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The Core Cosmology Library (CCL) provides routines to compute basic cosmolog-
ical observables with validated numerical accuracy. These routines have been val-
idated to an accuracy level, documented here, against the results of independent
implementations. In the current version, predictions are provided for distances and
background quantities, angular auto- and cross-spectra of cosmic shear, galaxy-
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galaxy lensing, intrinsic alignments and clustering, halo bias and the halo mass
function. CCL uses different schemes to obtain the matter power spectrum, in-
cluding analytical, phenomenological and other schemes calibrated through sim-
ulations. CCL is written in C, with a Python interface. In this note, we explain the
functionality of the CCL library.
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1. Introduction

In preparation for constraining cosmology with the Large Synoptic Survey Tele-
scope (LSST), it is necessary to be able to produce rigorous theoretical predic-
tions for the cosmological quantities that will be measured. The Core Cosmology
Library1 (CCL) aims to provide, in one library, a way of making predictions that are
validated to a well-documented numerical accuracy, for the purpose of constraining
cosmology with LSST. By constructing a cosmology library specifically with LSST
in mind, it is possible to ensure that it is flexible, adaptable, and validated for all
cases of interest, as well as user-friendly and appropriate for the needs of all work-
ing groups. This note describes the underlying equations and conventions of the
CCL library (see also the CCL paper, Chisari et al. 2019). The GitHub repository2

has installation and usage instructions.

2. Functionality

2.1. Physical constants

We have performed a comparison of the physical constants used in CCL and in-
cluded dependencies and external sources. See Table 1 for absolute fractional
differences of the constants between these sources. Our final choice of constants
for CCL mainly relies on CODATA 2014 (Mohr et al. 2016) in as much as possible,
except for M�, where we adopt the IAU 2015 value (Mamajek et al. 2015), and for
the conversion between parsec and meters, where we take the PDG 20133 value.
Notice that NIST4 adopts the CODATA 2014 values.

Notice there are some inconsistencies with the constants adopted by CLASS. This
includes the value of the gravitational constant, the Boltzmann constant, the Planck
constant, the speed of light, and the electron charge. Also, the value of ρc is derived
from other constants, while PDG 2013 fixes it to a given value (this is the reason
there is only one entry for that column).

After comparison between the physical constants used in CCL and those of the
sources mentioned above, we have found better than 0.01% agreement for all con-
stants of interest except for the gravitational constant and the value of the solar
mass.

1 https://github.com/LSSTDESC/CCL
2 https://github.com/LSSTDESC/CCL
3 http://pdg.lbl.gov/2013/
4 https://physics.nist.gov/cuu/Constants/index.html

https://github.com/LSSTDESC/CCL
https://github.com/LSSTDESC/CCL
http://pdg.lbl.gov/2013/
https://physics.nist.gov/cuu/Constants/index.html
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Table 1. Absolute fractional differences between different constants as tabulated in the
sources listed below. Entries marked with zero indicate that this is the value adopted by
CCL.

GNewt kb σSB h c eV ρc M� pc

PDG 2013 3e-05 2.1e-07 1.1e-06 7e-08 0.0e+00 3.5e-08 8.8e-10 2.2e-05 0.0e+00

NIST 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 – – –

GSL 2.4 1.6e-04 1.1e-06 5.8e-06 6e-09 1.5e-06 2.1e-06 – 2.2e-04 7.8e-07

CLASS 3.0e-05 1.4e-06 – 1.6e-07 0.0e+00 8.4e-08 – – 1.2e-09

CODATA 2014 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 – – –

IAU 2015 0.0e+00 – – – – – – 0.0e+00 –

2.2. Supported cosmological models

Ultimately, CCL plans to incorporate theoretical predictions for all cosmological mod-
els of interest to LSST. Currently, the following families of models are supported:

• Flat ΛCDM

• wCDM and the CPL model (w0 + wa, Chevallier & Polarski 2001 and Linder
2003)

• Non-zero curvature (K)

• All of the above, plus an arbitrary, user-defined modified growth function (see
description in Section 2.7)

• Massive neutrinos, in combination with any of the above.

• µ − Σ modified gravity in combination with the models above

CCL also provides support for modeling the impact of baryons on the matter power
spectrum, as described in Sec. 2.8.10. Not all features of CCL are available for all
models. For a guide to which predictions are available for each model, see Table 2.
Note that if users install their own version of CLASS, CCL can then make predictions
for a more extended set of cosmologies. Users should take care to understand the
validity of the CCL assumptions for their own models.

2.3. Model Parameterization

CCL uses the following cosmological parameters
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Table 2. Cosmologies implemented in CCL and observables supported in each of them.
Note that the only reason why angular power spectra appear not to be supported in non-flat
cosmologies is that the hyperspherical Bessel functions are currently not implemented, al-
though their impact is fairly limited. Likewise, number counts power spectra are strictly not
supported in the presence of massive neutrino cosmologies due to the scale-dependent
growth rate that affects the redshift-space distortions term, even though the impact of this
is also small for wide tomographic bins. The halo model can make matter power spectrum
predictions for all cosmologies except those with µ/Σ modified gravity, but should not be
used for massive neutrino models because the current version does not distinguish be-
tween the cold matter, relevant for clustering, and all matter. Finally, notice that in addition
to the support for the µ/Σ parameterisation of modified gravity, CCL can make predictions
for the growth of perturbations for some modified gravity models through a user defined
∆ f (a), and that other extensions are supported via integration of external modified gravity
codes.

Observable/Model flat ΛCDM ΛCDM+K ΛCDM + mν wCDM ΛCDM + µ/Σ MG

Distances X X X X X

Growth X X X X X

Pm(k, z) X X X X X

Halo Mass Function X X X X X

Cl, number counts X X X X X

Cl, weak/CMB lensing X X X X X

Correlation function X X X X X

Halo model X X X X X

Ωc: cold dark matter (CDM) density fraction at z = 0

Ωb: baryonic matter density fraction

h: Hubble constant in units of 100 km/s/Mpc

ns: primordial scalar perturbation spectral index

Ωk: curvature density fraction at z = 0

Ωg: radiation density fraction excluding massless neutrinos

Neff: effective number of massless neutrinos

mν: mass or masses of the neutrinos in eV

w0: dark energy equation of state

wa: amplitude of scale-factor dependence of the dark energy equation of state

µ0: one of the µ − Σ modified gravity model parameters

Σ0: one of the µ − Σ modified gravity model parameters
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As or σ8: amplitude of the matter power spectrum specified either primordially (As)
or today (σ8)

The parameters µ0 and Σ0 govern the amplitude of modifications to the cosmologi-
cal Poisson equation for massive and massless particles respectively (see sections
2.7 and 2.10 below for more details). We currently assume the functional forms
(Ferreira & Skordis 2010)

µ(z) = µ0
ΩΛ(z)

ΩΛ(z = 0)
, Σ(z) = Σ0

ΩΛ(z)
ΩΛ(z = 0)

. (1)

2.3.1. Specifying Massive and Massless Neutrinos

CCL uses either the sum of neutrino masses or a list of values for each in order to
parameterize massive neutrinos. In the case that a sum is provided, CCL can use a
variety of rules to compute the masses (e.g., normal hierarchy, inverted hierarchy,
or equally split). In the case of the normal or inverted hierarchy, we use constraints
on the squared mass differences from parricle physics to compute the masses (see
Lesgourgues & Pastor 2012; Lattanzi & Gerbino 2017).

