fully qualified name of a SLURM job step consists of: jobid.stepid. For
instance, the name 1234.5 refers to step id 5 of job id 1234. On ALPS, each job step within an allocation has a
unique id that can be obtained through apstat.

9.3 Ignoring node failures

Before running an SCR job, it is necessary to configure the job allocation to withstand node failures. By default,
most resource managers terminate the job allocation if a node fails, however SCR requires the job allocation to
remain active in order to restart the job or to scavenge files. To enable the job allocation to continue past node
failures, one must specify the appropriate flags from Table 2.

30

Table 2: SCR job allocation flags
MOAB batch script #MSUB -l resfailpolicy=ignore
MOAB interactive qsub -I ... -l resfailpolicy=ignore
SLURM interactive salloc --no-kill ...
LSF batch script #BSUB -env "all, LSB DJOB COMMFAIL ACTION=KILL TASKS"
LSF interactive bsub -env "all, LSB DJOB COMMFAIL ACTION=KILL TASKS" ...

9.4 The SCR wrapper script

The easiest way to integrate SCR into a batch script is to set some environment variables and to replace the job
run command with an SCR wrapper script. The SCR wrapper script includes logic to restart an application within
an job allocation, and it scavenges files from cache to the parallel file system at the end of an allocation.

SLURM: scr_srun [srun_options] <prog> [prog_args ...]

ALPS: scr_aprun [aprun_options] <prog> [prog_args ...]

LSF: scr_mpirun [mpirun_options] <prog> [prog_args ...]

The SCR wrapper script must run from within a job allocation. Internally, the command must know the prefix
directory. By default, it uses the current working directory. One may specify a different prefix directory by setting
the SCR PREFIX parameter.

It is recommended to set the SCR HALT SECONDS parameter so that the job allocation does not expire before
datasets can be flushed (Section 11).

By default, the SCR wrapper script does not restart an application after the first job step exits. To automatically
restart a job step within the current allocation, set the SCR RUNS environment variable to the maximum number of
runs to attempt. For an unlimited number of attempts, set this variable to -1.

After a job step exits, the wrapper script checks whether it should restart the job. If so, the script sleeps for
some time to give nodes in the allocation a chance to clean up. Then, it checks that there are sufficient healthy
nodes remaining in the allocation. By default, the wrapper script assumes the next run requires the same number
of nodes as the previous run, which is recorded in a file written by the SCR library. If this file cannot be read,
the command assumes the application requires all nodes in the allocation. Alternatively, one may override these
heuristics and precisely specify the number of nodes needed by setting the SCR MIN NODES environment variable to
the number of required nodes.

Some applications cannot run via wrapper scripts. For applications that cannot invoke the SCR wrapper script
as described here, one should examine the logic contained in the script and duplicate the necessary parts in the job
batch script. In particular, one should invoke scr postrun for scavenge support.

31

9.5 Example batch script for using SCR restart capability

An example MOAB / SLURM batch script with scr srun is shown below:

#!/bin/bash

#MSUB -l partition=atlas

#MSUB -l nodes=66

#MSUB -l resfailpolicy=ignore

above, tell MOAB to not kill the job allocation upon a node failure

also note that the job requested 2 spares -- it uses 64 nodes but allocated 66

specify where datasets should be written

export SCR_PREFIX=/my/parallel/file/system/username/run1/checkpoints

instruct SCR to flush to the file system every 20 checkpoints

export SCR_FLUSH=20

halt if there is less than an hour remaining (3600 seconds)

export SCR_HALT_SECONDS=3600

attempt to run the job up to 3 times

export SCR_RUNS=3

run the job with scr_srun

scr_srun -n512 -N64 ./my_job

10 Configure a job

The default SCR configuration suffices for many Linux clusters. However, significant performance improvement or
additional functionality may be gained via custom configuration.

10.1 Setting parameters

SCR searches the following locations in the following order for a parameter value, taking the first value it finds.

1. Environment variables,

2. User configuration file,

3. System configuration file,

4. Compile-time constants.

Some parameters, such as the location of the control directory, cannot be specified by the user. Such parameters
must be either set in the system configuration file or hard-coded into SCR as compile-time constants.

