diff --git a/examples/exports/composite_mask_export.ipynb b/examples/exports/composite_mask_export.ipynb
new file mode 100644
index 000000000..ac5263e0f
--- /dev/null
+++ b/examples/exports/composite_mask_export.ipynb
@@ -0,0 +1,390 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 2,
+ "metadata": {},
+ "cells": [
+ {
+ "metadata": {},
+ "source": [
+ "
\n",
+ " \n",
+ " | "
+ ],
+ "cell_type": "markdown"
+ },
+ {
+ "metadata": {},
+ "source": [
+ "\n",
+ " \n",
+ " | \n",
+ "\n",
+ "\n",
+ " \n",
+ " | "
+ ],
+ "cell_type": "markdown"
+ },
+ {
+ "metadata": {},
+ "source": [
+ "# Export composite masks\n",
+ "\n",
+ "Composite masks are a combination of mask instances grouped in a single mask URL. \n",
+ "\n",
+ "The purpose of this demo is to demonstrate how to transition from exporting single masks to exporting composite masks. "
+ ],
+ "cell_type": "markdown"
+ },
+ {
+ "metadata": {},
+ "source": [
+ "## Imports"
+ ],
+ "cell_type": "markdown"
+ },
+ {
+ "metadata": {},
+ "source": [
+ "%pip install -q \"labelbox[data]\""
+ ],
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null
+ },
+ {
+ "metadata": {},
+ "source": [
+ "import labelbox as lb\n",
+ "import urllib.request\n",
+ "from PIL import Image\n",
+ "import json\n"
+ ],
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null
+ },
+ {
+ "metadata": {},
+ "source": [
+ "## API Key and Client\n",
+ "See the developer guide for [creating an API key](https://docs.labelbox.com/reference/create-api-key)."
+ ],
+ "cell_type": "markdown"
+ },
+ {
+ "metadata": {},
+ "source": [
+ "API_KEY = \"\"\n",
+ "client = lb.Client(api_key=API_KEY)\n",
+ "client.enable_experimental = True ## This is required if using the export() streamable method"
+ ],
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null
+ },
+ {
+ "metadata": {},
+ "source": [
+ "## Key differences between single mask instance and composite mask."
+ ],
+ "cell_type": "markdown"
+ },
+ {
+ "metadata": {},
+ "source": [
+ "#### Composite masks\n",
+ "1. A single mask url contains all mask instances from a single label. For videos a composite mask contains all mask instances for the frame in each label. \n",
+ "2. The export and mask URL adhere to the following convention:\n",
+ " - ***Image example***\n",
+ "```json \n",
+ " {\n",
+ " \"composite_mask\": {\n",
+ " \"url\": \"https://api.labelbox.com/api/v1/tasks/{task_id}/masks/{composite_mask_id}\",\n",
+ " \"color_rgb\": [\n",
+ " 142,\n",
+ " 220,\n",
+ " 196\n",
+ " ]\n",
+ " }\n",
+ " }\n",
+ "```\n",
+ " - ***Video example*** :\n",
+ " The export will adhere to the following URL convention by default. However, the image's URL convention is also considered valid.\n",
+ "```json\n",
+ " {\n",
+ " \"composite_mask\": {\n",
+ " \"url\": \"https://api.labelbox.com/api/v1/tasks/{task_id}/masks/{composite_mask_id}/index/{frame_number}\",\n",
+ " \"color_rgb\": [\n",
+ " 224,\n",
+ " 17,\n",
+ " 103\n",
+ " ]\n",
+ " }\n",
+ " }\n",
+ "```\n",
+ "3. A unique RGB color is assigned to each mask instance. The example below shows a composite mask of a label, and while it contains all mask instances, only the RGB color associated with this particular annotation will be filled in under the ```color_rgb``` field."
+ ],
+ "cell_type": "markdown"
+ },
+ {
+ "metadata": {},
+ "source": [
+ "# Example on how to fetch a composite mask\n",
+ "# The mask here shows all the mask instances associated with a label\n",
+ "task_id = \"\"\n",
+ "composite_mask_id = \"\"\n",
+ "\n",
+ "mask_url = f'https://api.labelbox.com/api/v1/tasks/{task_id}/masks/{composite_mask_id}'\n",
+ "req = urllib.request.Request(mask_url, headers=client.headers)\n",
+ "image = Image.open(urllib.request.urlopen(req))\n",
+ "w, h = image.size\n",
+ "new_w = w // 4\n",
+ "new_h = h // 4\n",
+ "\n",
+ "image.resize((new_w, new_h), Image.BICUBIC)"
+ ],
+ "cell_type": "code",
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAGqCAYAAACbEvXuAABUwklEQVR4Ae3dCYAcRb348arq7tnNHcKZcApJIEEQARGQEEWUm3AYVK6AaBLwRQwJoKAvRkGRECIP5cgTBFHeX/MUEhF5AnKLCogXhCNcogJy5M7uznR3/X81m8CS7G52Z3tmunu+rSG7M93VVZ+azPymTqU4EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBpTQDdmsSk1AgggUB2Bcz9z5YhC0PQRo+3BSpsgisOX5I32RRurJuP7O9ko/pU//F93zZ49O65ODkgVAQQQ2LgAAeDGjTgDAQQQ6Fbggqnz9/Ws3TO20cFaewd6nr+p1p29vWolAaFL6zdRFF/+zflTftkx4VmTftAcNhcnGa1PlMdXSXo/97d69QcEix2V+BkBBJIQ6OwdKol0SQMBBBDIvcCsaVcMDtuar9RGn+x7gbHSzBfFkXJ/d3fIuSqWc+I4vlnZ0tVaBctjo7YxVp0dBIVD5HHlAsgwKpXCUL/3ku9Pfqa79HgOAQQQ6K2A39sLOB8BBBBAoF2gVCzMb25q/mSx1KpKYVuPWSSwK58rgeCJUaROjCVi9LQx8n9VLL2TjrQkBl5Q3E5OJgDssS4nIoBATwQIAHuixDkIINDwAldMu71JqWfLDq+1Ne8qsdpMrfQn24otFdu0B4JaudDPtfop9e6WQ2utUna9Byu+GxcigAAC7wgQAL5jwU8IIIDABgIXTL72CM/oz75efHm3WBXWPm+38b1CUyksbnB+7x+w0mXc+6u4AgEEEOiLAAFgX/S4FgEEcisw6+wfDC21tZ2mrZorXbHGje3zlCmX143xSyb4yy0fBUMAgZQLEACmvILIHgII1E5g4sSfeqM3f+tjxprjo7bixwMTbOdm7RLs1a4OuBMCCNRGgACwNs7cBQEEUi4wbdoVTYOLb97sq8JxMqu3PJt33WSN+mVdFmqQIYL1uz93RgCBvAoQAOa1ZikXAgj0SmBgsXBU4DcfF8q4PhmV16trq3GyTDCRsYFR0YbxG9VInzQRQKCxBfhm2dj1T+kRQGCtgLS1fdpNuU1D8Oey