Once all three masses have been specified, we check for which of the three
masses the corresponding neutrino species is non-relativistic today (mν > 0.00017,
Lesgourgues & Pastor 2012), and thus obtain a number of massive neutrinos
N nu mass. We use this number along with the N eff value to set the number of
relativistic neutrinos species N nu rel as follows. We follow CLASS and modify the
relationship between the temperature of the CMB and the neutrino temperature:

Teff
ν = TCMBTNCDM (2)

where the above defines TNCDM, an adhoc modification to the equality between
TCMB and Teff

ν . We follow the nomenclature of CLASS here, but we empha-
size that TNCDM is a dimensionless scaling factor, not a temperature. Setting
TNCDM = 0.71611 ensures that mν/Ω0

ν = 93.14eV, in agreement with second-
order theoretical calculations which correctly take into account QED effects and
electron / positron annihilation (Mangano et al. 2005). Therefore to get N nu rel

consistent with the N eff passed by the user, we compute:

N nu rel = N eff− (TNCDM)4
(

4
11

)− 4
3

N nu mass. (3)

It may sometimes be preferable or necessarily to specify a cosmology in terms
of Ω0

ν for massive neutrinos instead of mν. To facilitate this, CCL includes a con-



9

venience function which takes as input Ω0
ν for massive neutrinos, the tempera-

ture of the CMB, and a label specifying how the neutrino mass should be split
amongst species similarly to above. It then outputs a pointer to the resulting neu-
trino mass(es).

2.4. Distances

The Hubble parameter is calculated as

H(a)
H0

= a−3/2
(
ΩM,0 +ΩΛ,0a−3(w0+wa) exp[3wa(a− 1)] +ΩK,0a

+ (Ωg,0 +Ων,rel)a−1 +Ων,m(a)a3
) 1

2
. (4)

The radial comoving distance is calculated via a numerical integral,

χ(a) = c
∫ 1

a

da′

a′2H(a′)
. (5)

The transverse comoving distance is computed in terms of the radial comoving
distance as:

r(χ) =


k−1/2 sin(k1/2χ) k > 0

χ k = 0

|k|−1/2 sinh(|k|1/2χ) k < 0

(6)

The angular diameter distance between two scale factors is dA(a1, a2) =

a2 r[χ(a2)− χ(a1)] where a1 > a2, and the luminosity distance is dL = r(a)/a.

CCL can also compute the distance modulus, defined as,

µ = 5 log10(dL/pc)− 5 . (7)

2.5. Density parameter functions

The density parameter functions ΩX(a) can be calculated for six components:
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• matter density parameter ΩM(a) = ΩM,0H2
0/(a3H2(a)),

• dark energy density parameter ΩΛ(a) = ΩΛ,0a−3(1+w0+wa) exp[3wa(a −
1)]H2

0/H2(a),

• radiation density parameter Ωg(a) = Ωg,0H2
0/(a4H2(a)),

• curvature density parameter ΩK(a) = ΩK,0H2
0/(a2H2(a)),

• massless neutrino density parameter Ων,rel(a) = Ων,rel,0H2
0/(a4H2(a)),

• massive neutrino density parameter Ων,m(a),

all using the Hubble parameter defined in equation 4.

For massive neutrinos, Ων,m(a) is calculated as follows. For each species of mas-
sive neutrino with mass mi

ν, we define

m̃i =
mi

νa
Teff
ν

(8)

in units such that m̃ is dimensionless. We then multiply by the appropriate factors
to obtain Ων,m(a):

Ων,m(a) =
Nν

∑
i=1

8π2(πkb)
3kb

15(chP)3
8πG
3h2c2

(
Teff
ν

a

)4
7

8

∫ xmax

0
dx x2

√
x2 + (m̃i)

2

exp(x) + 1

 (9)

where hP is Planck’s constant and h is H0/100 with H0 in units of km / s / Mpc.
xmax is set to 1000. The final bracketed term which includes the phase-space
integral can be simplified in the limit where m̃ is very large or very small: for small
m̃, it is set to 7

8 , and for large m̃, it becomes 5ζ(3)
18π4 m̃ ∼ 0.2776µ.

2.6. Functions of the physical density

The physical density ρX(a) can be calculated for seven components:

• critical density ρcrit(a) = 3H2(a)
8πG = ρcrit,0H2(a)/H2

0 ,

• matter density ρM(a) = ρcrit(a)ΩM(a) = ρcrit,0ΩM,0/a3,
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• dark energy density parameter ρΛ(a) = ρcrit,0ΩΛ,0a−3(1+w0+wa) exp[3wa(a−
1)],

• radiation density parameter ρg(a) = ρcrit,0Ωg,0/a4,

• curvature density parameter ρK(a) = ρcrit,0ΩK,0/a2,

• massless neutrino density parameter ρν,rel(a) = ρcrit,0Ων,rel,0/a4,

• massive neutrino density parameter Ων,m(a) = ρcrit,0Ων,m(a)H2(a)/H2
0 ,

where Ων,m(a) is given by equation 9 and the Hubble parameter by equation 4.
CCL moreover allows for comoving physical densities ρX,comoving(a) = ρX(a)a3.

2.7. Growth function

To compute D(a), the growth factor of matter perturbations, CCL solves the following
differential equation:

d
da

(
a3H(a)

dD
da

)
=

3
2
ΩM(a)aH(a)D, (10)

using a Runge-Kutta Cash-Karp algorithm.

In doing this, CCL simultaneously computes the growth rate f (a), defined as:

f (a) =
d ln D
d ln a

. (11)

CCL provides different functions that return the growth normalized to D(a = 1) = 1
and to D(a� 1)→ a.

Note that the above is strictly valid for a Universe containing only dust-like matter
components. A scale-independent growth rate is, for example, ill-defined in the
presence of massive neutrinos; therefore CCL will raise an error if the user attempts
to calculate the growth rate or growth factor in a cosmology with massive neutrinos.

Currently, CCL allows for two version of alternative ‘modified gravity’ cosmological
models. The first is defined by a regular background (w0 + wa)CDM (with arbitrary
K) as well as a user-defined ∆ f (a), such that the true growth rate in this model is
given by f (a) = f0(a) + ∆ f (a), where f0(a) is the growth rate in the background
model. Note that this implementation of ‘modified gravity’ is only consistently imple-
mented with regards to the computation of the linear growth factor and growth rates
(which will also scale the linear power spectrum). All other CCL functions (including



12

the non-linear power spectrum) will ignore these modifications. This model, and
the interpretation of the predictions given by CCL, should therefore be used with
care.

The second model for deviations from General Relativity supported by CCL is the
quasistatic parameterization, with parameterizing functions µ(a) ( the change to
the Poisson equation for massive particles) and Σ(a) ( the change to the same
for massless particles), with functional form assumed to be given as in equation
1. The background is once again allowed to be defined by (w0 + wa)CDM (with
arbitrary K).

The growth factor and growth rate are altered when mu 0 6= 0, with the above
equation becoming

d
da

(
a3H(a)

dD
da

)
=

3
2
ΩM(a)aH(a)(1 +µ(a))D. (12)

As usual, the resulting growth factor can be returned normalized to D(a = 1) = 1 or
to D(a� 1)→ a. The second normalization is used in returning the matter power
spectrum with appropriate modification in this model, as discussed in section 2.8.

2.8. Matter power spectrum

There are several options for obtaining the linear and non-linear matter power spec-
trum in CCL. We parameterize the linear matter power spectrum via the transfer
function via the relationship P(k) = 2π2∆2(k)/k3 ∝ T2(k)kns , where ∆(k) is the di-
mensionless power spectrum and ns is the spectral index. The normalization of the
power spectrum is defined at z = 0 by setting σ8 to its value today or by setting the
initial value As. The non-linear matter power spectrum options either use the linear
matter power spectrum as inputs (e.g., the halo model) or supply their own values
(e.g., an emulator). Both power spectra are interpolated in a two-dimensional table
of scale factor and redshift for later use.

2.8.1. BBKS

CCL implements the analytical BBKS approximation to the transfer function
(Bardeen et al. 1986), given by

T(q ≡ k/ΓhMpc−1) =
ln[1 + 2.34q]

2.34q
[1+ 3.89q+(16.2q)2 +(5.47q)3 +(6.71q)4]−0.25

(13)
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where Γ = Ωmh.