To find a user configuration file, SCR looks for a file named .scrconf in the prefix directory (note the leading
dot). Alternatively, one may specify the name and location of the user configuration file by setting the SCR CONF FILE
environment variable at run time, e.g.,

export SCR_CONF_FILE=~/myscr.conf

The location of the system configuration file is hard-coded into SCR at build time. This defaults to /etc/scr/scr.conf.
One may set this using the SCR CONFIG FILE option with cmake, e.g.,

cmake -DSCR_CONFIG_FILE=/path/to/scr.conf ...

To set an SCR parameter in a configuration file, list the parameter name followed by its value separated by an
‘=’ sign. Blank lines are ignored, and any characters following the ‘#’ comment character are ignored. For example,

32

a configuration file may contain something like the following:

>>: cat ~/myscr.conf
set the halt seconds to one hour
SCR_HALT_SECONDS=3600

set SCR to flush every 20 checkpoints
SCR_FLUSH=20

10.2 Group, store, and checkpoint descriptors

SCR must have information about process groups, storage devices, and redundancy schemes. The defaults provide
reasonable settings for Linux clusters, but one can define custom settings via group, store, and checkpoint descriptors
in configuration files.

SCR must know which processes are likely to fail at the same time (failure groups) and which processes access
a common storage device (storage groups). By default, SCR creates a group of all processes in the job called WORLD
and another group of all processes on the same compute node called NODE. If more groups are needed, they can be
defined in configuration files with entries like the following:

GROUPS=host1 POWER=psu1 SWITCH=0

GROUPS=host2 POWER=psu1 SWITCH=1

GROUPS=host3 POWER=psu2 SWITCH=0

GROUPS=host4 POWER=psu2 SWITCH=1

Group descriptor entries are identified by a leading GROUPS key. Each line corresponds to a single compute
node, where the hostname is the value of the GROUPS key. There must be one line for every compute node in the
allocation. It is recommended to specify groups in the system configuration file.

The remaining values on the line specify a set of group name / value pairs. The group name is the string
to be referenced by store and checkpoint descriptors. The value can be an arbitrary character string. The only
requirement is that for a given group name, nodes that form a group must provide identical strings the value.

In the above example, there are four compute nodes: host1, host2, host3, and host4. There are two groups
defined: POWER and SWITCH. Nodes host1 and host2 belong to the same POWER group, as do nodes host3 and host4.
For the SWITCH group, nodes host1 and host3 belong to the same group, as do nodes host2 and host4.

In addition to groups, SCR must know about the storage devices available on a system. SCR requires that all
processes be able to access the prefix directory, and it assumes that /tmp is storage local to each compute node.
Additional storage can be described in configuration files with entries like the following:

STORE=/tmp GROUP=NODE COUNT=1

STORE=/ssd GROUP=NODE COUNT=3

STORE=/dev/persist GROUP=NODE COUNT=1 ENABLED=1 MKDIR=0

STORE=/p/lscratcha GROUP=WORLD

Store descriptor entries are identified by a leading STORE key. Each line corresponds to a class of storage devices.
The value associated with the STORE key is the directory prefix of the storage device. This directory prefix also
serves as the name of the store descriptor. All compute nodes must be able to access their respective storage device
via the specified directory prefix.

The remaining values on the line specify properties of the storage class. The GROUP key specifies the group of
processes that share a device. Its value must specify a group name. The COUNT key specifies the maximum number
of checkpoints that can be kept in the associated storage. The user should be careful to set this appropriately
depending on the storage capacity and the application checkpoint size. The COUNT key is optional, and it defaults
to the value of the SCR CACHE SIZE parameter if not specified. The ENABLED key enables (1) or disables (0) the
store descriptor. This key is optional, and it defaults to 1 if not specified. The MKDIR key specifies whether the
device supports the creation of directories (1) or not (0). This key is optional, and it defaults to 1 if not specified.