5BnPrSf4lzdM8ASVhAACCCQtQACYtCjpIYBA5gRmTL1qC+lpPTCKyrt0pCL/2gWA2i6aP39K+6KBqcgVmUAAgbwIEADmpSYpBwIIVCzQFKtJvh9s5nbnSMPhun/DsNRmYu/WNOSHPCCAQP4ECADzV6eUCAEEeiFw/uQrd/OMPz1OUeufBKOy+nN060Xzp/y1F0XhVAQQQKDHAgSAPabiRAQQyJuAW+vPN4WfGeMNT03rX3kPYJmJ4ptL8+ZNeRBAID0CBIDpqQtyggACNRYotbR9TTbbHVX/5V7eKXjgN7nZv1d+83tT/vjOo/yEAAIIJCvAMjDJepIaAghkROCCqdd8WxZ6PjstizxraflzwV9bqeUnLf03/WpGGMkmAghkVIAWwIxWHNlGAIHKBS6ccvWlBa9wXlpm/Rrt3op1WAyLVwStr542b94JLZWXjisRQACBjQvI0lccCCCAQH4Fpk+f28+Vbt68GS1nT5o3dFC/fpd4Jpjigr80rPnne77sOhIvUyo85aJrzrotvzVByRBAIE0CBIBpqg3yggACiQnMmDFnQPOqwecbo0+KolgWVlF/lsR3CILC+9PS7Rv4Bbfl3PNhHE791rVn3plY4UkIAQQQ2IgAAeBGgHgaAQSyJ3DBlKv3kaVdrpLdNPaSAKtcAGOMsrGVgKv+iz27vBjtqTAK/8sPzezZ133urewpk2MEEMiyAJNAslx75B0BBLoS2FsWU97DPSnbqckfq+K1gWBXF9TicS1j/dwWb9Ll+0bJlq7/5rVTz6/FfbkHAgggsL4ALYDri/A7AgjkQuArZ35vjI79T1ptzlUq7u+CwHoebqKH5GGp9EXPbPO8O+Z877P/qmd+uDcCCDS2AAFgY9c/pUcg9wIXTL7q202F/ucVS611K6sL/lzrXylqO/5b8z//87plhBsjgAACawVYBoaXAgII5FrARsHlxbDtxULQJEFY7b/z+l4gvnpVGBWnE/zl+qVG4RDIlAABYKaqi8wigEBvBb513ede0yo6LgzDX8u1K90YvFocrsWvPMvXxg/IRJSPfHP+Wd+pxX25BwIIINATgdp/He5JrjgHAQQQqILAhZ/57vYq8M6UGcLnr5sdXIXbKNlbWMb7qVXKhpd4rc1zZ994ev36n6tRQNJEAIHMCxAAZr4KKQACCPRG4IKpV+3r6eDhas0Kdgs7xzLZI4yiid+aP/Xu3uSNcxFAAIFaCdAFXCtp7oMAAukQsHp0NTLiJnoUgmY30/eF2JY+QfBXDWXSRACBpARoAUxKknQQQCDVAl+dcvWHrPZOlMVgTtPKJrosjBvrF0al16zV84ultmvmXD+NJV5S/WogcwggQADIawABBHItMGvWLBO+OuJSGZd3tmeML4FaeWHopAot6UpMaf/HxNGFs68988Wk0iUdBBBAoJoCdAFXU5e0EUCg7gKlV7f6hrTQzbA28t0ewEkuCO2WeImjaIHZ4p+nEPzVvarJAAII9EKAreB6gcWpCCCQLYEvT752F1n674tRwq1+6xTcUi+yy8hfZ8+eHa97jL8RQACBLAgQAGahlsgjAghUJKB1PCnwmvuXwraKru/JRdL/61Z65kAAAQR6JTBvyUOf9gr+p8u7BK1Zc+05O4//Za8S6OPJjAHsIyCXI4BAOgWmTbuiaXBb06Oe5783isOqZNItKh3Z+M9+yRw0+7rPvVWVm5AoAgjkTUDPW/LbycpTVwaFQmB8T7WuWv2kF/n7nT163xW1KiwtgLWS5j4IIFBTgYHFwk6y9dtO1VrvzxXGLSYt4wDfFwfRz7505lVnXHL1Wc/XtJDcDAEEMiUw97nf7uYZfbE25igZP6yKLe1rxBf6NY9tW90ySwozY/0C/eCFe5qX6kGbaNu6gx/IuOM1pX8r5b+uhik1fNMPrj5B62j9a3ryOy2APVHinLLA+PGz/Nd2Lm2uW6NRMqB+T3nx7GOVXiZ/v9ApkRseZeO/ydIYyzp7XtZNi1RLaUmxEK7XPDNMFYao+MmrZq/q7DoeQ6AnAhdOveogowt3x1Vq/euYBzcZJIqil8OweNAl1/3Hko7P8TMCCGRPYO6SBw/3A//TcWyHKqtKMpb4rrgY3nHOzuMq+pI3y1ozZMlDn5HWvov9QrDFusBvnYzbp1wbXYyj+KvaK82f/p6PLJMJa9JS+NAZXuDNjKJ4M2P0prKvuHuvkc9Gu8Jot+NQ/IoEk6/IF92/yHPLXHruo9cEfqltxepfnLfbR59zj3V2EAB2psJjapuJ0/sNbmra2gbxKNnW4L02tu+TcQpjrLI7SOA2THuyn6rsdSWvRTm6fhlZaSHpbNalu8I9Lv9/VdZke/cAevek1qG89h9W2v4mtv7v1rS0PvuPBfNa3N04EOiJgOz48YXANF8RRsWenN7ncwK/SZVKrYsuunbqMfJmLv84OBBAIGsC5aDruYculkDtXAnUfBu1f865AC0slZaX2opnn7vz+Bt7W665z97/raYB/b8UFksqDjtvsJMAUMmQFRUWi/+UxhUJ6OxAafEb5z5ibRwrCUbltvKMTD5z+XGHMfJz+U/77+UH5Uf3eLGl7eUwCo+dOXLcY+XH1/tPhyvWe4ZfG0Zg58+cO8gvmh1jY0fIC21P+Uaxt3wXGSsvs63lRTTAvbjKQVw5YJNYzQV+CR3tsyg7Scy9Mssvculmk4Xb5PP0BWXNI0bb26xvHt18SdOL9903e72Ww07S4aGGFbhwytVfC/zmWdWcANIRV/7NuNesfIGPPs4uIB1l+BmBbAjMam+lm1cY0PyFUqssGSVBV8fDk7F6EnmVwtbSJ2fsPO6Wjs919/O8xQ/urJrMHyVm6y9vEN2dWn7OjQn0pJHFfdRKMLjR87s6IWgqKAlYXzS6dd8v7nTwa+ufxxjA9UVy/rvrxn1jx9Zdo9iOkQ+s3eUVvqctqbGRiYbLGrn+O8Fee6BXbsGTVrxqHRJsdp50OcaM5buO+/emAwkUR2vPjJZ/ECfZMFr9+g4tT++yw7m/17G6LQ7Un56+fg47L3Qu2biPWju4loWX9mxV8AJjbThO7nt3Le/NvRBAoO8Cg5//7dRC/+YvSMtZpw0d0hihvMAPtG++c/mT9/3unLHjX+nRXQP7VWlN7F9q7dlqBK6FsKtWwh7db+1JEvyppv79dmhZGZ8gD125/rUEgOuL5PT3XU+duZM1/mH/tmtOUZHa03gS7MnXEfnCI72sEmi51j3XXVvFYK9iWpe3cv7WBotaD5CWlj1lV4c9rY7P1GH01i6nznxCAtqHjNX3msj84a83X7K04vtxYS4EpAV7jy6/YFSphFa5L05q2yolT7IIIFAlgcuevu803zPzXNAkHzhd3iUqhSpobtquaO218rk0QT5HNzh5lr3H3+yNwVvEK9tGhVF8ulcITupp8NfljSt8IpZWTOOZ93V2OV3Anank5DHXtWtCfZi8QI+XD8JDjB8McU3a7c3aG7xms1tqCWTLYyCky9jKrCqZoCKtgfpxKeED8u/47qdvmvNodgtHzisVuGDyNXfLl/WD3NZvtTrcZJBSWLrvm/OnfrhW9+Q+CCBQucAlzz06pEm3TZPPjP+Uj5KgJ1207m7SEiifN/GtcWvprOWvxa9vMrL5PfJ5u3ek7ZGyNtQYaVnZXj6Xhhnpyg1dUFmnw+UzLIWL1b/NXjP23/9d4+hpAaxTpVTztqNPm/EBL/ZcS9/h8gJ0S2FI0CdtE2HtPgirWb4N0natgy7wkwK7Q2tvhIyAHWG0PiKWNvsxk85bZGJ14RM3Xbp4g2t5AIHkBdpfiMmnS4oIIJCgwOVLHtxbm+J1QVPz7iVZjqV9kkXPbrC2JfAYWcrl/YO39d60pXhnHQQDpGtNxTI2yX0mJdWV27McdX6Wy2ehqTCmuFnbF+SMb3c8iwCwo0aGf97lpAuGGz/6hIRCx8qs3QNlOJ+3rks3R219PaqhcrefDLRtL7eMHPS8Y2MVfXTMqefPKXnm2iU/+NbrPUqIkxBAAAEEcilw+bP3nyKfk3M9z2xeXPOuhrEel9d168pyK9vLGPXt3Zp+5e7jHl9duxPd2EWZWDLz20vu/fn5Iz/87Lo7EwCuk8jg3yNPmja44DftL7NjP2NV+GFZmmVzF/W0f/PIaWtfr+tJWj4jmSys9WD5B/CNIApPH3PqzFmLfzjgZqXYv7XXnFyAAAIIZFlABgfPe/63X5KGuq/LGDhZLK9v3bPtkzXS3ejvgtNC/36b2dXx+VJ1n11XfW69QI7sCeixp543JfD7Pa609ysJ/CbKi3nzWNZTti7YWdv2lb1iVTHH0k3susClO3xH7QU3jZ3Uett7Tzl37yrekaQRQAABBFIkcNlT92wmwd+NQXPhm9Jb5kfr70GQorwmnRXXxW0C75TLn37g4HVp0wK4TiIjf4+cOG3zwoB+c2Wc2ykysK88oaM88zAj+a93NtsnwLhZUf5hMmpw3JhTzv2x7Of1rcU3z32p3nnj/rkR4It1bqqSguRF4OJn7t9cFr/4mWy5Nq5t9Zq8FKvH5XAraciaHwUdeDde8eJDE2Pb/0neqHrMV/8Tx5wy82Bpxv2NNv4prltz/UUq65/D7OSg3C2s1EAZvzFFBeaxMaed979jJ83cIzslIKcbFdDyjlfjw024klUhZAV/DgQQSIuABD+6Wat5jRr8rasH1+IpmzuMCEv27jhc9RQB4DqZNP89a5aRmawXSs3dLn/em9vZvLWug3K3sOsy15saExwv3em373zqjE/UOhvcL3mBWdNuGizfdnes9TqA8lpyhXkz+RKRIgIIVCowd8n9H/f84MRKJ3tUet80XlcOAj3TLK2hWxIAprGGOuRp1KnTtx7zQsutMpP1Ink4cBM8OBIWKAeC5YHAbjeU/yfdwp9J+A4kV2OBt1a91SS3HOy6PWp9yD1lvygOBBBIg8Blz9x3kl9ouknyIn0CtX8/SIPB+nlwvYduYggB4PoyKfp9l5NmftxXwYMye/UoN8Gju9XJU5TtzGbF/aOQNd09aWX97s4nn7N/ZgtCxlUQNMtbfX3e7WU98p7t90Q9IYBAVQXmPn3fPr5fuFLWhN3cBTwc7xYgAHy3R2p+2+Xk8z6mfe82Wch5h3Lwl5qc5TsjrstQhnH18zz/f8ecdO64fJeW0iUtEFv5kIntc0mnS3oIINA7gcueu3+07H61UHt6k7DIsmid6REAdqZS58d2OeWc0cZTN0ogEqRyb946+1T79uXJNVoPlzeOO8eceu7dbuZ1te9J+vkQMFp6f7XZOR+loRQIZFPATfqQ7TjmyXIvW7mdMDg6FyAA7Nylbo9uP2lWs3yAfF8bbzizfOtWDe3L62jVZILCQTLz+sLdTvzSJvXLDXfOioAbYySjjHbMSn7JJwJ5FLh8yQOHBEFwaLG1NY/FS6xMBICJUSaTUH+75mLPL4xbu0xJMomSSmUC8mEel4oyOdg7O/TjX+x+8owtKkuIqxpHQLYZsHpo45SXkiKQHoF5zz+48xUvPHyOMd718lXMsCdC93VDANi9T02fHXvKuRNlzN8XCP5qyr7Rm7kxmLJn5IdKxtyy6yfP2XajF3BCwwrInqDysRM/3rAAFByBOghc/tJvD573wsM3KGUe9QrBXPkcHd6+RVsdMpOhWxIApqSy3Lg/a/SVkh2/TpMXUyKRzmyUt5Hz/P1tc/DALidN3zeduSRXaRCQFsDyYoBpyAt5QCDPAnOfeWDf77zw8B06UncGhWCSlHVgUbY8Y8Zvz2qdreB65lTVs7aZOL2fbO12nTRbb0nrX1Wp+5S422dZuoO3135wqwTsBz510+XP9ClBLq6ugAvE6hCKyRhA1gGsbs2SeoMIXPHM7U2m/w4DlVr5rhJHbSv9yDZP8Txzvhf4/cO2onKBH0fvBAgAe+dVlbMHNXsXy3T1A9jhoyq8iSbqFuLWnr+ltNLeKBNDDv/rzZcsTfQGJJaIwCqllvdT6jnpkt3U7Zldq6O8jJDRz9fqftwHgTwKXPrsvfsVCs3/GZbCbU3b0i032NHHuvl5wbBI3o9LrSy7WelrgC7gSuUSum7syTMOUp43jZa/hEBrkIxrCZR3n31DL/x6DW7HLSoQmD9/ilv4a7nbm7eWRyzBplERAWAt0blXrgS+89zDW/om+KkEeIf6gb+rNnoz4/nv/uN7w8JSqbxaQ64KX+PCEADWGLzj7faaPDmQXqqvSCsF4/46wmTg53JrrTFn7HLyjPdmILsNl8VZE2cVpCt2aF22fpIm4oYDp8AIJCQQ2XBaoblpm7bVLcqt4RdH7duWuXF97/ypXat+QsVKZTIEgHWslpY1g06Wrt+PuBYljowJyBIxslZjP/nPpRnLeUNk98n2Uvq1bAF0Aw4l4CxFkX33gKWGEKeQCPRdYO7ie3eTsfDTS2106/Zdc+MpEABu3KgqZ+w1eVb/2DMz6tJCUZUSNV6i5a5gzxw65uSZZzZe6dNd4gULZssCjnaBW8pRtvVTgd/Uiz8F5XtB+U/gy89++8/rHuvqb3euLN7eFvv92Qou3S8PcpdSAR2YSUFzU38bS/s9R9UF6KqoOnHnN1jTsuZTnu/vyti/zn0y86hsOaR9c7nsG/y3xT+e80Bm8t0AGQ22evXb8b9G3KWM3qakot1kk94elVq+lA012t8tVlEoAeQj0rI3xmgzVDqiurzefZOOtQmlXfhXb5VaV3R5Ik8ggECnArOsNXbJgwe6dVc5aiNQ2xHStSlT6u/iWv9Wt655RJq6x7LXb+qra6MZlEVH3dKN/5a6POapmy57eKMXcAICCCCAwLsELn3q/t0LheB3MuO3Hz1j76Kp2i90AVeNtuuEy61/nk/w1zVRpp5xezZLELiF/Llhl5O+ODxTmSezCCCAQAoEZE2/c7yCT/BXw7ogAKwhtruV7Cc7wGrF2L8au1f7du3jAf3RyguuHz9+FkMrqg1O+gggkBuBuU/fe7gXeCe6BZ05aidAAFg76/KdStp8Ugal0/pXY/da3M4tDWO0PuS17VZ/oBb34x4IIIBA1gUuf/K+4bLO33yZsR/Q9Vvb2iQArKE3rX81xK7TrWSrOLfyyJQ63Z7bIoAAApkSsL4+NOjXvLVb84+jtgIEgDX0lq0JPkXrXw3B63Cr8ibk2pww+tSZu9fh9twSAQQQyJSALPjyYVr+6lNlBIA1ci+3/hnN2L8aedftNjIdWLoz+nlWnVa3PHBjBBBAIAMCs+65x5et3naNZSIdR+0FCABrZF5SnrT+BWNY9qVG4HW8jZUti5TSJ7xv0tlD65gNbo0AAgikWmDg9oWtZSvU0az9V59qIgCsgfv2kyY1Wx1Pp5m7BtgpuIWsY6WM728d2uDoFGSHLCCAAAKpFDBxvKcfBIPY+aM+1UMAWAP3gfGm42XRZ1r/amCdllu4jYykHfCTackP+UAAAQTSJqCt/oR0AactWw2THwLAKle1WxNO2oPOV0a2i+BoHIE4UlqZ/ceecv52jVNoSooAAgj0TGDus/f9hyl4E1n7r2de1TiLoKQaqh3SfGPblfvIDhHj3ULBHI0j4Lr7pRt4aKzjTzdOqSkpAgggsHGBy5c8MNkvNF1hI8vafxvnqtoZBIBVo21PONbeFG08nKvsnMbk3VhA6dw4hp1B0lg75AkBBOohMOeZ+8fKZ+Ic+ZJs3DaaHPUTIDCpov2uJ09/n2wNMTGW7kCOxhNYOxv4/a9vs2p045WeEiOAAALvFrhy8YMjfN/7oed7g+OQz8V369T+NwLAKprHxj/NrQmnpDuQozEFjO81WWP2bczSU2oEEECgXWDu03dtHTbpRX5TYa+wKNsicNRdgACwSlWw86fOHSH9fycy9q9KwJlJVjqBjRqfmeySUQQQQCBhARf8maDfQhf8lVraEk6d5CoVIACsVG4j18m21p83XrAFa/9tBCrnT5cX/rZqn20mTu+X86JSPAQQQGADgbnP3jOS4G8DllQ8QABYhWpwO0BorU9vHwNWhRuQZGYE2gc56/cM8uyOmck0GUUAAQQSELjs2Qc+7xf6Pez5Pi1/CXgmnQQBYNKikl4pDiZqzx/uZoFyIGA8r0kHhf2RQAABBBpF4LJn7zskCIIrpRdsM8b8pbPWCQATrpedP3PuIKvVDCZ+JAyb5eS0VlbbbbNcBPKOAAII9FRglr3Hl8HPXza+0cz27ala7c8jAEzYXLfZg2Xs387lsV8Jp01yGRawSt4QORBAAIH8C2z+QmFrz5i9aflLd10TACZZPxN/6mlPf4FFX5JEzX5a5YlA2u6d/ZJQAgQQQGDjAm1hfLDM+B1gYz4NN65VvzMIABO0H9v0h4+x7VuCoDlKSjaG499ajuqToiCAQOcCs+65x5dRL6ewy0fnPml6lA+lBGsjlpm/ssWNLPzGgUAHgfJC4PGQsRNnFTo8yo8IIIBA7gQGDvc/5gXBgXT/pr9qCQATqqOxJ87cQ1r/joqjMKEUSSY3Am5PYK3fU1RvDclNmSgIAggg0ImA8dRJJvBpCOnEJm0PEQAmVCPWV1+U5T7Y9i0hz9wlY1VcUD6bX+auYikQAgisE7jsqXs2k2+7B0Vs9baOJNV/EwAmUD2jTp2+tVL6cLZ9SwAzh0m0TwLRA6OgIK8TDgQQQCCfAsYEe/pBMDyO+K6bhRomAEyglgIbHG78YHO2fUsAM6dJSBdwP+NFW+a0eBQLAQQQkPVO1QGe7yGREQECwL5XlI61PY7gr++QeU9BszVM3quY8iHQsAIy+7dZaXVcFDIOPisvAhan7WNNjTlxxnbyot9fxTR595GSyxFAAAEEMiowdFtfesL8MVGJADArVUgA2Mea0p73cfkzOOZbTx8luRwBBBBAIGsCbtu3oS80nSHDXL4pnRz0KmaoAgkA+1ZZ0v0bH28sYx76xtgYV8swAZZGaIyqppQI5F7g24sfHBE06Y+q59WZXuDtF0exdITFuS93ngpIANiH2mzv/tX70f3bB8RGubQ8/s8rNkpxKScCCORXYO6SB77o+/6FsvTZZu6tjUWfs1nXBIB9qDdZ+PkQ7fl0//bBsBEula4RJW+SS9u0fboRyksZEUAgvwJzn37w8CAI5sUS+JXa2vJb0AYoGf31lVeyltEOMvu38gS4spEEtPUjecfkQAABBDIq4Pb5VSb+sjJaxSETHzNajW9nmxbAtyl698Pa2b90//aOrWHPlu8JJg5LjAFs2FcABUcg+wKDtw0+Ll2/HwrbGM2S/dqUD6U8FKIeZdC+PtRI9y/r/9VDP2P31PLPzKp/tCp/VcZyTnYRQACBdgE3ic3a043v8UU2J68JAsAKK1L+LQyX7d8qvJrLGkpAxgDKS+Xf/1gwr6Whyk1hEUAgNwLznrp3e2O8Q8IirX95qVQCwEprUqvNKr2U6xpQwGrWCmrAaqfICORFQDc1fcAv+INszMD3vNQpAWCFNSn/BMbQ/VshXiNephWtf41Y75QZgZwIxHF0tHK9GRy5ESAArKAqRx46rUn+HQyR8RAVXM0ljSbgloGRwTOPNVq5KS8CCORDYM6f/m+ADHv6YBwx8zcfNdpeCmYBV1CbZpNgkAzq30EpVvWogK8xL7G8WBqz4ik1AtkX8Af0/4BM/tiJfX6zX5cdS0ALYEeNHv6srVeQaZ3Y9dCL09wkYPYL5HWAAALZFJBhf8d5hYDPvGxWX5e5pkK7pOn6Cd+LR2vjDWUMYNdGPPOOgNsqSXqB2QXkHRJ+QgCBjAhc8cztTbJg3LiI7t+M1FjPs0kA2HOrt8+M21tzGA37tgg/dCsgY0U9q1/u9hyeRAABBFIosEoNHKyt2s4SAKawdvqWJQLASvw8//2yD3AlV3JNgwpEygYNWnSKjQACGRZoiiMrXRgMeM9wHXaVdaKYrmS6eVya/gawCHQ3QDz1toCbASxDBVbFMS2Ab6PwAwIIZE2AHq+s1VgP8ksA2AOk9U+Rr0KjGP+3vgq/dylgbYtXDF/v8nmeQAABBFIqsPIVtUw+754wPouGpLSKKs4WAWBFdHbrii7jooYUkNUivaIK2QmkIWufQiOQbYHZH/lIKKtYXcW6t9mux85yTwDYmUo3j40fP8uXtvBmt7AHBwIbFdDlf2Ivl/oPW7nRczkBAQQQSKFAYFffWmot/jFokhXQOHIjQADYy6q8776vRTILuI0xgL2Ea9TTZQygHK+/dOPs1kYloNwIIJBtgbNHH96mtL0wjm0rEyCzXZcdc08A2FGjRz9rWQFaP+YG93Mg0EMB/p31EIrTEEAgnQIzRh14R9jW9i2PsYDprKAKcsUHUwVoMiH+j4yHqACuAS9p3wdY/akBi06REUAgZwIrRkXfDNuKf6ArOB8VSwBYQT3aSP0hjsI1NAJWgNdol8gi0OUvDI1WbsqLAAK5E5itPxLGKpoelaIW2Rs4d+VrtAIRAFZQ44EX/0s+119R7QP8K0iBSxpBwH1BcF8U3BeGRigvZUQAgfwLzBw1/rdRWDxFSrpCG4ZCZbnGCQArqL2//Gjuavlwf0RpvgFVwNc4l8gXBJkr/i/3haFxCk1JEUAg7wIzRo//WRRG84OmprwXNdflIwCstHpj+zhdwJXiNch15QDQPuW+MDRIiSkmAgg0iICn7a+jMGyQ0uazmASAldar1Q/HMbtjV8rXCNe5CSDGTRjiQAABBHImsPTv4QNhsfSIX2Cb86xWLQFghTUXxdFiFcdLWQ6mQsAGuMzaWJbO0o81QFEpIgIINJiA7BDSqq29tMGKnaviEgBWWJ3PhC8vlfFdTyvDOMAKCXN9mRseYKNojcSAi3NdUAqHAAINK7C8+OoiaQX8Ha2A2XwJEABWWm8LFkQ6tr+jBbBSwJxf58b/yUxxJoDkvJ4pHgINLDD7vScUpfi3GBpCMvkqIADsQ7VJKw8LQvfBL9eXujdEbR9lAkiua5nCIYCA0o8yGSSbLwMCwD7Umy6q37cvCM1aSH1gzOWlMjbGjf+7JZeFo1AIIIDAWgEb6adlSZilxiOcyNqLghrrQ4098ZM5z8vldzAOsA+IObzUbZYeReFLujW8M4fFo0gIIIDA2wKFyGuVCW/x2w/wQ2YECAD7VFXSxhPH31My0p8DgXUC2nX/WnX7kwvmvbXuMf5GAAEE8iiwKizGMhyqVbmZbxyZEiAA7GN1Fd8oPhTH8e+1x2zgPlLm5nIZFlCSCPCm3BSIgiCAAAJdCHx593FLpQnkGcNnYBdC6XrYTVx1O7gU+jUrAsA+1s2SO65s01bdoNkXuI+S+bjctf7Z2D6x5d8HPJKPElEKBBBAoHsBTfNf90ApedYt1+P2by61tt7Q2tJ6up+SfGU6G37k/aSki1+WqfDbMRQi01XZ58y7f1wm0jfdd99s9kjqsyYJIIBAFgRk0turbuwzRwoFpGfe832ZquCpsFR6TMZrXnDOqHG/djmlxhKor7/efMlS+dhfUB77lUB6JJFNAde0LrsDrg5txOzfbFYhuUYAgQoEZNGDK6JiKTIEgRXoVeeS9q7egnJrNEr9LJEFu89b9uYbB56z4wHl4M/dlQAwIXuj4qtl7NdqFoZOCDSDyZS7f62965kfXfZiBrNPlhFAAIGKBGaMHve7qFT6upalYNgVpCLCxC5yMYhfKEinvFayPuP/aWUP81e1vH/6jvvPmb330Ws63ohpOx01+vazHnPKuQu07x9vI3r/+kaZzau15ysblo5ZfNNlC7NZAnKNAAIIVC4w9+kHjvUK/my/qbCbBIQqKvFZWLnmxq903brGlz8dWl5LbW2yS61+WNvoa1/caVy3S5HRArhx456eYWX41/fc+h8cjSdg/ED2/pVvW60v/arxSk+JEUAAAaVm7DzulqWvLT0gbGn9vAyH+YubaerGRXMkK+AFQbmVz8rYSwn4fl1sa72+2Np6bVwKP6ui+KCtH/3HgRsL/lyOqJkE62XkodOagi2aF0owcEjsVgLhaAgBN/hZxlj8wy/p8TIe9PmGKDSFRAABBLoR+PbiBwcVmswF0hc53Q/8plJrWzdn81RPBaR11XXt/kXCt3mmqemXZ4/Y8/WeXrv+eQSA64v08ffdTvzSjmEh/qVMCtnFxlEfU+PyLAjI2D9ro+jTi2+a85Ms5Jc8IoAAArUSmPP0fQfKunNfkiFph7kOMvYNrly+0L9ZFde03iq966eeP+aAlZWn1H4lAWBfBTu5/r2nnLt3bMxvpDt4kDTRdnIGD+VFwHX9yrrPNz/1wzkn5aVMlAMBBBBIWmDeCw+fJhMSviETFLaR5UhUHNJA0hvjQFr+ZCbvLf2bm06esvXe75rM0Zt0Op7LGMCOGgn9/Leb5jwah/EUGZmZUIokk0aB8qzfMHzWFtW5acwfeUIAAQTSIjD9PfvdUFzd9gEZs/ZVGTPzsuvKdEENK2dsvIacValYWtym1pyeVPDn7koL4MbtKz5jl1PPvcjzgwsZD1gxYXovlP4M+ecjX2Ojw2XW713pzSg5QwABBNIlcOWTv980bI6OkAjkZBXbg2Umq2bGcOd15MaYG88sD4vhsTNGHXBP52dV9igBYGVuPbpq+0mzmgfYNf9P+8EEgsAekWXmpHLXb6n4X0/ddNnZmck0GUUAAQRSJnDZkvs/6hv/Sq8QjGGiyIaV42ZSt65pnTFz1AGXb/hs3x6hj7Jvft1e/dKNs1uVtlPjqLSYXUK6pcrUk1rWXpKAfnGTKc3KVMbJLAIIIJAygZkjD7xbh/FRspPI4qC5KWW5q2923Bp/0mW+XKbOLKhGTggAq6HaIc0nb7zs1agYHSf7773FXokdYLL6o3T9ysSe1fIP5/N/vvGKZVktBvlGAAEE0iJw9ugDniuuDQKbBvRjcJpUjBsb6RZ4jqL4opmjxr9cjboiAKyG6nppPvM/lz8li2KeJvOBI6nV9Z7l1ywJGNntQ4XxJU/8cE6iYzGyZEBeEUAAgaQFzlsbBJZa2n7p+b5yrYGN3Gjiun7DtpIEf+MuS9p6XXoEgOskqvz30z+a+wsJ5We5jZk5singxv1J1+/Da7z+VfsHmU0Zco0AAgj0XcAFgV/ccf8j4yicIEvFLJTmkmUuECzPFm6gVTVcmdvWtP5suV+6uO+qXadAc1TXNlV4ZpbZ5ZQ1/+MVCifEpWIV0ifJagm4lr84jp40Nj76iR9e9ly17kO6CCCAAALtAt99/qHtS8p8XKn4GFlSd38JBIdWsmyMW483jmI3m7bcterWIJReOXlPj1NH7Vr+ii1tD9uC/uiM7fZvqWYGCQCrqdtJ2vtOnN5veb/gMtkf8Sy3fxgLRXeClLKH1gV/fskcxVZvKascsoMAAg0hMEeCwYLxPhBF0UgZG7dD7xaStkO0Z8bayD7hxnAro/Y0Wu8gvTrDXFDoDhcgRrJAdT0Pv+A2FoieLIXx0a41tNp5IQCstnAX6Y+ZNPM8rb2vydP9bAq/hXSR7YZ7eF3wF5aKRz1783fY57fhXgEUGAEE8iAwy1ozW+v2Jj9r9ZV/f2h4FHt7KE8NDltLm3ie91lZcHlPFwS6YLDWhwtEpU3ozWJby4fOH/PRp2txfwLAWih3cY8xp5x7uEzzuUmatIexb3AXSHV82AV/Mnv7iVKx7WiCvzpWBLdGAAEEqiww55U/DfDWrP6uLL0yQYLBTWrdItg+7q/luzNHHzitykV9O3kmgbxNUfsfFt8053YbheOVjZ5wEww40iNQDv5igr/01Ag5QQABBKoncO7wPVafs9OHTldhaQ9Ze+9zcRj+MWhurtlMZNcT6Jng9uqVcMOUCQA3NKnpI0/9aO7fvFAfKoHgLQSBNaXv8mbrgr8wCun27VKJJxBAAIH8CXxxp3F/P2enA74frlx1YNTW9nXpoVvjFmSu5iFzAmT8YbTKxNEz1bzP+mnTBby+SJ1+d9vG9Vct12ptTpVuR+UGA3DUXqBj8PfMj+a+UPsccEcEEEAAgbQIzFnywGGB5/0/43mDw2J1JonINnhKdkJ5fMCy5g9O2Xvv6tykE1ACwE5Q6vnQLqfM/JK80C5SVnnlQLCemWmwe7cHf9Hfwig6muCvwSqf4iKAAAJdCMx7+v4P6sD/gSxMPSYKwy7OqvxhN/6v1NL6X+eMGnd25an0/kq6gHtvVtUrnrrpsktkcaLjpP1vudtzlqM2AgR/tXHmLggggEDWBKbvfODvw1L0nWp1BZeXtPH0L2vtQgBYa/Ee3O/JH85ZJIsBHaJi+zfGBfYArE+nyH6LQcEt8vw32afvKFr++oTJxQgggEAuBbQfPRwWi8VKFqLuDsQt/yKtim+GuvSX7s6rxnMEgNVQTSDNxT+a+/tIqaNktfL/c0FgI++JmABnp0mUW1hl7K1MwLk1luDv6Ru//WKnJ/IgAggggEBDC6xYuuI5G9sXk24FNLLvsWwJ8eTqG+79d62BGQNYa/Fe3m/kodOags2bv6CMnipB4I7ucitb2HBULrCua11WhP+DttGsJ2+87I7KU+NKBBBAAIFGEJj77AM39x8y6NOlljalEoqeZPFp1bJi1f0zRo0bX2tDv9Y35H69E1hyx5XySlNzdpx8/vymYnSofFU4RzYz3Ecbb20gKKMFOXokUG5F1VrJott/ULG6XLe+eMuTCxawKXOP9Kp/0ucHHbNpbOLdY2t2VaonX3I8GSVhl2sTPRGoQJVM6Q3VrN5oe2XT+EZ1Y2v1c8wdEECgkQSkt/aq4prWneIo9OOEPnqt+0xSenE9HBOKYeuR9ca8516TJwerW4bsb4w+W15/R8nkBV9ejCwb083LwQV+LmCW7vQXrI4vG1BY/t+PzZ9fs6n23WSt0Z/Skwcet7PR8f7yAj4s1mo/T+mtje75yBRpxZVQce22TdYuk38Ty7TSodX2CRnd6abrvait/bP1zF8Ge9Hzc95ctEoeS+itu9Grj/IjgECWBQgAM1x7Y06e8UFt/BNl/MCpMo5gqNtOjn2F36lQN1jXdfe6wE9++l4c6xueuumSN985g59qLTBRTey3+dC2D0hdjJd7HyZ/3u8pr9nlIy7/r/LYTOp4ba+MhH7up7Xvbm5JzVCFEl+af8p37X/EVj+pdPyob9Xjni0+37Zqu2XzFV8IXB1wIIBA4wgQAOagrsee/KWRykTHS1PyZFlDcEcZqOq6OXNQsgqLIIGfW9YljsNl0kd4vbXeNwn8KrRM4LJy166146xR4yQqO1SSHOtJK59rvYulMc79r9qHe6NrDxDlv/L6cEckC67LvV+T/7wuj/1ex/Y2o/UD31t5K18SykL8BwEE8ixAAJij2h17xvRhqhgcJd1fMmHE29d1fZZbBV0TiPuT+0MCP9myR9ZUWma1utFE5rtP/uiSJbkvdgoLOHngkZtJbYyToQoT5JV3sFFmaxd4yZi9cjtfWrK8LiiUwG9tQBpLK6G6K47tQsnpA/NX3fZGWvJKPhBAAIEkBQgAk9RMSVpunOCa1qEHS5PHcRL5fUg+c3fyPL9QDgFdq4dsOp2ro9zi57p6ZYl2qxYZq7/yxE2X1mVQba5ce1mYWWq8/9qgIYfLgMvjpWXtYE+ZEe1Bn+vczcYXENd17MYgrh1b+C8JEO+ysb7VqhLBYC9fD5yOAALpFiAATHf99Dl3I6fJMjLL+42UT7QPysCoI63Ve0pbx3aytqCMjZcPZTdu0P2dtUOCPjexwx3SyvmG/PYbre0VT9xw6W+zVpQ85HfyoGP2k7DpaxI8fTxrQV9X/l0Fg8Yr3nv18l8u7eo6HkcAAQSyIEAAmIVaSjCPspzMkKaS3kVHdn/pJj1AwqcD5AN7CxdMpT4g7Bj0RdEbStv7hebW2FN3P339nH8lyERSPRSYPPiYnYy2M7XVZ0gQHrw9I7eH12fltI7BYGzj5yTf39UmvJFAMCs1SD4RQGB9AQLA9UUa7PfdT56xRckzu0kQeIDMHTlAmgXfpz1/c9eK47qKrXQZy3/qpuLyITM6yveXBbBfl8w8IL10BH11q5H2G5855IhNbOzPkKDvLGPMJrKdSkY6efsOJ+MZy7OMJdh9SpYV+qpd/s+F89VjLCvUd1pSQACBGgoQANYQOwu32uWkC4YrL9pXhusfKIGfrM+mxmjfH6TduKgaBYTr1u1zLZJvB33K3GIj7+6nfvzNV7LgmNc8TlZ7BXrQNidJCPQVmTixk2vxq8Us3jR6ujDQHTJZ5GGZeHX5tcsX/W8a80meEEAAgc4ECAA7U+GxtwXGnDhje+XrcbJ2xkHSDriPtmqktBA2lU9wLYNJvYJcUutmLcf2BenevVdZ8xuCvreroq4/TFaTA2/I68dIi/B0mSaxn8uMm9rBoZRMdikzSCh8i7SgX3b1yoWMQ+WFgQACqRdI6uM79QUlg30XGDtxVkENXDVSxXofmUxypAR/27o1B5M4tHEvRf0n+evnbaWWh5f8+MoVSaRLGn0TcC1+3pDtjpFxb+dIoLOvSy2v4/z6JqWUL6Gg2LiZ6D+zxn7p2uULX+xrmlyPAAIIVEuAALBasqSLQMYFpgw86kNae7Olq/ejrigEfhuvUPeG6mkJBOP4pdDYY76/fOGfNn4VZyCAAAK1FyAArL05d0Qg1QLtS7romdINf7TMfvUJ/HpfXa5bWLqEXzZRdNhVq3/xRO9T4AoEEECgugIEgNX1JXUEsiSgJw855nOeVVfIBIfmSNr8kungzxJBcnn1XUugjR4uqZYjr1vx67eSS5mUEEAAgb4LEAD23ZAUEMiDgJ4y+OjLfeV/0bX4NerM3qQr0o0LDG18j6/URPYYTlqX9BBAoC8CBIB90eNaBHIgcMbgjw/zVf/5ntLH092bfIUGMj2kqMKFw1fscdxsNZup08kTkyICCFQg0L5+QQUXcgkCCGRf4IwBR20Z2P4/C7RH8Fel6iyp0M0QnvDqkMfPqNItSBYBBBDotQAtgL0m4wIE8iEweciRe5rY/4ns3zvSjffjqJ6A7JjiEn9dmv/2m7/iVreVHAcCCCBQVwFaAOvKz80RqI9AOfiz/kJZ4oXgrwZV4MZUyszgzSUMnDdRTWzf27AG9+UWCCCAQFcCBIBdyfA4AjkVmLzJhN2M9RfJEi/bMOavdpUcSiurBIFHDRvS9pna3ZU7IYAAAp0L0AXcuQuPIpBLgc8POmbTSKtfetp8MLR0+9a6ktd2Bb9RUtF+1634xZJa35/7IYAAAusEaAFcJ8HfCORcYPLAIzcLtf2ZtEIR/NWprtd2BW8mdUBXcJ3qgNsigEC7AAEgrwQEGkRAa//iQPvjXVckR/0EnL/MCj5ykyElZgXXrxq4MwINL0AXcMO/BABoBAFp/dtFAsBHtFYDWeS5/jW+rivYSFfwVXQF179CyAECDShAC2ADVjpFbkABbWb4xhD8paTq13UFR8p8Z5YaLxuFcCCAAAK1FSAArK03d0Og5gLl1j9lPh1ZNqGoOX43N2yfFewd8cqgwZ/q5jSeQgABBKoiQABYFVYSRSA9Arq99W8AXb/pqZN1OSnXifa+fOaQIzZZ9xh/I4AAArUQIACshTL3QKBOAlOGHbG1UuYTtP7VqQI2cttYxaqgvbGR9f9jI6fyNAIIIJCoAAFgopwkhkC6BGzoHydj/4bS+peueumYG7ceo8zGO/Pz/Y4e0fFxfkYAAQSqKUAAWE1d0kagzgI6Vu+vcxa4/UYEXHDua294yVezN3IqTyOAAAKJCRAAJkZJQgikS2Cy2iuQpqXdYmvTlTFys4GA66I3MlHnzIHHjNngSR5AAAEEqiBAAFgFVJJEIA0CwaBtB0sAuAPdv2moje7z4OrIaDMgMvbSWTJos/uzeRYBBBDouwBvNH03JAUEUilQ0vF7ZMHhIQSAqayeDTIVyQ4hRunDXxly9PgNnuQBBBBAIGEBAsCEQUkOgdQIaLuddCsGqckPGdmogASARlt98fRtJvbb6MmcgAACCPRBgACwD3hcikCaBXSs95Gt3zgyJBDJsjAyIWS/luWtJ2Qo22QVAQQyKEAAmMFKI8sI9ETAKj2sJ+dxTroE3KQdmRIyc5Ia35yunJEbBBDIkwABYJ5qk7Ig0EFAGv/+1eFXfsyIgFsc2tfmvU2Dh5yRkSyTTQQQyKAAAWAGK40sI9ATAQkAl7EATE+k0ndOLLOCtTJfPWPAUVumL3fkCAEE8iBAAJiHWqQMCHQioI39s2UNwE5k0v9Q++LQZkvP01PTn1tyiAACWRQgAMxirZFnBHogIBNAIgkkaATsgVUaT3GLQ8syPlNpBUxj7ZAnBLIvQACY/TqkBAh0LlAMn5EWwKUSRHT+PI+mWqC9FdDbilbAVFcTmUMgswIEgJmtOjKOQPcCoTGh1bQAdq+U7mfbWwHN1M8OO3abdOeU3CGAQNYECACzVmPkF4GeCqwasVxZ/RwtgD0FS995a8cCbuWF8dfTlztyhAACWRYgAMxy7ZF3BLoRmK/ml+Tp1XQAd4OUgafWjgX85FkDjto1A9kliwggkBEBAsCMVBTZRKASAW3Vi5rtQCqhS801rhXQ06Z/6OmZqckUGUEAgcwLEABmvgopAALdCGj1926e5amMCLhWQNnX+YSzNqEVMCNVRjYRSL0AAWDqq4gMItAHARO/zDowffBLyaXlVkAlrYCRRytgSuqEbCCQdQECwKzXIPlHoBsBG9mHYhu1dHMKT2VEIHI7BCt1wuRNJuyWkSyTTQQQSLEAAWCKK4esIdBXgaWr+j0r24o97rnQgSPTAuvGAupInZbpgpB5BBBIhQCfCqmoBjKBQHUEFqgFkbb6FiaCVMe31qm6sYBynHhW/8O3qvW9uR8CCORLgAAwX/VJaRDYQEAWg743slG0wRM8kDmB9nUBva1CLzgzc5knwwggkCoBAsBUVQeZQSB5gaUrmp6IrXpKZpEmnzgp1lygvC6g1lMm9z9keM1vzg0RQCA3Anwi5KYqKQgCnQtIN3CLdAHfaVgPsHOgjD3a3gpottReE62AGas7sotAmgQIANNUG+QFgSoJaBvdHbMtcJV0a59s+1hAfcakIROG1v7u3BEBBPIgQACYh1qkDAhsRKDFmAdlHODL7Au8EaiMPL12RvCIZqWOz0iWySYCCKRMgAAwZRVCdhCohsCNyxcuk+DvEaPYGbgavvVI0y3wLZOCvzhJTZI4kAMBBBDonQABYO+8OBuBzApoFS9SjAPMbP2tn/FYFoaWsZ2jgk3e2mn95/gdAQQQ2JgAAeDGhHgegZwIeKG+U7qB36QbOCcVKsWQBb6bgliPzU+JKAkCCNRKgACwVtLcB4E6C3yvZdG/Yqv/VGk3sFtGxuv0fy5FupbrUb2uQTeO9Z71uDf3RACBbAv42c4+uUcAgd4IGGXv0Np8VLkBZD08fAn6QhVFsqfwXyXOe6WTywYpq3c12mziAsFI/sdRGwErM7ulKgkAa8PNXRDIlQBf23NVnRQGge4Fpgw6YpRSwePScjSgHDp0c7rbP1j2EXZn3CCB3VVbrHjr8dnqvrCzS6YMO2JrU/L2iLWZIlMTjpBrTSRXc1RXwAXcsrzPS2HB7nb9m4tWVvdupI4AAnkSIADMU21SFgR6IDB50IT5gfY+J616nZ7tunrdG4O0Lj0qfy65ZtXCn3V6YhcPnjnk6INtbL4lExT2tutCyC7O5eG+C0gQ2Gq8aO+rlv7iib6nRgoIINAoAowBbJSappwIrBXwdPTf0jq3QfTnWpNcd6+18XMyw/Qkf2XrAb0N/twtrl6+6K5ArpXWw2kuTY7qCkjA3myZCFJdZFJHIIcCBIA5rFSKhEB3Am+s6PdHadm703XxusO1+AXal85e++9YR1+SsX77XrNi4c1Xqjvaukunu+fctdeuuPW7kbJXuKCSo3oC7RNB1F7VuwMpI4BAHgUIAPNYq5QJgW4EZG/gSGK+b0vAF5XH+dnoT6GNb5W9gg+/evnCb89fddsb3Vzeq6eGryicJ2nf7WYPc1RHoH0iiH5/dVInVQQQyKsA/TN5rVnKhUA3AjK1Q08ZdPRvZObui8GK1ql9ae3r5jblp87qf/hWsVd4WMYE7uAWL+ZIVsB1s0sQ+Hfrr959/tK7liebOqkhgEBeBWgBzGvNUi4EuhGQb37WWP2fOormVTP