The BBKS power spectrum option is primarily used as a precisely-defined input
for testing the numerical accuracy of CCL routines. It is not recommended for other
uses as it is only accurate to a few percent.

2.8.2. Eisenstein and Hu

CCL also provides an approximation to the transfer function as implemented by
Eisenstein & Hu (1998) (E&H; we refer the reader to this paper for a detailed dis-
cussion of the fitting formulae).5

The Eisenstein & Hu approximation is also not very accurate (generally only to
within a few percent), and so should not be used to derive precise cosmological
constraints.

2.8.3. CLASS

CCL can call the CLASS software package (Blas et al. 2011) to obtain the linear
matter power spectrum at given redshift. On initializing the cosmology object, we
construct a bi-dimensional spline in k and the scale-factor which is then evalu-
ated by the relevant routines to obtain the matter power spectrum at the desired
wavenumber and redshift.

2.8.4. CAMB

The fiducial configuration calls the CAMB package (Lewis et al. 2000) to obtain the
linear matter power spectrum at given redshift. On initializing the cosmology object,
we construct a bi-dimensional spline in k and the scale-factor which is then eval-
uated by the relevant routines to obtain the matter power spectrum at the desired
wavenumber and redshift.

5 Note that the implementation in CCL is different from that in Eisenstein & Hu (1998) in two
places. First, CCL modifies Eq. 5 of Eisenstein & Hu (1998) using a−1 = 1 + z instead of the
approximation a−1 ∼ z. The difference in the resulting power spectra is negligible, but larger than 1
part in 104 for k < 10 h Mpc−1. Second, CCL modifies the argument of G in Eq. 14 to be zeq/(1+ zd)
instead of (1 + zeq)/(1 + zd).
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2.8.5. ISiTGR

CCL can call the ISiTGR software patch (Dossett et al. 2011; Garcia-Quintero et al.
2019) that is built on the top of the CAMB package to include modified gravity mod-
els. This is invoked by specifying the transfer function option boltzmann isitgr. CCL
then then calculates the GR or modified gravity linear matter power spectrum at
a given redshift. Here also, on initializing the cosmology object, we construct a
bi-dimensional spline in k and the scale-factor which is then evaluated by the rele-
vant routines to obtain the matter power spectrum at the desired wavenumber and
redshift.

2.8.6. Halofit

We provide a Halofit implementation that applies a correction to any input lin-
ear matter power spectrum to compute an approximation to the non-linear matter
power spectrum. We use the model from Takahashi et al. (2012) which is accurrate
to roughly 10%.

2.8.7. Halo Model

We also provide a halo model implementation for computing the non-linear matter
power spectrum. Halo model computations are known to be inaccurate at the 10%
level or more. See Section 2.13 for details.

2.8.8. Nonlinear Perturbation Theory

We provide an implementation of nonlinear standard perturbation theory (SPT) for
the matter power spectrum using the FAST-PT package (McEwen et al. 2016). SPT
provides a reasonable approximation of the matter power spectrum in the mildly
nonlinear regime but breaks down on smaller scales. It is also known to provide
a poor correction to the BAO feature. This perturbation theory implementation is
discussion in more detail in Section 2.9.

2.8.9. Cosmic emulator
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The cosmic emulator of Lawrence et al. (2017) is integrated into CCL and it is avail-
able as one of the non-linear matter power spectrum options. The cosmic emulator
provides predictions for the non-linear matter power spectrum based on an inter-
polation over simulation outputs spanning a defined set of cosmological parameter
values.

The emulator provides accurate predictions for the nonlinear matter power spec-
trum, at the 1% level, for z ≤ 2 and in the wavenumber range k = [10−3, 5] Mpc−1.
If a redshift above z = 2 is passed, the emulator will quit and return an error mes-
sage. For k values below and above the previously specified range, we extrapolate
in the manner specified in the following section.

The allowed range of cosmological parameters is as follows:

0.12≤Ωmh2 ≤ 0.155,

0.0215≤Ωbh2 ≤ 0.0235,

0.7≤σ8 ≤ 0.9,

0.55≤ h ≤ 0.85,

0.85≤ns ≤ 1.05,

−1.3≤w0 ≤ −0.7,

−1.73≤wa ≤ −0.7,

0.0≤Ωνh2 ≤ 0.01. (14)

Further, wa and w0 are constrained jointly to be 0.3 ≤ (−w0 − wa)1/4. Note that
CCL only allows a subregion within this parameter space. For models in which
w(z) crosses −1 at some given redshift, CLASS will crash because this value corre-
sponds to a true cosmological constant, which by definition should have no pertur-
bations.6

Neutrino species —The emulator is set up to consider Neff = 3.04 and to allow
the user to provide Ωνh2 in order to set the neutrino mass, where it is assumed
that the corresponding mass is split equally amongst three neutrinos. This is dif-
ferent from the standard CCL configuration, which takes as input the mass(es) of
neutrinos in eV, mν. The assumption of an equal split of masses amongst three
neutrino species is also different from the default CCL choice to split the mass
amongst species according to the normal hierarchy. We allow models with non-
equal masses to use the emulator by calling it with the total mass in neutrinos split
equally between the different species. This choice may result in internal incon-
sistency amongst different quantities calculated with the same CCL cosmology, or

6 We thank Emilio Bellini and Miguel Zumalacárregui for clarifying this for us.
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indeed even internal inconsistency between the linear and nonlinear parts of the
same power spectrum. Note also that because the emulator is constructed with
Neff = 3.04, the user is required to pass this value when the emulator is in use.

Notice that ideally we would like to pass a non-integer number of massive neu-
trino species for best compatibility with the emulator set-up. However, since this
is not possible within CCL, we have opted to verify that neither the growth func-
tion nor the comoving radial distance computation are affected by this approxi-
mation to more than 10−4 in the range 0.01 < a < 1, where a is the scale fac-
tor. We have verified this by comparing this prediction for a fiducial cosmology
{Ωc = 0.27, Ωb = 0.049, h = 0.67,σ8 = 0.8, ns = 0.96} with the following neutrino
parameters: {Nν,rel, Nν,mass, mν} = {0.00641, 3, 0.06eV}, {Nν,rel, Nν,mass, mν} =

{0, 3.04, 0.06eV} and {Nν,rel, Nν,mass, mν} = {0, 3.046, 0.06eV}. The discrepancy
between distances and growth results between these choices of neutrino param-
eters can raise above 10−4 at a < 0.01 and the user should be mindful of this for
their particular application.

2.8.10. Impact of baryons

CCL incorporates the impact of baryons on the total matter power spectrum via
the “baryonic correction model” (BCM) of Schneider & Teyssier (2015). When this
correction is in use, the nonlinear matter power spectrum (whichever the method
that provides it) is multiplied by a correction factor F(k, z) which models the impact
of baryons.

The main consequences of baryonic processes are: to suppress the power spec-
trum at intermediate scales (k ∼ a few h/Mpc) due to the ejection of gas by Active
Galactic Nuclei feedback, and to enhance it at smaller scales due to enhanced
cooling. Three effective parameters govern the contribution of baryonic processes
to modifying the total matter power spectrum:

• log10[Mc/(M�/h)]: the mass of the clusters responsible for feedback, which
regulates the amount of suppression of the matter power spectrum at inter-
mediate scales

• ηb: a dimensionless parameter which determines the scale at which suppres-
sion peaks

• and ks [h/Mpc]: the wavenumber that determines the scale of the stellar
profile
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If the BCM parameters are not specified and the user sets CCL to compute the
power spectrum with baryonic feedback included, CCL will assume the default pa-
rameters of Schneider & Teyssier (2015).