33

In the above example, there are four storage devices specified: /tmp, /ssd, /dev/persist, and /p/lscratcha.
The storage at /tmp, /ssd, and /dev/persist specify the NODE group, which means that they are node-local storage.
Processes on the same compute node access the same device. The storage at /p/lscratcha specifies the WORLD
group, which means that all processes in the job can access the device. In other words, it is a globally accessible
file system.

Finally, SCR must be configured with redundancy schemes. By default, SCR protects against single compute
node failures using XOR, and it caches one checkpoint in /tmp. To specify something different, edit a configuration
file to include checkpoint and output descriptors. These descriptors look like the following:

instruct SCR to use the CKPT descriptors from the config file
SCR_COPY_TYPE=FILE

the following instructs SCR to run with three checkpoint configurations:
- save every 8th checkpoint to /ssd using the PARTNER scheme
- save every 4th checkpoint (not divisible by 8) to /ssd using XOR with
a set size of 8
- save all other checkpoints (not divisible by 4 or 8) to /tmp using XOR with
a set size of 16
CKPT=0 INTERVAL=1 GROUP=NODE STORE=/tmp TYPE=XOR SET_SIZE=16
CKPT=1 INTERVAL=4 GROUP=NODE STORE=/ssd TYPE=XOR SET_SIZE=8 OUTPUT=1
CKPT=2 INTERVAL=8 GROUP=SWITCH STORE=/ssd TYPE=PARTNER

CKPT=0 INTERVAL=1 GROUP=NODE STORE=/tmp TYPE=XOR SET_SIZE=16

First, one must set the SCR COPY TYPE parameter to “FILE”. Otherwise, an implied checkpoint descriptor is con-
structed using various SCR parameters including SCR GROUP, SCR CACHE BASE, SCR COPY TYPE, and SCR SET SIZE.

Checkpoint descriptor entries are identified by a leading CKPT key. The values of the CKPT keys must be
numbered sequentially starting from 0. The INTERVAL key specifies how often a descriptor is to be applied. For
each checkpoint, SCR selects the descriptor having the largest interval value that evenly divides the internal SCR
checkpoint iteration number. It is necessary that one descriptor has an interval of 1. This key is optional, and it
defaults to 1 if not specified. The GROUP key lists the failure group, i.e., the name of the group of processes likely
to fail. This key is optional, and it defaults to the value of the SCR GROUP parameter if not specified. The STORE
key specifies the directory in which to cache the checkpoint. This key is optional, and it defaults to the value of
the SCR CACHE BASE parameter if not specified. The TYPE key identifies the redundancy scheme to be applied. This
key is optional, and it defaults to the value of the SCR COPY TYPE parameter if not specified.

Other keys may exist depending on the selected redundancy scheme. For XOR schemes, the SET SIZE key specifies
the minimum number of processes to include in each XOR set.

One checkpoint descriptor can be marked with the OUTPUT key. This indicates that the descriptor should be
selected to store datasets that the application flags with SCR FLAG OUTPUT. The OUTPUT key is optional, and it
defaults to 0. If there is no descriptor with the OUTPUT key defined and if the dataset is also a checkpoint, SCR
will choose the checkpoint descriptor according to the normal policy. Otherwise, if there is no descriptor with the
OUTPUT key defined and if the dataset is not a checkpoint, SCR will use the checkpoint descriptor having interval
of 1.

10.3 SCR parameters

The table in this section specifies the full set of SCR configuration parameters.

34

Table 3: SCR parameters

Name Default Description
SCR HALT SECONDS 0 Set to a positive integer to instruct SCR to halt the job after completing

a successful checkpoint if the remaining time in the current job allocation
is less than the specified number of seconds.

SCR HALT ENABLED 1 Whether SCR should halt a job by calling exit(). Set to 0 to disable
in which case the application is responsible for stopping.

SCR GROUP NODE Specify name of failure group.
SCR COPY TYPE XOR Set to one of: SINGLE, PARTNER, XOR, or FILE.
SCR CACHE BASE /tmp Specify the base directory SCR should use to cache checkpoints.
SCR CACHE SIZE 1 Set to a non-negative integer to specify the maximum number of check-

points SCR should keep in cache. SCR will delete the oldest checkpoint
from cache before saving another in order to keep the total count below
this limit.

