
Global Sensors Networks: ØMQ (zeromq)
experiment

Introduction
The GSN server has been designed to work in a distributed fashion, having multiple instances that are

able to communicate together. However the internal communication has been implemented on top

of an HTTP and XML based protocol. Two versions of this protocol exists. The first one is push based

and works in a publish-subscribe manner, whereas the second one is pull-based and can work even if

the “client” GSN is behind a NAT (doesn’t have a public IP address). The main advantage of this

protocol is its ease of debug and implementation on other tools (as long as an xml and http library is

provided), but the overhead for processing the data distribution is not negligible.

An alternative has been implemented, using ØMQ1 and the java serialization library Kryo2. The

principle is similar to the push version of the HTTP wrapper, using the PUB and SUB sockets, as

shown on Figure 1. To allow the simultaneous use of internal (using the “inproc” sockets) and

external connections (by IP address) a proxy is taking care of forwarding the subscriptions and the

data. It also serve as a directory, listing the available sensors and their data structure for external

connections.

FIGURE 1. BLOCK DIAGRAM OF THE ØMQ COMMUNICATION

In the following, we evaluate the performances of the Ømq data distribution process and compare it

with the push remote wrapper. We also show the difference in using Kryo serialization instead of the

xml serialization.

1 See http://zeromq.org/intro:read-the-manual for a detailed tutorial on ØMQ
2 https://github.com/EsotericSoftware/kryo

http://zeromq.org/intro:read-the-manual
https://github.com/EsotericSoftware/kryo

Test bed
To evaluate the inter-server communication, we imagined a use-case where each server is receiving

or generating a stream of data and need to share it with all the other servers, in a kind of worst case

scenario.

We deployed 24 GSN servers, each on its own virtual machine, in Proxmox containers, distributed

over 9 physical machines (3, 3, 3, 3, 3, 3, 2, 2,2). The virtual machines are provisioned with 2 cores

(2.66GHz) and 3GB of RAM. Each GSN server has 25 virtual sensors: one generating data every 10 ms

and 24 connected to the other instances (including itself). The storage was kept in memory using the

H2:mem database to reduce the disk writing overload. The number of connections in the pool was

set to 50 to ensure there will be enough connection available for every virtual sensors and wrappers.

(The debugging output showed that actually only half of them were used, meaning one per virtual

sensor)

In the first experiment, the remote wrapper was used to connect the 24 virtual sensors, in the

second one the zeromq wrapper was used with xml serialization and finally in the last experiment

zeromq was using the Kryo serialization. Each experiment lasted around 20 minutes during which

two snapshots were taken. One after a few minutes to ensure that all connection have been

established and one 15 minutes after the first one. These snapshots contained the number of

element processed by each virtual sensors, counted using the CounterVS virtual sensor.

After running all experiments we noticed that Proxmox seems to limit the bandwidth of its virtual

machines outgoing traffic, and even when using the smallest stream element as possible with only

one field, it still was the bottleneck in some experiments. Further experiments may be conducted

when we find the root of this problem.

Results
In the first execution of the test-bed, using the remote wrapper and xml serialization, the CPU load of

the virtual machines stayed around 36% and the network traffic was around 120kbps (Figure 2.). The

counter on the virtual sensor generating data indicated a rate of 90 element per seconds. This means

GSN needs 1 ms to generate the element and then waits for 10 ms before generating the next one.

The network traffic is perfectly symmetric as every server is sending and receiving to, respectively

from, all the others.

FIGURE 2. CPU AND NETWORK LOAD WHEN USING THE REMOTE WRAPPER.

However, with an average of 7 elements per second processed per virtual sensor connected with the

remote wrapper, it is clear that it cannot follow the element production. Here the network is the

bottleneck.

The second and third run, using the zeromq wrappers had pretty similar behavior regarding the CPU

load and network traffic. CPU was almost at its maximum and network showed some differences in

incoming versus outgoing traffic (Figure 3.). This can be explained by looking at the distribution of the

generation rate among the servers, on Figure 4. All the servers received the same amount of data

(same incoming traffic), but the ones generating less elements had also less data to send (lower

outgoing traffic).

FIGURE 3. CPU AND NETWORK LOAD WHEN USING ZEROMQ WRAPPER. THE NETWORK LOAD SHOWED SOME VARIATION

AMONG THE MACHINES.

FIGURE 4. DISTRIBUTION OF THE NUMBER OF GENERATED ELEMENT ON EACH SERVER, USING THE ZEROMQ WRAPPER

AND KRYO SERIALIZATION.

0

10000

20000

30000

40000

50000

0 1 2 3 10 11 12 13 20 21 22 23 30 31 40 41 50 51 60 61 70 71 80 81

N
u

m
b

er
 o

f
ge

n
er

at
ed

el

em
en

ts

GSN Server

In the experiment using xml serialization, the communication protocol being lighter than http, it was

possible to send and process twice as much elements per seconds per virtual sensor, 13. But for

processing those elements, the CPU was also more solicited (almost 100%) and was not able to keep

the production rate which dropped to 57 elements per seconds (Figure 5.).

Finally using the Kryo serialization, the network was saturated with 36 elements per second per

virtual sensor. And similarly to the previous experiment the CPU had less time producing elements,

around 38 per seconds. In this last experiment we almost reached the maximum performance

possible with our virtual machines limitation: 860 elements sent, received and processed per second.

FIGURE 5. SUMMARY OF THE PERFORMANCES OF THE DIFFERENT INTER-GSN COMMUNICATION PROTOCOLS.

Conclusion
These three experiments show that with limited resources the choice of the communication protocol

is very important. But, what we gained in performance, we lost it in reliability. The current

implementation of the zeromq wrapper doesn’t offer a way to acknowledge when an element has

arrived and even if it is implemented on TCP/IP, it doesn’t guarantee that no element is lost (when

the server is down or restarting).

The choice of the zeromq wrapper for communication should be made with this tradeoff in mind.

0

10

20

30

40

50

60

70

80

90

100

remote / xml zeromq / xml zeromq / kryo

El
em

en
t

p
er

 s
ec

o
n

d

generation rate consumption rate