2.8.11. Modified gravity (µ, Σ)

CCL supports the quasistatic parameterization of modified gravity with scale-
independent deviations from GR which arise at late times (currently with functional
form given in equation 1). Under these conditions, and the specified cosmology,
the modified gravity matter power spectrum is calculated using ISiTGR (described
further above) according to the values of the modified gravity parameters. If these
are zero or not specified then the GR matter power spectrum is calculated.

This implementation replaces the intilal one where the modified gravity power spec-
trum is computed by re-scaling the GR matter power spectrum by multiplying it by
the squared ratio of the MG growth factor DMG to the GR one, DGR.

The new implementation solved accuracy issues for spectra and correlations en-
coutered in the initial implementation and provides the power spectrum and the 2D
angular spectra and correlations at the same level of accuracy as that of the LCDM
standard model.

The splines for the power spectrum are then set as usual, but we note that the
µ, Σ MG implementation is valid only in the quasistatic limit and is also restricted
to the linear regime for now since no-reliable methods are available to model such
non-linear small scales nor the very large scales where the quasistatic limit cease
to be valid.

2.8.12. Extrapolation for the nonlinear power spectrum

The computation of the power spectrum from CLASS can be significantly sped up by
extrapolating in the range k > K MAX SPLINE and k < K MIN SPLINE. In this section,
we describe the implementation of the extrapolation and the accuracy attained.
These tests are performed in a flat ΛCDM cosmology with Ωc = 0.25, Ωb = 0.05,
As = 2.1× 10−9, h = 0.7 and ns = 0.96.

We first describe the extrapolation at high wavenumbers. The introduction of the
parameter K MAX SPLINE allows us to spline the matter power spectrum up to that
value of k (in units of 1/Mpc). A separate K MAX parameter sets the limit for evalu-
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ation of the matter power spectrum. The range between K MAX SPLINE< k <K MAX

is evaluated by performing a second order Taylor expansion in ln k.

First, we compute the first and second derivative of the ln P(k, z) at k0 =

K MAX SPLINE− 2∆ ln k by computing the numerical derivatives by finite differences
using GSL. The fiducial choice for ∆ ln k is 10−2. We then apply a second order
Taylor expansion to extrapolate the matter power spectrum to k >K MAX SPLINE.
The Taylor expansion gives

ln P(k, z) ' ln P(k0, z)+
d ln P
d ln k

(ln k0, z)(ln k− ln k0)+
1
2

d2 ln P
d ln k2 (ln k0, z)(ln k− ln k0)

2.
(15)

The accuracy of this approximation is shown in Figure 1 for redshifts z = 0, z = 3
and z = 20. We compare the nonlinear matter power spectrum at these redshifts,
computed with the previously described approximation, to the matter power spec-
trum obtained by setting the power spectrum splines to high values. We find that
for typical values of ∆ ln k = 10−2 and K MAX SPLINE= 50/Mpc, ln P has converged
to an accuracy that surpasses the expected impact of baryonic effects on the mat-
ter power spectrum at k > 10/Mpc. (For an estimate of the impact of baryons
on the total matter power spectrum, see Schneider & Teyssier 2015.) The lower
K MAX SPLINE is, the faster CCL will run. The optimum choice of K MAX SPLINE is left
to the user for their particular application.

We also extrapolate the power spectrum at small wavenumbers. In this case, the
power spectrum below K MIN SPLINE is obtained by a power-law extrapolation with
index ns:

log P(k < K MIN SPLINE, z) = log P(K MIN SPLINE, z)+ns(log k− log K MIN SPLINE)

(16)
The value adopted for K MIN SPLINE depends on the choice of power spectrum
method and is not currently settable by the user. For CLASS and the nonlinear power
spectrum, we adopt K MIN SPLINE that coincides with the smallest wavenumber
output by CLASS, K MIN SPLINE= 7× 10−6/Mpc. Note that this parameter is different
from K MIN, which sets the minimum k for integrations and which is set by default
to K MIN= 5× 10−5/Mpc. Hence, in practice, no extrapolation is occurring in this
case, unless the user specifically asks for an output power spectra below K MIN for
their own purposes.

For BBKS, the power spectrum is computed analytically at all k, there is no extrap-
olation. For the Eisenstein & Hu implementation, the splines of the power spectrum
span K MIN< k <K MAX SPLINE, so there is only extrapolation at high k. For the non-
linear matter power spectrum from the emulator, K MIN SPLINE and K MAX SPLINE
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Figure 1. The relative error compared to power spectra produced with high values of
the power spectrum splines, Pf id, produced by splining the matter power spectrum up to
K MAX SPLINE= 50 Mpc−1 and extrapolating beyond this value with a second order Taylor
expansion the natural logarithm of the matter power spectrum. The left panel shows the
relative errors for the linear matter power spectrum at z = 0, z = 3 and z = 20. The right
panel shows the results for the non-linear matter power spectrum at the same redshifts.
The standard CCL parameters adopted are those corresponding to the black dashed curve.
For comparison, the impact of baryonic physics on the matter power spectrum is ∼ 10% at
k = 1 Mpc−1 (Schneider & Teyssier 2015).

are set to fixed values that are determined from the range of validity of the emula-
tor: K MIN SPLINE= 10−3 Mpc−1 and K MAX SPLINE= 5 Mpc−1.

2.8.13. Extrapolation for the linear power spectrum

With the implementation described in the previous section, the power spectrum
splines are initialized up to K MAX SPLINE. This is also true for the linear matter
power spectrum, which is used within CCL in particular to obtain σ8 (see Eq. 58).
We have tested here how the procedure described in the previous section affects
the convergence of the linear matter power spectrum. The result is shown in Figure
1. For some applications that use the linear power spectrum, the user might need
to increase the value of K MAX SPLINE.

As in the previous section, the power spectrum at small wavenumber is extrapo-
lated using a power-law. This extrapolation is performed below a fiducial value of
K MIN SPLINE that coincides with the smallest wavenumber output by CLASS, as in
the case of the nonlinear power spectrum described above.

We have found that changing the sampling in scale factor to 200, or changing the
sampling of the wavenumber to 5000 points, does not change the results presented
in Figure 1.
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2.8.14. Normalization of the power spectrum

There are two schemes for normalization of the matter power spectrum. The first
one is to specify the value of As, the amplitude of the primordial power spectrum,
which is passed directly to CLASS. Alternatively, there is the option to set the normal-
ization of the matter power spectrum by specifying σ8, the RMS density contrast
averaged over spheres of radius 8h−1Mpc. Note that for linear power spectrum
models where CLASS is not used, only the option to specify σ8 is supported. The
computation of σ8 is described in Section 2.12.

2.9. Nonlinear Power Spectra

Nonlinear perturbation theory (e.g. Bernardeau et al. 2002) provides a method to
calculate power spectra in the mildly nonlinear regime. CCL provides perturbation
theory predictions for dark matter clustering, galaxy biasing, and intrinsic align-
ments using the FAST-PT package (McEwen et al. 2016; Fang et al. 2017). These
predictions can be used as the general input for the power spectra between ob-
servables α and β, Pαβ, as described below in 2.10. Currently, all modeling is
done at “one-loop” order, i.e. O(P2

lin), in standard perturbation theory (SPT). CCL
implements these models using PTTracer objects.

2.9.1. Matter density

The matter density field can be expanded:

δm = δ(1) + δ(2) + δ(3) + · · · , (17)

where δ(1) is the linear density field and higher-order terms can be expressed
as a function of the linear density field at the specified order. The matter power
spectrum is then given by:

PNL = P11 + P22 + 2P13 , (18)

where P11 is Plin.