SCR SET SIZE 8 Specify the minimum number of processes to include in an XOR set.
Increasing this value decreases the amount of storage required to cache
the checkpoint data. However, higher values have an increased likelihood
of encountering a catastrophic error. Higher values may also require
more time to reconstruct lost files from redundancy data.

SCR PREFIX $PWD Specify the prefix directory on the parallel file system where checkpoints
should be read from and written to.

SCR CHECKPOINT SECONDS 0 Set to positive number of seconds to specify minimum time between
consecutive checkpoints as guided by SCR Need checkpoint.

SCR CHECKPOINT OVERHEAD 0.0 Set to positive percentage to specify maximum overhead allowed for
checkpointing operations as guided by SCR Need checkpoint.

SCR DISTRIBUTE 1 Set to 0 to disable file distribution during SCR Init.
SCR FETCH 1 Set to 0 to disable SCR from fetching files from the parallel file system

during SCR Init.
SCR FETCH WIDTH 256 Specify the number of processes that may read simultaneously from the

parallel file system.
SCR FLUSH 10 Specify the number of checkpoints between periodic SCR flushes to the

parallel file system. Set to 0 to disable periodic flushes.
SCR FLUSH ASYNC 0 Set to 1 to enable asynchronous flush methods (if supported).
SCR FLUSH WIDTH 256 Specify the number of processes that may write simultaneously to the

parallel file system.
SCR FLUSH ON RESTART 0 Set to 1 to force SCR to flush a checkpoint during restart. This is useful

for codes that must restart from the parallel file system.
SCR PRESERVE DIRECTORIES 1 Whether SCR should preserve the application directory structure in pre-

fix directory in flush and scavenge operations. Set to 0 to rely on SCR-
defined directory layouts.

SCR RUNS 1 Specify the maximum number of times the scr srun command should
attempt to run a job within an allocation. Set to -1 to specify an unlim-
ited number of times.

SCR MIN NODES N/A Specify the minimum number of nodes required to run a job.
SCR EXCLUDE NODES N/A Specify a set of nodes, using SLURM node range syntax, which should

be excluded from runs. This is useful to avoid particular nodes while
waiting for them to be fixed by system administrators. Nodes in this list
which are not in the current allocation are silently ignored.

SCR MPI BUF SIZE 131072 Specify the number of bytes to use for internal MPI send and receive
buffers when computing redundancy data or rebuilding lost files.

35

Table 3 – continued from previous page
Name Default Description
SCR FILE BUF SIZE 1048576 Specify the number of bytes to use for internal buffers when copying files

between the parallel file system and the cache.
SCR CRC ON COPY 0 Set to 1 to enable CRC32 checks when copying files during the redun-

dancy scheme.
SCR CRC ON DELETE 0 Set to 1 to enable CRC32 checks when deleting files from cache.
SCR CRC ON FLUSH 1 Set to 0 to disable CRC32 checks during fetch and flush operations.
SCR DEBUG 0 Set to 1 or 2 for increasing verbosity levels of debug messages.
SCR WATCHDOG TIMEOUT N/A Set to the expected time (seconds) for checkpoint writes to in-system

storage (See Section 11.5).
SCR WATCHDOG TIMEOUT PFS N/A Set to the expected time (seconds) for checkpoint writes to the parallel

file system (See Section 11.5).

11 Halt a job

There are several mechanisms to instruct a running SCR application to halt. It is often necessary to interact with
the resource manager to halt a job.

11.1 scr halt and the halt file

The recommended method to stop an SCR application is to use the scr halt command. The command must be
run from within the prefix directory, or otherwise, the prefix directory of the target job must be specified as an
argument.

A number of different halt conditions can be specified. In most cases, the scr halt command communicates
these conditions to the running application via the halt.scr file, which is stored in the hidden .scr directory within
the prefix directory. The SCR library reads the halt file when the application calls SCR Init and each time the
application completes a checkpoint. If a halt condition is satisfied, all tasks in the application call exit. One can
disable this behavior by setting the SCR HALT ENABLED parameter to 0. In this case, the application can determine
when to exit by calling SCR Should exit.