4c1m4as3tr1qtPiktjqsZE9hNpVT4lJvNLcH11n7Yf5cKk+AyBBBoQAFaABuw0ikyAvUQmDJowmnS4vgDZgYnr+9rT0VxNPOalQvnJp86KSKAQB4FaAHMY61SJgRSKHDtyoU3yOzjeW7SCUeyAm4cYGzVgcmmSmoIIJBnAd6J81y7lA2BlAnMX7FwRqjihetmIKcse5nNTnnBbm3ff9KwQwdnthBkHAEEaipAAFhTbm6GQMML2Nhv+4/Ixm8xHjC514IbByjd65sPscG2yaVKSgggkGcBAsA81y5lQyCFAt9/645/SLbubd9vJIUZzGiWPO0WhDb7ZjT7ZBsBBGosQABYY3BuhwACsgaNir4vS9GUNxrGIyEB0YytHp9QaiSDAAI5FyAAzHkFUzwE0igQBOFDsY1fphUwudpxayxKV/A+09XEfsmlSkoIIJBXAQLAvNYs5UIgxQJXvnXHClmDahEzgpOrJNecqq3aeuWQ1q2SS5WUEEAgrwIEgHmtWcqFQNoFPPVTWRaGrUESqic3EcTT3sBA6b0TSpJkEEAgxwIEgDmuXIqGQKoFSmuelm7LpcwGTq6WtNviJdasB5gcKSkhkFsBAsDcVi0FQyDdArFuitmKKNk6it2C0ErtP1ntFSSbMqkhgEDeBAgA81ajlAeBjAisLoRFZfUygsDkKqy8L7BSo70hW7EeYHKspIRALgUIAHNZrRQKgfQL/FgmgsRKv0gXcHJ11T4O0AyMY3+X5FIlJQQQyKMAAWAea5UyIZARAS1NgBnJamayqWUgoPx/r8xkmIwigEBdBAgA68LOTRFAwAlIsPK4C1g4khOwMg7QWr1ncimSEgII5FGAADCPtUqZEMiOwIrsZDUbOXXdwFbbMSdv+bEB2cgxuUQAgXoIEADWQ517IoBAu4C1vAcl/FpoXxBabzlkRb8hCSdNcgggkCMB3nxzVJkUBQEEEHAtgEbrIWEhGo0GAggg0JUAAWBXMjyOAAJVF5Dhau93Y9Y4khWQAFDb2Nsz2VRJDQEE8iRAAJin2qQsCGRNQNvBWctydvJrdspOXskpAgjUWoAAsNbi3A8BBMoCk4ZMGCo/7BRLlyVHsgLlVlUb7zFLzeI9PllaUkMgNwK8OeSmKikIAtkSiGPtSU9lv2zlOhu5LQfVRo98Y9CfN8lGjsklAgjUWoAAsNbi3A8BBMoC/fy2EbJk8UA3aYEjWYHyRBClN5WdgUcmmzKpIYBAXgQIAPNSk5QDgYwJ6KhpjFGmOWPZzkx2xdYLtd4hMxkmowggUFMBAsCacnMzBBB4W8DaD7MJyNsaif/gbHXMlnCJw5IgAjkRIADMSUVSDASyJOAmJ8hEhfexBEz1as3Zyk7L76veHUgZAQSyLEAAmOXaI+8IZFSgPDnB6FHMAK5eBZbHVmq1/WR1ZP/q3YWUEUAgqwIEgFmtOfKNQIYFIhWNMkoPYwJI9SrRTa3RVm2jBvvDq3cXUkYAgawKEABmtebINwIZFrDaHOfJJIUMFyH1WXfBtafNAGOiManPLBlEAIGaCxAA1pycGyLQ2AJnDZmwh7ZmaqTixoaoQellnUVlY71nDW7FLRBAIGMCBIAZqzCyi0CWBSaqiV5o7cWyAvQgun9rVJPS3FqjO3EbBBDIkABvDBmqLLKKQNYFNhnc9jlfe4eHKsp6Ucg/AgggkGkBP9O5J/MIIJAZgSmDjhgl0xIuimV5Eo7aCJSX2bF0AddGm7sgkC0BWgCzVV/kFoFMCsxS432r/St85cn2ZASANa1EbQfW9H7cDAEEMiFAAJiJaiKTCGRb4JXBQ4/3lTmMrt/a16OE2/S3156dOyKQegECwNRXERlEINsCZ/U/fCtt9Rxa/mpfj2Vzbbc7a/OJtALWnp87IpBqAQLAVFcPmUMg2wKThx/ZP/aDa2Q9um3Z9aP2ddm+GLTerKVlZb/a3507IoBAmgUIANNcO+QNgQwLuODPrPZ+5Clvguz8keGSZDzrWsX9dTOLLma8Gsk+AkkLEAAmLUp6CCCg3g7+tHcs4/7q+4KQSddeGJaa65sL7o4AAmkTIABMW42QHwQyLjBp+/HN5ZY/F/xZWv7qWZ1uDKB0v29iCt7oeuaDeyOAQPoECADTVyfkCIFMCzS9NfQrvvYJ/lJUixII6hRlh6wggEAKBAgAU1AJZAGBvAhMHjThKKPN+aEN81KkXJRDJuAQAOaiJikEAskJsBNIcpakhEDDCkzfZmK/1pXhkTaO52llfWYcpOelYLTMAlHeXpKju9OTK3KCAAL1FiAArHcNcH8EMixw5pDjdrQ2+lTLitIJRpn32XKwwU4faatSHasBacsT+UEAgfoKEADW15+7I5A5gdMHTty82Qs/LPvMniYtfuM87Q1ya/yx1Et6q9JqZuOkt3bIGQL1ESAArI87d0UgUwJTBxy7hfXsh5Wyh1pV/Li23tZaSdeiNC2xzEu6q1ICdWWt3iXduSR3CCBQawECwFqLcz8EMiLwmX5HjwgCc5w07k1Q2u7mKb2l1kbFNqa1LyN1+E429fB3fuYnBBBAQCkCQF4FCCDwLoFy4OfryVrrz8kaciPcWnLtXbwytYPhfe+yys4vErVzIIAAAh0ECAA7YPAjAo0sMKn/4Vv194KpsmDIZBnXN9y19LGQcyO/Iig7AgjkWYAAMM+1S9kQ6IHAyVt+bMCA1f0/JRN4v+wZb6eIwK8Hapk7hXUAM1dlZBiB6grwplBdX1JHIM0CesqgCZNkLscMT3nvdR29rquXI18C5ck6yv7T0+FuVy//5dJ8lY7SIIBApQK0AFYqx3UIZFjgLOnujb3ClbJrxyfcwD6WcMlwZfYo67Y5irTXo1M5CQEEGkKAALAhqplCIvCOwNQhxx4UWXuVr8zOLOHyjkuef5JWQFkMhgMBBBB4R4AA8B0LfkIg1wLT1KFNxUHNF0oocL4EBAWCv1xXN4VDAAEEuhUgAOyWhycRyIfA5MHH7BQqfaWv9GFReaQfq4Lko2Z7XoqSChnz3XMuzkQg9wIm9yWkgAg0uMDUQUcfbay620jw51r93Lp+HI0j4Opb6n6TQhCMbpxSU1IEENiYAAHgxoR4HoEMC8gs36/J7h3/K4s6b0+Xb4Yrss9Z156NbXOfkyEBBBDIjQBdwLmpSgqCwLsFJPj7hizo/JX2xV3o8n23TuP9Jq2ANP02XrVTYgS6FCAA7JKGJxDIrsDkQRMukuDvQrdrL5/62a1Hco4AAghUS4AAsFqypItAnQRc8OdL8MfafnWqgJTeVmZ/836f0rohWwjUQ4AxgPVQ554IVElgKsFflWSznayMAVWx9UZkuxTkHgEEkhQgAExSk7QQqKOAG/NnaPmrYw2k89ZuK7gojlcaE96fzhySKwQQqIcA60LVQ517IpCwwJmDJuxvtX5AkpUVXxj1lzBvppPzZBGY0MZ3zl+58BApCC+OTNcmmUcgOQFaAJOzJCUE6iYgUz1O97Qh+KtbDaT3xq771+j4FskhwV96q4mcIVBzAQLAmpNzQwSSFZgyZMIOssTHxMiy1EuystlPzXX/hjZ6U3vmtuyXhhIggECSAgSASWqSFgL1ETjBM94Qun7rg5/mu7ruX2vVr69euvDlNOeTvCGAQO0FCABrb84dEUhM4KzNJw6UrX2nxrT+JWaap4TclwJt7M/zVCbKggACyQgQACbjSCoI1EUgKrYdarTZIWZ4V13803zTcveviv9to/jeNOeTvCGAQH0ECADr485dEUhEwMbmUzL+j9n8iWjmKxGZFCSbv9kfzF912xv5KhmlQQCBJAQIAJNQJA0E6iewKWP/6oef1jt7ylMlGz20un/LN9KaR/KFAAL1FSAArK8/d0egjwLM/O0jYO4ud12/sbXLjLbTfvTanatzV0AKhAACiQgQACbCSCII1EdAW7OyPnfmrmkVkDGhyprovGuWL3o8rXkkXwggUH8BAsD61wE5QKByARM/6hb65UDACfjS9RvG0U/fWt50PSIIIIBAdwJ+d0/yHAIIpFtAtv54jDGA6a6jWuXOlLd8i16SfX+/sEAtiGp1X+6DAALZFKAFMJv1Rq4RKAtEuvhUpOIWN+6Lo3EFZL6vFN5G0hg85brVv3itcSUoOQII9FSAALCnUpyHQBoFVrz+d8nWnW7JD47GFHC7fcgykMtDZT9/zYqF/9eYCpQaAQR6K8CnRm/FOB+BFAnMV4+VrBdNk26/F10XIEdjCfjak41g7FORiY/97xULr22s0lNaBBDoiwCfGH3R41oEUiAwf+ltf7cmPkfGArImTArqo1ZZKAd/NvpV0RQPnb980T21ui/3QQCBfAgQAOajHilFgwtcu3zRLbGKL3dBAUe+Bdx4z/KEjzia7a9oO/b6Zbe/lO8SUzoEEKiGALOAq6FKmgjUQWDA4Kb/XLOitI8sBXJgqJgEWocqqPot3Xg/t8hzpOOp81cu/EnVb8gNEEAgtwJMHcxt1VKwRhQ4a+hx28t4wEWB9nYv2bARCXJZZtfq5yb6SN3+MdbxlPkrFj2ay4JSKAQQqJkAXcA1o+ZGCFRf4KplP3/JeuFRoY1upzu4+t61uEN5lq9SqyIbf7XF2I8S/NVCnXsgkH8BWgDzX8eUsAEFJqqJhWGDSj/wjTlRgsEGFMh+kcutfq7LV8UPyFqP5xD4Zb9OKQECaRIgAExTbZAXBBIUmKYObSoOKlwfmOBEuoMThK1BUuUt3VT0b23Vt1pWLrvmRnVfaw1uyy0QQKCBBAgAG6iyKWrjCZSDwMGF82Xe6GxXeraNS/drwM3udS1/0ur3C8+qmd9beesz6c4xuUMAgawKEABmtebINwK9EJg86OhzZBLBJUrpQIKLXlzJqdUWcG/CnvxPFnR2t3pGaTt3i+W3fl8idiqq2vikj0ADCxAANnDlU/TGEpg8+KhDjfWu8ox5D+MC61/3rq3PuJm9NipKYH677ON7U5sf33n9m4tW1j935AABBPIuQACY9xqmfAh0EPhMv6NHFAJzkfzDP909vLbVqcMZ/FhNAfeGW96yT6K9WLbvk79+JnHg/1y9/NbHqnlf0kYAAQTWFyAAXF+E3xFoAIEpAyecoY2+WIKRLSMWja56ja9bx09aXova6gekm/d6rcNfXb38l0urfnNugAACCHQiQADYCQoPIdAIAlMGHTFKaf+/ZcbpeFlmhAkiVah0t4afC/5kZ5Z/S2vfz+PY3jB/5aLfV+FWJIkAAgj0SoAAsFdcnIxAvgTcLOG2wc3nyorwX5VJIgUZj9Y+FSFfxaxpada19omlW4DxYRnfd7MJi7dcteb2V2uaEW6GAAIIdCNAANgNDk8h0CgCMkv4g9IdPF26Jo/1tCeBIC2CPa17F/CV2/mkic9a69pSX5Mo+i6Zwvu9pSuDPyxQC1iJu6eYnIcAAjUTIACsGTU3QiD9AlMGH7OPLD78BavtodI1vCldwxvWmQv4ykHf2oBPWvqWywNPyCIuv/Wsvr8Yx3+4bvUvXtvwSh5BAAEE0iNAAJieuiAnCKRGYMqQCTtIK9ZZEuic7muzWSwtW+3/a6zFpNvfIDu28CmZMhO5XTme0dY+GCt9RxyYx7//1i3/SE3lkREEEECgBwIEgD1A4hQEGlXABYIya3WShH0HSQA4SsazDZWJDf1cC5j7v+vyzENg+K5A7+2yuWAvlEGRerk8v0Qe/rNY3C+dvI/EK7d6fr6aX2rU1wXlRgCB7Au0v+9lvxyUAAEEqixwxuCJwwLbtrlW3shIRzvImMGdJPjbSyLAERIQbqm1HrT+G4o81mmuJG6Uo/yf8vMd1yN0AWVSRzlQXZuYy8m7f5dH5P8uL9KqF8ptV8ivS+T+L8ipzxmjH5ETXtal4j+ZwJFUjZAOAgikRcC9J3IggAACFQvM2PLkAWuKK4fJBOKx0lXsd0xIa7O7vMkM3XBPs3g36VgdUl6K2ipfzhkpwZbngkIJGoeUF0uWhNa1NHZMs7ufXYvkusNteSe/L3e/u3SsVqsl/Rfbfzfuub/L2c95Rj0aKfP3KAz/ydg9p8OBAAKNIEAA2Ai1TBkRSLnAGQOO2tKzvqxGI4eJRvlaDyxPndVqBwnett/Y/sUuYJTgsyRdtI/ITOaSRJIqtHaVir1nXZL95c9K32+7bsWCt9zvHAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJAOgf8P29iu755DGGwAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "execution_count": null
+ },
+ {
+ "metadata": {},
+ "source": [
+ "Here's an example of an entry featuring a composite mask containing the mask instance's RGB color uniquely associated with the annotation.\n",
+ "\n",
+ "```json\n",
+ " {\n",
+ " \"feature_id\": \"clpk3ow9u006f14vs2w5qa9l3\",\n",
+ " \"feature_schema_id\": \"clpk3nvrv05bh08ua8fwqavng\",\n",
+ " \"name\": \"mask\",\n",
+ " \"value\": \"mask\",\n",
+ " \"annotation_kind\": \"ImageSegmentationMask\",\n",
+ " \"classifications\": [],\n",
+ " \"composite_mask\": {\n",
+ " \"url\": \"https://api.labelbox.com/api/v1/tasks/{task_id}/masks/{composite_mask_id}\",\n",
+ " \"color_rgb\": [\n",
+ " 123,\n",
+ " 103,\n",
+ " 152\n",
+ " ]\n",
+ " }\n",
+ " }\n",
+ "```\n",
+ "- rgb(123,103,152) = Purple\n"
+ ],
+ "cell_type": "markdown"
+ },
+ {
+ "metadata": {},
+ "source": [
+ "---"
+ ],
+ "cell_type": "markdown"
+ },
+ {
+ "metadata": {},
+ "source": [
+ "#### Single mask instance:\n",
+ "We are planning on removing single mask instances, but for now they will be displayed adjecent to the composite mask.\n",
+ "1. A single mask instance and mask url is generated for each individual annotation for each label.\n",
+ "2. The export and mask URL adhere to the following convention: \n",
+ "```json\n",
+ " {\n",
+ " \"mask\": {\n",
+ " \"url\": \"https://api.labelbox.com/api/v1/projects/{project_id}/annotations/{feature_id}/index/1/mask\"\n",
+ " }\n",
+ " }\n",
+ "\n",
+ "```\n",
+ "3. RGB color is not present"
+ ],
+ "cell_type": "markdown"
+ },
+ {
+ "metadata": {},
+ "source": [
+ "## Create an export from an Image project with mask annotations\n",
+ "To better showcase composite masks, make sure you have different mask tools and mask annotations in your project"
+ ],
+ "cell_type": "markdown"
+ },
+ {
+ "metadata": {},
+ "source": [
+ "# Insert the project ID of the project from which you wish to export data rows.\n",
+ "PROJECT_ID = \"\"\n",
+ "project = client.get_project(PROJECT_ID)"
+ ],
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null
+ },
+ {
+ "metadata": {},
+ "source": [
+ "export_params= {\n",
+ " \"attachments\": True,\n",
+ " \"metadata_fields\": True,\n",
+ " \"data_row_details\": True,\n",
+ " \"project_details\": True,\n",
+ " \"label_details\": True,\n",
+ " \"performance_details\": True,\n",
+ " \"interpolated_frames\": True\n",
+ "}\n",
+ "\n",
+ "filters= {}\n",
+ "\n",
+ "# export() is the streamable option of exports V2, for more information please visit our documentation:\n",
+ "# https://docs.labelbox.com/reference/label-export#export-v2-methods\n",
+ "\n",
+ "export_task = project.export(params=export_params, filters=filters)\n",
+ "export_task.wait_till_done()\n",
+ "\n",
+ "if export_task.has_result():\n",
+ " print(export_task.result)"
+ ],
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null
+ },
+ {
+ "metadata": {},
+ "source": [
+ "#### Get all the ```color_rgb``` associated with annotations that are using a specific mask tool "
+ ],
+ "cell_type": "markdown"
+ },
+ {
+ "metadata": {},
+ "source": [
+ "stream = export_task.get_stream()\n",
+ "\n",
+ "mask_tool_rgb_mapping = {}\n",
+ "\n",
+ "for output in stream:\n",
+ " # Parse the JSON string from the output\n",
+ " output_json = json.loads(output.json_str)\n",
+ "\n",
+ " # Get the labels for the specified project ID or an empty list if the project ID is not found\n",
+ " project_labels = output_json['projects'].get(PROJECT_ID, {}).get('labels', [])\n",
+ "\n",
+ " # Iterate through each label\n",
+ " for label in project_labels:\n",
+ " # Get the list of annotations (objects) for the label\n",
+ " annotations = label['annotations'].get('objects', [])\n",
+ "\n",
+ " # Iterate through each annotation\n",
+ " for annotation in annotations:\n",