Note that the nonlinear treatments of galaxy bias and intrinsic alignments use the
one-loop SPT matter density expression when calculating relevant correlations,
even if a different nonlinear prescription is used for PNL.
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2.9.2. Galaxy bias

See Desjacques et al. (2018) for a detailed discussion on galaxy bias and treat-
ments in perturbation theory. Currently, nonlinear galaxy bias is given by the fol-
lowing expression (e.g. Baldauf et al. 2012):

δg = b1δm +
b2

2
(δ2

m − 〈δ2
m〉) +

bs

2
(s2 − 〈s2〉) , (19)

where s is the tidal field, and the mean values of both quadratic quantities are
subtracted. The standard linear bias is b1, and (b2, bs) are the quadratic bias co-
efficients. The relevant galaxy-galaxy (for two galaxy samples, denoted by the
second superscript) and galaxy-matter power spectra are then:

Pgg = b1,1b1,2Pd1d1 +
1
2
(b1,1b2,2 + b1,2b2,1)Pd1d2

+
1
4

b2,1b2,2Pd2d2 +
1
2
(b1,1bs,2 + b1,2bs,1)Pd1s2

+
1
4
(b2,1bs,2 + b2,2bs,1)Pd2s2 +

1
4

bs,1bs,2Ps2s2 , (20)

Pgm = b1Pd1d1 +
1
2

b2Pd1d2 +
1
2

bsPd1s2 , (21)

where Pd1d1 corresponds to the chosen nonlinear matter power spectrum, and the
other terms are one-loop PT expressions.

2.9.3. Intrinsic alignments

Following the “TATT” model (tidal alignment and tidal torquing) described in Blazek
et al. (2019), the galaxy intrinsic alignment field can be expanded:

γ I
i j = C1si j + C2

(
siksk j −

1
3
δi js2

)
+ C1δ(δsi j) . (22)

Higher-order contributions will be included in future releases. The matter-intrinsic
and intrinsic-intrinsic (E- and B-mode) power spectra are given by:

PδE =C1Pd1d1 + C1δ

[
A0|0E + C0|0E

]
+ C2

[
A0|E2 + B0|E2

]
, (23)

PEE =C1,1C1,2Pd1d1 + (C1,1C1δ,2 + C1,2C1δ,1)
[

A0|0E + C0|0E

]
+ C1δ,1C1δ,2 A0E|0E

+ C2,1C2,2 AE2|E2 + (C1,1C2,2 + C1,2C2,1)
[

A0|E2 + B0|E2

]
+ (C1δ,1C2,2 + C1δ,2C2,1)D0E|E2 , (24)

PBB =C1δ,1C1δ,2 A0B|0B + C2,1C2,2 AB2|B2 + (C1δ,1C2,2 + C1δ,2C2,1)D0B|B2 , (25)
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where, as above, Pd1d1 corresponds to the chosen nonlinear matter power spec-
trum, and the other terms are one-loop PT expressions.

The normalization of the IA bias parameters can be flexibly specified. The conven-
tion of Blazek et al. (2019) is

C1(z) = −A1(z)
C̄1Ωmρcrit

D(z)
, (26)

C1δ(z) = −A1δ(z)
C̄1Ωmρcrit

D(z)
, (27)

C2(z) = A2(z)
5C̄1Ω

2
mρcrit

Ωm,fidD2(z)
. (28)

This convention for C1(z) matches the default CCL normalization for bIA used in
the standard WL tracer, in which the user is assumed to be specifying A1 (see
Eq. 36). When using this nonlinear TATT model, the full z-dependent C-values
must be specified, and the IA amplitude in the standard WL tracer must be set to
one.

2.9.4. Galaxy-IA cross correlation

In the present CCL implementation, correlations with between nonlinear bias param-
eters and IA contributions are not yet implemented. These terms will be included
in future releases. The current galaxy-intrinsic power spectrum assumes linear
galaxy bias and nonlinear IA:

PgI = b1PδE . (29)

2.10. Angular power spectra

Angular power spectra between two quantitiesα and β will in general take the form:

Cαβ
` =

2
π

∫
dχ1 dχ2 dk k2Pαβ(k, χ1, χ2)∆

α
` (k, χ1)∆

β
` (k, χ2). (30)

Here Pαβ will be a generalized power spectrum, and the functions ∆α
` (k, χ) will in

general be a sum over different contributions, all of which take the form:

∆α
` (k, χ) = fα` Wα(χ) Tα(k, χ) j(nα)` (kχ), (31)

where we have defined the quantities:
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1. fα` : the `-dependent prefactor, usually associated with angular derivatives.

2. Wα(χ): the radial kernel, dependent only on redshift/distance.

3. Tα(k, χ): the transfer function, dependent on both k and z/χ.

4. j(n)` (x): generalized versions of the spherical Bessel functions, associated
with radial derivatives or inverse laplacians.

Let us describe these in more details.

Radial kernels

Three important things must be noted about them:

• Line-of-sight integrals will be carried out over the variable χ, so it is important
that the input arrays defining Wα(χ) sample the kernel sufficiently well in that
variable.

• CCL automatically determines the range of χ over which it will carry out any
line-of-sight integral. These are determined as the lowest and highest value
of χ in the input arrays defining Wα(χ) at which the value of Wα(χ) reaches
0.05% of its maximum value.

• If no input is passed, Wα(χ) defaults to 1 everywhere.

Transfer functions

In the most general case, CCL accepts transfer functions as generic functions of k
and a. For simplicity and speed it also supports the simpler case where these are
factorisable: Tα(k, a) = Kα(k) Aα(a).

` prefactors

We provide 3 options for these, encoded in a parameter that we will call dθ here:

• dθ = 0: f` = 1.

• dθ = 1: = 1: f` = `(`+ 1). This corresponds to taking the angular laplacian
∇2.
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• dθ = 2: f` =
√
(`+ 2)!/(`− 2)!, corresponding to the second angular

derivatives of spin-2 quantities. To avoid computing the square root we make
use of the following approximation:√

(`+ 2)!
(`− 2)!

' `2
1/2

(
1− 5

4
`−2

1/2 +O(`
−4
1/2)

)
, (32)

where `1/2 = `+ 1/2. This approximation is accurate at the level of 5× 10−5

for ` = 10, and for ` > 1000 the O(`−2
1/2) term can be dropped altogether with

an accuracy of ∼ 10−6.

Bessel functions

For n ≥ 0, j(n)` (x) represents the n-th derivative of the spherical Bessel functions
with respect to their argument. We allow values n = 0, 1 and 2, encoded in the
variable der bessel, and use the following identities:

j(1)` (x) =
` j`(x)− x j`+1(x)

x
(33)

j(2)` (x) =
[`(`− 1)− x2] j`(x) + 2x j`+1(x)

x2 . (34)

We also allow a special value n = −1, for which:

j(−1)
` (x) =

j`(x)
x2 . (35)

This case is quite ubiquitous (see next section).

Tracer combinations

CCL also provides a way to generalize all the expressions in this sections to combi-
nations of tracers. This is useful in many cases, such as galaxy number counts or
cosmic shear, in which the actual physical observable (galaxy number overdensity
or galaxy shape distortions) is made up of a combination of different effects. It is
therefore possible to combine several tracers into a single one, such that the total
∆X
` (k, χ) of that tracer is the sum of the corresponding functions for all the tracers

in the combination.

Standard tracers
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CCL provides specific functionality (besides its generic features) to define the fol-
lowing “standard” tracers:

Tracer Wα(χ) Kα(k) Aα(a) dαθ nα

N.C., dens. H(z) N(z) 1 b(z) 0 0
N.C., RSD H(z) N(z) 1 − f (z) 0 2

N.C., mag. −3H2
0ΩM

a
χ

∫ ∞
z

dz′ N(z′)
[

1− 5s(z′)
2

]
χ′ − χ

χ′
1 1 1 -1

W.L., shear
3H2

0ΩM

2a
χ

∫ ∞
z

dz′ N(z′)
χ′ − χ

χ′
1 1 2 -1

W.L., I.A. H(z) N(z) 1 bIA(z) 2 -1

CMB κ
3H2

0ΩM

2a
χ
χs − χ

χs
1 1 1 -1

Table 3. Description of the standard tracers supported by CCL in terms of the framework
introduced in Eq. 31. Note that, for modified gravity theories in the µ − Σ parametrization,
the radial kernels for shear, magnification and CMB lensing take an extra multiplicative
factor of 1 + Σ(z).