11.2 Halt after next checkpoint

You can instruct an SCR job to halt after completing its next successful checkpoint:

scr_halt

To run scr halt from outside of a prefix directory, specify the target prefix directory like so:

scr_halt /p/lscratcha/user1/simulation123

You can instruct an SCR job to halt after completing X checkpoints via the --checkpoints option. For example,
to instruct a job to halt after 10 more checkpoints, use the following:

scr_halt --checkpoints 10

If the last of the X checkpoints is unsuccessful, the job continues until it completes a successful checkpoint. This
ensures that SCR has a successful checkpoint to flush before it halts the job.

36

11.3 Halt before or after a specified time

It is possible to instruct an SCR job to halt after a specified time using the --after option. The job will halt on
its first successful checkpoint after the specified time. For example, you can instruct a job to halt after “12:00pm
today” via:

scr_halt --after ‘12:00pm today’

It is also possible to instruct a job to halt before a specified time using the --before option. For example, you
can instruct a job to halt before “8:30am tomorrow” via:

scr_halt --before ‘8:30am tomorrow’

For the “halt before” condition to be effective, one must also set the SCR HALT SECONDS parameter. When
SCR HALT SECONDS is set to a positive number, SCR checks how much time is left before the specified time limit.
If the remaining time in seconds is less than or equal to SCR HALT SECONDS, SCR halts the job. The value of
SCR HALT SECONDS does not affect the “halt after” condition.

It is highly recommended that SCR HALT SECONDS be set so that the SCR library can impose a default “halt
before” condition using the end time of the job allocation. This ensures the latest checkpoint can be flushed before
the allocation is lost.

It is important to set SCR HALT SECONDS to a value large enough that SCR has time to completely flush (and
rebuild) files before the allocation expires. Consider that a checkpoint may be taken just before the remaining time
is less than SCR HALT SECONDS. If a code checkpoints every X seconds and it takes Y seconds to flush files from
the cache and rebuild, set SCR HALT SECONDS = X + Y + ∆, where ∆ is some positive value to provide additional
slack time.

One may also set the halt seconds via the --seconds option to scr halt. Using the scr halt command, one
can set, change, and unset the halt seconds on a running job.

NOTE: If any scr halt commands are specified as part of the batch script before the first run starts, one must
then use scr halt to set the halt seconds for the job rather than the SCR HALT SECONDS parameter. The scr halt
command creates the halt file, and if a halt file exists before a job starts to run, SCR ignores any value specified in
the SCR HALT SECONDS parameter.

11.4 Halt immediately

Sometimes, you need to halt an SCR job immediately, and there are two options for this. You may use the
--immediate option:

scr_halt --immediate

This command first updates the halt file, so that the job will not be restarted once stopped. Then, it kills the
current run.

If for some reason the --immediate option fails to work, you may manually halt the job.2 First, issue a simple
scr halt so the job will not restart, and then manually kill the current run using mechanisms provided by the
resource manager, e.g., scancel for SLURM and apkill for ALPS. When using mechanisms provided by the
resource manager to kill the current run, be careful to cancel the job step and not the job allocation. Canceling the
job allocation destroys the cache.

For SLURM, to get the job step id, type: squeue -s. Then be sure to include the job id and step id in the
scancel argument. For example, if the job id is 1234 and the step id is 5, then use the following commands:

scr_halt

scancel 1234.5

Do not just type “scancel 1234” – be sure to include the job step id.
For ALPS, use apstat to get the apid of the job step to kill. Then, follow the steps as described above: execute

scr halt followed by the kill command apkill <apid>.
2On Cray/ALPS, scr halt --immediate is not yet supported. The alternate method described in the text must be used instead.

37

11.5 Catch a hanging job

If an application hangs, SCR may not be given the chance to copy files from cache to the parallel file system before
the allocation expires. To avoid losing significant work due to a hang, SCR attempts to detect if a job is hanging,
and if so, SCR attempts to kill the job step so that it can be restarted in the allocation.

On some systems, SCR employs the io-watchdog library for this purpose. For more information on this tool,
see http://code.google.com/p/io-watchdog.

On systems where io-watchdog is not available, SCR uses a generic mechanism based on the expected time
between checkpoints as specified by the user. If the time between checkpoints is longer than expected, SCR
assumes the job is hanging. Two SCR parameters determine how many seconds should pass between I/O phases in
an application, i.e. seconds between consecutive calls to SCR Start checkpoint. These are SCR WATCHDOG TIMEOUT
and SCR WATCHDOG TIMEOUT PFS. The first parameter specifies the time to wait when SCR writes checkpoints to
in-system storage, e.g. SSD or RAM disk, and the second parameter specifies the time to wait when SCR writes
checkpoints to the parallel file system. The reason for the two timeouts is that writing to the parallel file system
generally takes much longer than writing to in-system storage, and so a longer timeout period is useful in that case.

When using this feature, be careful to check that the job does not hang near the end of its allocation time limit,
since in this case, SCR may not kill the run with enough time before the allocation ends. If you suspect the job to
be hanging and you deem that SCR will not kill the run in sufficient time, manually cancel the run as described
above.

11.6 Combine, list, change, and unset halt conditions

It is possible to specify multiple halt conditions. To do so, simply list each condition in the same scr halt command
or issue several commands. For example, to instruct a job to halt after 10 checkpoints or before “8:30am tomorrow”,
which ever comes earlier, you could issue the following command:

scr_halt --checkpoints 10 --before ‘8:30am tomorrow’

The following sequence also works:

scr_halt --checkpoints 10

scr_halt --before ‘8:30am tomorrow’

You may list the current settings in the halt file with the --list option, e.g.,:

scr_halt --list

You may change a setting by issuing a new command to overwrite the current value.
Finally, you can unset some halt conditions by prepending unset- to the option names. See the scr halt man

page for a full listing of unset options. For example, to unset the “halt before” condition on a job, type the following:

scr_halt --unset-before

11.7 Remove the halt file

Sometimes, especially during testing, you may want to run in an existing allocation after halting a previous run.
When SCR detects a halt file with a satisfied halt condition, it immediately exits. This is the desired effect when
trying to halt a job, however this mechanism also prevents one from intentionally running in an allocation after
halting a previous run. Along these lines, know that SCR registers a halt condition whenever the application calls
SCR Finalize.

When there is a halt file with a satisfied halt condition, a message is printed to stdout to indicate why SCR
is halting. To run in such a case, first remove the satisfied halt conditions. You can unset the conditions or reset
them to appropriate values. Another approach is to remove the halt file via the --remove option. This deletes the
halt file, which effectively removes all halt conditions. For example, to remove the halt file from a job, type:

scr_halt --remove

38

12 Manage datasets

SCR records the status of datasets that are on the parallel file system in the index.scr file. This file is written to
the hidden .scr directory within the prefix directory. The library updates the index file as an application runs and
during scavenge operations.

While restarting a job, the SCR library reads the index file during SCR Init to determine which checkpoints are
available. The library attempts to restart with the most recent checkpoint and works backwards until it successfully
fetches a valid checkpoint. SCR does not fetch any checkpoint marked as “incomplete” or “failed”. A checkpoint is
marked as incomplete if it was determined to be invalid during the flush or scavenge. Additionally, the library marks
a checkpoint as failed if it detected a problem during a previous fetch attempt (e.g., detected data corruption). In
this way, the library avoids invalid or problematic checkpoints.

One may list or modify the contents of the index file via the scr index command. The scr index command
must run within the prefix directory, or otherwise, one may specify a prefix directory using the “--prefix” option.
The default behavior of scr index is to list the contents of the index file, e.g.:

>>: scr_index

DSET VALID FLUSHED NAME

* 18 YES 2014-01-14T11:26:06 ckpt.18

12 YES 2014-01-14T10:28:23 ckpt.12

6 YES 2014-01-14T09:27:15 ckpt.6

When listing datasets, the internal SCR dataset id is shown, followed by a field indicating whether the dataset
is valid, the time it was flushed to the parallel file system, and finally the dataset name.