Here N.C. stands for “number counts”, W.L. stands for “weak lensing” and CMB
κ is the CMB lensing convergence. s(z) is the magnification bias, given as the
logarithmic derivative of the number of sources with magnitude limit, and r(χ) is
the angular comoving distance (see Eq. 6). f is the growth rate, which CCL does
not compute for massive neutrino cosmologies; therefore at this time an attempt
to create a number count tracer in a cosmology with massive neutrinos will cause
CCL to raise an error. C` is instead computed assuming a linear-theory relation
between the matter overdensity and peculiar velocity fields. While this should not
be problematic for wide photometric redshift bins, users should exercise care when
interpreting results for narrow window functions.

By default, for all of these tracers, CCL assumes that the underlying power spectrum
is given by PNL, which is then multiplied by the relevant (linear) biasing. The func-
tionality of these tracers can be used with more general power spectra Pαβ, e.g.
the nonlinear biasing or IA described in Sec. 2.9. In this case, the biasing should
be set to 1 when defining these tracers instead specified in the relevant PTTracer.

For intrinsic alignments, (I.A. in the table), the default CCL choice is the “non-linear
alignment model”, according to which the galaxy inertia tensor is proportional the
local tidal tensor (Hirata & Seljak 2004; Hirata et al. 2007). χs is the distance to
the source plane for CMB lensing. bIA is the corresponding alignment bias. The
default CCL choice for the normalization of this bias is chosen to coincide with the
parameter AIA used in current weak lensing analyses, i.e., the user is expected to
pass AIA to the routine, and this is connected to bIA by the following expression
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(Joachimi et al. 2011, Eq. 6):

bIA = −AIA
C̄1Ωmρcrit

D(z)
(36)

where ρcrit is in the default CCL units and C̄1 = 5× 10−14(Mpc/h)3/(M�/h) (Brown
et al. 2002; Bridle & King 2007). Note that although Ωm should in principle include
non-relativistic neutrinos, this is not the case in CCL at this point. The user can also
directly specify any general bIA(z).

Note that CCL currently does not compute relativistic corrections to number counts
Challinor & Lewis (2011); Bonvin & Durrer (2011). Although these should be in-
cluded in the future, their contribution to the total fluctuation is largely subdominant
(see Alonso et al. (2015) and the two references above), and therefore it is safe to
work without them in most cases.

It is also worth noting that the equations above should be modified for non-flat
cosmologies by replacing the spherical Bessel functions j` with their hyperspher-
ical counterparts Kamionkowski & Spergel (1994). This will be revisited in future
versions of CCL.

Limber integrals

In the Limber approximation:

j`(kχ) '
√

π

2`1/2
δ(kχ− `1/2) (37)

Defining χ` ≡ `1/2/k and k` ≡ `1/2/χ, the power spectra can now be calculated
through a single integral as:

Cαβ
` = `−1

1/2

∫
dk Pαβ(k, χ`, χ`)∆̃

α
` (k)∆̃

β
` (k), (38)

where the ∆̃αs depend on the value of nα:

• nα = 0:
∆̃α
` (k) = fα` Wα(χ`)Tα(k, χ`). (39)

• nα = 1:

∆̃α
` (k) = fα`

[
2`

2`+ 1
Wα(χ`)Tα(k, χ`)−√

2`+ 1
2`+ 3

Wα(χ`+1)Tα(k, χ`+1)

]
(40)
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• nα = 2:

∆̃α
` (k) = fα`

[√
2`+ 1
2`+ 3

4
2`+ 3

Wα(χ`+1)Tα(k, χ`+1)−

1 + 8`
(2`+ 1)2 Wα(χ`)Tα(k, χ`)

]
(41)

• nα = −1:

∆̃α
` (k) =

fα` Wα(χ`)Tα(k, χ`)
(`+ 1/2)2 . (42)

Precision tests.

The code has been compared with CLASS and agrees perfectly if precision param-
eters are pushed to high levels.

A few parameters must be provided to set the precision of this computation. First
the order of the Chebyshev polynomials is set to 210 by default, and the number
of k sub-intervals to 200, and we checked this is enough for the current uses.
Then the redshift quadrature stepping is set automatically given the redshift win-
dows to recover the native CCL computation boosted with high precision parame-
ters: its precision is optimised so that the relative numerical error compared with
the native method is two orders of magnitude below the relative cosmic variance√

2/(2`+ 1), from ` = 2 to ` = 1000. The kmin and kmax bounds are also auto-
matically set given the current multipole ` and the comoving distance χ involved in
the inner integral.

2.11. Correlation functions

The following expressions relating the angular power spectra and correlation func-
tions are valid in the flat-sky approximation7. In all cases, fK(χ) is comoving angu-
lar diameter distance, which differs from the radial comoving distance χ only in the
case of cosmologies with non-zero curvature.

Galaxy-galaxy. The angular correlation function between two number-count trac-
ers (labeled a and b here) is given by

ξab(θ) =
∫

d`
`

2π
Cab
` J0(`θ), (43)

7 See the weak lensing review by Bartelmann & Schneider (2001), page 44 and Joachimi & Bridle
(2010).
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where Cab is the angular power spectrum between both tracers.

Lensing-lensing. The lensing correlation functions are 8

ξab
+ (θ)=

∫ ∞
0

d`
`

2π
J0(`θ)Cab

` , (44)

ξab
− (θ)=

∫ ∞
0

d`
`

2π
J4(`θ)Cab

` , (45)

where the angular lensing convergence power spectrum Cab
` is given above.

Galaxy-lensing. The correlation between a number count tracer a and a shear
tracer b is given by

ξab(θ) =
∫

d`
`

2π
Cab
` J2(`θ), (46)

Note that, in the above, “Galaxy” and “Lensing” can be replaced by any spin-0 and
spin-2 fields on the sphere respectively (e.g. the CMB lensing convergence would
play the same role as the galaxy overdensity field in all the formulas above).

3d spatial correlation function. In addition to the angular correlation functions,
the 3-dimensional spatial correlation functionξ(r) is also calculated from the power
spectrum P(k) using

ξ(r) =
1

2π2

∫
dk k2P(k)

sin(kr)
kr

(47)

To evaluate the numerical integrals in the correlation functions, we make use of
the public code FFTlog9 (Hamilton 2000; Talman 2009). In brief, FFTlog works on
functions periodic in log space, by writing the Hankel Transform as a convolution
between Bessel functions and the function of interest (in this case either C` or
P(k)). A version of this code is included in CCL with minor modifications.

Redshift-space distortions. In redshift space and under the linear approximation
(Kaiser 1987) the correlation function ξ(s,µ) can be expanded in multipoles:

ξ(s,µ) = ∑
l≥0

ξl(s)Ll(µ), (48)

where s is the magnitude of the galaxy separation vector in redshift space s, µ is
the cosine of the separation angle between s and the line of sight, and Ll(x) are

8 from Schneider 2002 and Bartelmann & Schneider section 6.4.1
9 http://casa.colorado.edu/~ajsh/FFTLog/

http://casa.colorado.edu/~ajsh/FFTLog/
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the Legendre polynomials. The multipoles of the correlation function are given by

ξl(s) =
il

2π2

∫ ∞
0

Pl(k) jl(ks)k2dk, (49)

where Pl(k) are multipoles of the power spectrum in redshift space P(k,µk) defined
by

P(k,µk) = ∑
l≥0

Pl(k)Ll(µk). (50)

In the linear approximation only the l = 0, 2, 4 multipoles are non-zero. They are
related to the real-space power spectrum P(k) by

P0(k) =
(
1 + 2

3β+ 1
5β

2) P(k), (51)

P2(k) =
( 4

3β+ 4
7β

2) P(k), (52)

P4(k) = 8
35β

2P(k), (53)

where β is the ratio of the growth rate f and bias factor b, β = f /b.

CCL implements the redshift space correlation function ξ(s,µ), it’s average at con-
stant s,ξ(s), the multiploesξl(s), andξ(π ,σ), where π is the galaxy pair separation
parallel to the line of sight and σ is the separation perpendicular to the line of sight.
We use FFTlog to calculate ξl(s) from Pl(k) in the implementation of ξ(s,µ).

In order to speed up the calculations, we provide the option to create a spline of the
multipole functions ξl(s) and store them in global splines for subsequent access.

2.12. Halo mass & halo bias functions

The halo mass function is implemented using several different definitions from the
literature: Tinker et al. (2008), Tinker et al. (2010), Angulo et al. (2012), and Wat-
son et al. (2013). All four models are tuned to simulation data and tested against
observational results. In addition, each of these fits has been implemented using
the common halo definition of ∆ = 200, where a halo is defined with:

ρ̄(r∆) = ∆× ρm, (54)

where a halo with size r∆ has an average density ρ̄ equal to the overdensity pa-
rameter ∆ times the mean background density of the universe, ρm. Note that
another common definition utilizes the critical density of the universe, ρc; currently
CCL requires that an external conversion by the end user between values of ∆ with
respect to the critical density to values of ∆ as defined with respect to the mean
density. In the future we plan to allow for self-consistent handling of critical density
based definitions, though it is not implemented as of this build.
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In addition to the usage of the most common definition, we have implemented an
extension for two of the models. The Tinker 2010 model allows for a value of ∆ to be
given between the values of 200 and 3200 and interpolates the fitting parameters
within this range in a space of log ∆ using splines. We also have implemented
interpolation in the same range of Tinker 2008 ∆ values. For both Tinker 2008
and Tinker 2010 models we have utilized spline interpolation through GSL routines
in order to guarantee a match to specified fitting parameters at exact values of ∆.
This fitting has slight deviation from the fit as expressed in Tinker 2010.

The halo mass function models implemented in CCL are tuned to simulations with-
out massive neutrinos, therefore are not valid in cosmologies with massive neu-
trinos. Attempts to calculate the halo mass function, halo bias, or other related
quantities within cosmologies with massive neutrinos will cause CCL to raise an
error and quit.

With the exception of the Tinker 2010 model, we attempt to keep a common form
to the multiplicity function whenever possible for ease of extension:

f (σ) = A
[(σ

b

)−a
+ 1
]
e−c/σ2

, (55)

where A, a, b, and c are fitting parameters that have additional redshift scaling and
σ is the RMS variance of the density field smoothed on some scale M at some
scale factor a. This basic form is modified for the Angulo et al. (2012) formulation.
The resulting form is

f (σ) = A
[( b

σ
+ 1
)−a]

e−c/σ2
, (56)

where the only change is in the formulation of the second term. Note that the
fitting parameters in the Angulo et al. (2012) formulation do not contain any redshift
dependence and the use of it is primarily for testing and benchmark purposes.

Each call to the halo mass function requires an assumed model in addition to
a value of the halo mass and scale factor for which to evaluate the halo mass
function. It returns the number density of halos in logarithmic mass bins, in the
form dn/d log10 M, where n is the number density of halos of a given mass and M
is the input halo mass.

The halo mass M is related to σ by first computing the radius R that would enclose
a mass M in a homogeneous Universe at z = 0:

M =
H2

0
2G

R3 → M
M�

= 1.162× 1012ΩMh2
(

R
1 Mpc

)3

. (57)
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The rms density contrast in spheres of radius R can then be computed as

σ2
R =

1
2π2

∫
dk k2 Pk W̃2

R(k) (58)

where Pk is the matter power spectrum and W̃(kR) is the Fourier transform of a
spherical top hat window function,

W̃R(k) =
3

(kR)3 [sin(kR)− kR cos(kR)] (59)

This function is directly implemented in CCL as well as a specific σ8 function.

The Tinker et al. (2010) model parameterizes both the halo mass function and the
halo bias in terms of the peak height, ν = δc/σ(M), where δc is the critical density
for collapse and is chosen to be 1.686 for this particular parameterization. We can
then parameterize the halo function and halo bias as

b(ν) = 1− A
νa

νa + δc
a + Bνb + Cνc, f (ν) = α[1 + (βν)−2φ]ν2ηe(−γν2/2). (60)

The currently implemented model in CCL allows for an arbitrary overdensity ∆ to
be chosen, using the fitting functions provided in Tinker et al. (2010). Other halo
model definitions are not included in the halo bias calculation, though this remains
an area of active work to improve upon.

2.13. Halo model

In this section we review a basic halo-model computation (Seljak 2000; Peacock
& Smith 2000; Cooray & Sheth 2002) of the cross-correlation between any two
cosmological fields and only requires knowledge of the halo profiles of the field in
question. For example, in the case of the matter-density auto spectrum we need
only know the halo density profiles. For the galaxy spectrum we require knowledge
of the number of, and distribution of, galaxies as a function of halo mass. In this
simple form the halo model is approximate and makes the assumption that haloes
are linearly biased with respect to the linear matter field and also assumes that
haloes are spherical with properties that are determined solely by the halo mass. It
is possible to go beyond these simplified assumptions, and we direct the interested
reader to Cooray & Sheth (2002); Smith et al. (2007); Giocoli et al. (2010); Smith
& Markovic (2011).

The eventual aim for CCL is to have a halo model that can calculate the auto- and
cross-spectra for any cosmological field combinations with parameters that can be
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taken either from numerical simulations or observational data. Currently we have
only implemented the case of the matter-density auto spectrum, but we keep the
notation as general as possible in the following:

Consider two 3D cosmological fields ρi and ρ j, the cross power spectrum at a given
redshift can be written as a sum of a two- and a one-halo term given by

P2H,i j(k) = Plin(k) ∏
n=i, j

[∫ ∞
0

b(M)
dn
dM

Wn(M, k) dM
]

, (61)

P1H,i j(k) =
∫ ∞

0

dn
dM

Wi(M, k)Wj(M, k) dM , (62)

where M is the halo mass, dn/dM is the halo mass function defined as the first
of equations (60) and b(M) is the linear halo bias with respect to the linear matter
density field, defined as the large-scale limit of the second of equations (60).

Equations (61) and (62) contain the (spherical) Fourier transform of the halo profile,
or halo ‘window function’:

Wi(M, k) =
∫ ∞

0
4πr2 sin(kr)

kr
ρH,i(M, r) dr , (63)

where ρH,i(M, r) is the radial profile for the field i in a host halo of mass M. For
example, if one is interested in matter fields then this would be the halo density
profile, if one were interested in galaxies then this would be the number density
and distribution of galaxies around a halo of mass M.

Note that the halo mass function and bias must satisfy the following properties for
the total power spectrum to have the correct large-scale limit10:

1
ρ̄m

∫ ∞
0

M
dn
dM

dM = 1 , (64)

1
ρ̄m

∫ ∞
0

Mb(M)
dn
dM

dM = 1 . (65)

If one uses a mass function and bias pair that are related via the peak-background
split formalism (Mo & White 1996; Sheth et al. 2001), these conditions are auto-
matically satisfied. In words these equations enforce that all matter is associated
to a halo and that matter is on average unbiased with respect to itself. In the con-
vention used in CCL the units of P(k) will be exactly the units of ρiρ j/Mpc3. The
units of the Wi are those of ρi multiplied by volume.