One checkpoint may also be marked as “current”. When restarting a job, the SCR library starts from the
current dataset and works backwards. The current dataset is denoted with a leading * character. One can change
the current checkpoint using the --current option, providing the dataset name as an argument.

scr_index --current ckpt.12

In most cases, the SCR library or the SCR commands add all necessary entries to the index file. However, there
are cases where they may fail. In particular, if the scr postrun command successfully scavenges a dataset but the
resource allocation ends before the command can rebuild missing files, an entry may be missing from the index file.
In such cases, one may manually add the corresponding entry using the “--add” option.

When adding a new dataset to the index file, the scr index command checks whether the files in a dataset
constitute a complete and valid set. It rebuilds missing files if there are sufficient redundant data, and it writes the
summary.scr file for the dataset if needed. One must provide the SCR dataset id as an argument. To obtain the
SCR dataset id value, lookup the trailing integer on the names of scr.dataset subdirectories in the hidden .scr
directory within the prefix directory.

scr_index --add 50

One may remove entries from the index file using the “--remove” option. This operation does not delete the
corresponding dataset files. It only deletes the entry from the index.scr file.

scr_index --remove ckpt.50

This is useful if one deletes a dataset from the parallel file system and then wishes to update the index.

References

[1] N. H. Vaidya, “A case for two-level recovery schemes,” IEEE Transactions on Computers, vol. 47, no. 6, pp. 656–
666, 1998.

[2] W. Gropp, R. Ross, and N. Miller, “Providing Efficient I/O Redundancy in MPI Environments,” in Lecture
Notes in Computer Science, 3241:7786, September 2004. 11th European PVM/MPI Users Group Meeting, 2004.

39

[3] D. Patterson, G. Gibson, and R. Katz, “A Case for Redundant Arrays of Inexpensive Disks (RAID),” in Proc.
of 1988 ACM SIGMOD Conf. on Management of Data, 1988.

[4] M. Jette, “Simple Linux Utility for Resource Management (SLURM).” https://computing.llnl.gov/linux/
slurm.

40

https://computing.llnl.gov/linux/slurm
https://computing.llnl.gov/linux/slurm

	Contents
	Quick Start
	Obtaining the SCR Source
	Building SCR
	Spack
	CMake

	Building the SCR test_api Example
	Running the SCR test_api Example
	Getting SCR into Your Application
	Final Thoughts

	Support
	Introduction
	Assumptions
	Concepts
	Jobs, allocations, and runs
	Group, store, and redundancy descriptors
	Control, cache, and prefix directories
	Example of SCR files and directories
	Scalable checkpoint
	Scalable restart
	Catastrophic failures
	Fetch, flush, and scavenge

	Build SCR
	Dependencies
	Spack
	CMake

	SCR API
	General API
	SCR_Init
	SCR_Finalize
	SCR_Get_version
	SCR_Should_exit
	SCR_Route_file

	Checkpoint API
	SCR_Need_checkpoint
	SCR_Start_checkpoint
	SCR_Complete_checkpoint

	Restart API
	SCR_Have_restart
	SCR_Start_restart
	SCR_Complete_restart

	Output API
	SCR_Start_output
	SCR_Complete_output

	Space/time semantics
	SCR API state transitions

	Integrate SCR
	Using the SCR API
	Init/Finalize
	Checkpoint
	Restart with SCR
	Restart without SCR

	Building with the SCR library

	Run a job
	Supported platforms
	Jobs and job steps
	Ignoring node failures
	The SCR wrapper script
	Example batch script for using SCR restart capability

	Configure a job
	Setting parameters
	Group, store, and checkpoint descriptors
	SCR parameters

	Halt a job
	scr_halt and the halt file
	Halt after next checkpoint
	Halt before or after a specified time
	Halt immediately
	Catch a hanging job
	Combine, list, change, and unset halt conditions
	Remove the halt file

	Manage datasets