10 Note that achieving these correct limits for some fields is difficult numerically because of the
large amount of mass contained in low mass haloes according to most popular mass functions.
Special care must be taken with the two-halo integral in the case of matter power spectra.
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For the matter power spectrum we use the halo profiles of Navarro, Frenk, & White
(NFW; 1997):

ρH(M, r) ∝ 1
r/rs(1 + r/rs)2 , (66)

which is written in terms of a scale radius rs. The constant of proportionality fixed
by the condition that the halo has total mass M when the boundary is set at the
virial radius rv, which is set such that the halo has a fixed density ∆v with respect
to the mean

M = 4πr3
v∆vρ̄ . (67)

Finally, the scale radius is usually expressed in terms of the mass-dependent halo
concentration parameter c(M) = rv/rs. We use the simple mass-concentration
relation from Bullock et al. (2001)

c(M) = 9
(

M
M∗

)−0.13

, (68)

where δc/σ(M∗) = 1. Note that, in order to be consistent, one should use a value
of ∆v and c(M) that is consistent with the halo definition used for the halo mass
function and bias.

2.14. Halo profiles

CCL provides a generic formalism to work with halo profiles. Halo profiles describe
the distribution of a given quantity (most commonly the matter density) around ha-
los of different masses at different redshifts. Due to statistical isotropy, the average
halo profile is spherically symmetric. For this reason, the basic quantity associated
with halo profiles is the value of the profile as a function of the comoving distance r
to its center, ρ(r). There is also a number of derived quantities that are of interest
for different cosmological analyses:

• Fourier-space profile: the Fourier transform ρ(k) of a spherically symmetric
profile is given by:

ρ(k) ≡ 4π
∫ ∞

0
dr r2 j0(k r)ρ(r), (69)

where j0(kr) is the order-0 spherical Bessel function.

• Projected 2D profile: this is the profile integrated along the line-of-sight
direction:

Σ(R) ≡
∫ ∞
−∞ dr‖ ρ(

√
r2
‖ + R2). (70)
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Note that this can be rewritten in terms of the Fourier-space profile:

Σ(R) =
1

2π

∫ ∞
0

dk k J0(kR)ρ(k), (71)

where Jn is the order-n cylindrical (or standard) Bessel function.

• Cumulative surface density: this is the average projected profile within a
circle of radius R around the center of the halo:

Σ(< R) ≡ 2
R2

∫ R

0
dR′ R′ Σ(R′). (72)

This can also be rewritten in terms of the Fourier profile as:

Σ(< R) =
1

2π

∫ ∞
0

dk k
2J1(kR)

kR
ρ(k). (73)

Although in certain cases analytical solutions to the integrals above exist, in general
they must be solved numerically. In order to do so using O(N log N) operations
(as opposed to O(N2)), where N is the number of samples of the corresponding
quantity, we make use of the Fourier-space versions of these integrals (Eqs. 69,
71 and 73), and solve them using FFTlog11 (Hamilton 2000; Talman 2009).

The following profile models are currently implemented in CCL:

• Navarro-Frenk-White (NFW) (Navarro et al. 1997): the NFW profile has the
form

ρNFW(r) =
ρs

(r/rs)(1 + r/rs)2 , (74)

where ρs and rs are the inner density and the scale radius. The latter is
related to the spherical overdensity radius R∆ through the concentration pa-
rameter (R∆ = c rs). The mass of the NFW profile is not well defined, since
its integral diverges at large r. For this reason it is common to consider the
truncated profile, which is assumed to be zero for r > R∆. In that case, the
normalization ρs is given by:

ρs(M) =
M

4π r3
s [log(1 + c)− c/(1 + c)]

. (75)

Analytical solutions exist for ρ(k), Σ(R) and Σ(< R) in the case of the NFW
profile. CCL includes the possibility of using these as an alternative to FFT-
Log.

11 http://casa.colorado.edu/~ajsh/FFTLog/

http://casa.colorado.edu/~ajsh/FFTLog/
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• Hernquist (Hernquist 1990): the Hernquist profile has a similar form, but is
steeper at larger radii,

ρHernquist(r) =
ρs

(r/rs)(1 + r/rs)3 . (76)

• Einasto (Einasto 1965; Diemer & Kravtsov 2014): the Einasto profile has
three parameters, with an additional parameter α, besides ρs and rs:

ρEinasto(r) = ρs exp(− 2
α

[(
r
rs

)α

− 1
]
), (77)

where α has a calibrated relation with the halo peak height ν (Gao et al.
2008),

α(ν) = 0.155 + 0.0095ν2. (78)

We also provide two additional profiles to be used as toy models:

• Power-law profile: in this case

ρpower−law(r) = (r/rs)
α , (79)

where rs is a free function of halo mass M and scale factor a, and α is a free
function of a.

• Gaussian profile: in this case

ρGaussian(r) = ρ0 e−(r/rs)2
, (80)

where both ρ0 and rs are free functions of halo mass and scale factor.

The halo profile API implemented in CCL makes it very easy for users to define new
profiles in terms of their ρ(r). Other relevant halo profile models will be incorpo-
rated into CCL in the future.

3. Tests and validation

Our goal is for outputs of CCL to be validated against independent benchmark
codes. This process is documented in the CCL paper (Chisari et al. 2019).

For each CCL prediction, at least one independent code was used to produce the
same result. Predictions were compared and the resulting numerical accuracy,
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documented in the paper. (See Table 2 for a summary of these results.) Potential
differences in the implementation of the relevant algorithms were discussed there
as well. For specific cases, such as the matter power spectrum provided by the
Cosmic Emulator, angular power spectra and projected correlation functions, we
established target accuracies for CCL to achieve, though a more detailed forecasting
exercise should be pursued in the future to establish whether results are compatible
with the expected requirements of LSST DESC cosmological analyses in the next
decade.

All benchmark codes are either made public within the CCL repository or made
available online and described in the CCL wiki12.

We would like to thank the organisers of the the DESC collaboration meetings at:
Oxford (July 2016), SLAC (March 2016), and ANL (2015), and the LSST-DESC
Hack Week organisers (CMU, November 2016), where this work was partly devel-
oped. We would also like to acknowledge the contribution of the participants of the
TJP Code Comparison Project, some of whom are among the CCL contributors,
for providing the benchmarks for testing CCL. We thank Antony Lewis and Christos
Georgiou for contributions to CCL from outside of DESC. Finally, we are grateful
for the feedback received from other working groups of DESC, including Strong
Lensing, Supernovae and Photometric Redshifts.
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power spectrum, mass function, documentation and benchmarks; reviewed code
M. R. Becker: Core code and algorithmss
Jonathan Blazek: Planning capabilities and structure; nonlinear PT implementa-
tion; documentation and testing.
Philip Bull: Implemented the Python wrapper and wrote documentation for it;
general bug fixes, maintenance, and code review; enhanced the installer and error
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Jean-Éric Campagne: Angpow builder and contributed to the interface with CCL.
Jim Chiang: Worked on software licensing consideration.
N. Elisa Chisari: Co-led project, coordinated hack projects & communication, con-
tributed to: correlation function & power spectrum implementation, documentation,
and comparisons with benchmarks.

12 https://github.com/LSSTDESC/CCL/wiki

https://github.com/LSSTDESC/CCL/wiki
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Alex Drlica-Wagner: Helped with document preparation.
Zilong Du: Implemented the 3d correlation function, redshift-space correlation
functions, and corresponding benchmarks.
Tim Eifler: Reviewed/tested code.
John Ellison: Implemented the 3d correlation function, redshift-space correlation
functions, and corresponding benchmarks; wrote documentation.
Cristhian Garcia Quintero: Produced benchmarks for correlation functions in
modified gravity.
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reviewed code; run tests and benchmarks; identified bugs and wrote code to fix
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January 2020-
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Phil Marshall: Helped with document preparation.
Thomas McClintock: Wrote Python documentation.
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ality to distances.
Alexander Mead: Wrote halo model code
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with CCL.
Javier Sanchez: Modified setup.py to allow pip installation and uninstall.
Sukhdeep Singh: Contributed to the correlation functions code.
Anže Slosar: Wrote and reviewed code.
Tilman Tröster: Wrote code for user-changable precision parameters, added
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