+ " # Check if the annotation is of type \"ImageSegmentationMask\"\n",
+ " if annotation.get('annotation_kind') == \"ImageSegmentationMask\":\n",
+ " # Add the color RGB information to the mapping dictionary\n",
+ " mask_tool_rgb_mapping.setdefault(annotation['name'], []).append(annotation['composite_mask']['color_rgb'])\n",
+ "\n",
+ "print(mask_tool_rgb_mapping)"
+ ],
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null
+ },
+ {
+ "metadata": {},
+ "source": [
+ "### Create an export from a Video project with mask annotations "
+ ],
+ "cell_type": "markdown"
+ },
+ {
+ "metadata": {},
+ "source": [
+ "VIDEO_PROJECT_ID = \"\"\n",
+ "project_video = client.get_project(VIDEO_PROJECT_ID)"
+ ],
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null
+ },
+ {
+ "metadata": {},
+ "source": [
+ "export_params= {\n",
+ " \"attachments\": True,\n",
+ " \"metadata_fields\": True,\n",
+ " \"data_row_details\": True,\n",
+ " \"project_details\": True,\n",
+ " \"label_details\": True,\n",
+ " \"performance_details\": True,\n",
+ " \"interpolated_frames\": True\n",
+ "}\n",
+ "\n",
+ "filters= {}\n",
+ "\n",
+ "# export() is the streamable option of exports V2, for more information please visit our documentation:\n",
+ "# https://docs.labelbox.com/reference/label-export#export-v2-methods\n",
+ "\n",
+ "export_task_video = project_video.export(params=export_params, filters=filters)\n",
+ "export_task_video.wait_till_done()\n",
+ "\n",
+ "if export_task_video.has_result():\n",
+ " print(export_task_video.result)\n"
+ ],
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null
+ },
+ {
+ "metadata": {},
+ "source": [
+ "#### Get all the ```color_rgb``` associated with annotations that are using a specific mask tool from each frame"
+ ],
+ "cell_type": "markdown"
+ },
+ {
+ "metadata": {},
+ "source": [
+ "tools_frames_color = {}\n",
+ "stream = export_task_video.get_stream()\n",
+ "\n",
+ "# Iterate over each output in the stream\n",
+ "for output in stream:\n",
+ " output_json = json.loads(output.json_str)\n",
+ "\n",
+ " # Iterate over the labels in the specific project\n",
+ " for dr in output_json[\"projects\"][VIDEO_PROJECT_ID][\"labels\"]:\n",
+ " frames_data = dr[\"annotations\"][\"frames\"]\n",
+ "\n",
+ " # Iterate over each frame in the frames data\n",
+ " for frame_key, frame_value in frames_data.items():\n",
+ "\n",
+ " # Iterate over each annotation in the frame\n",
+ " for annotation_key, annotation_value in frame_value.items():\n",
+ " if 'objects' in annotation_key and annotation_value.values():\n",
+ "\n",
+ " # Iterate over each object in the annotation\n",
+ " for object_key, object_value in annotation_value.items():\n",
+ " if object_value['annotation_kind'] == 'VideoSegmentationMask':\n",
+ " # Update tools_frames_color with object information\n",
+ " tools_frames_color.setdefault(object_value['name'], []).append({frame_key: object_value['composite_mask']['color_rgb']})\n",
+ "\n",
+ "print(tools_frames_color)"
+ ],
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null
+ }
+ ]
+}
\ No newline at end of file
diff --git a/examples/basics/export_data.ipynb b/examples/exports/export_data.ipynb
similarity index 98%
rename from examples/basics/export_data.ipynb
rename to examples/exports/export_data.ipynb
index 95cf7f708..100590cd8 100644
--- a/examples/basics/export_data.ipynb
+++ b/examples/exports/export_data.ipynb
@@ -16,12 +16,12 @@
"metadata": {},
"source": [
"\n",
- "![]() \n",
" | \n",
"\n",
"\n",
- "![]() \n",
" | "
],
@@ -39,7 +39,7 @@
"metadata": {},
"source": [
"!pip install -q \"labelbox[data]\"\n",
- "!pip install -q urllib3 "
+ "!pip install -q urllib3"
],
"cell_type": "code",
"outputs": [],
@@ -136,7 +136,7 @@
{
"metadata": {},
"source": [
- "# Set the export params to include/exclude certain fields. \n",
+ "# Set the export params to include/exclude certain fields.\n",
"export_params= {\n",
" \"attachments\": True,\n",
" \"metadata_fields\": True,\n",
@@ -180,7 +180,7 @@
{
"metadata": {},
"source": [
- "# Set the export params to include/exclude certain fields. \n",
+ "# Set the export params to include/exclude certain fields.\n",
"export_params= {\n",
" \"attachments\": True,\n",
" \"metadata_fields\": True,\n",
@@ -221,7 +221,7 @@
"\n",
"if export_task.has_errors():\n",
" export_task.get_stream(\n",
- " \n",
+ "\n",
" converter=lb.JsonConverter(),\n",
" stream_type=lb.StreamType.ERRORS\n",
" ).start(stream_handler=lambda error: print(error))\n",
@@ -252,7 +252,7 @@
"# stream_type=lb.StreamType.ERRORS\n",
"# ).start()\n",
"\n",
- "# if export_task.has_result(): \n",
+ "# if export_task.has_result():\n",
"# export_task.get_stream(\n",
"# converter=lb.FileConverter(file_path=\"./result.txt\"),\n",
"# stream_type=lb.StreamType.RESULT\n",
@@ -324,7 +324,7 @@
" \"performance_details\": True,\n",
" \"interpolated_frames\": True,\n",
" # \"project_ids\": [\"\", \"\"],\n",
- " # \"model_run_ids\": [\"\", \"\"] \n",
+ " # \"model_run_ids\": [\"\", \"\"]\n",
"}\n",
"\n",
"# Note: Filters follow AND logic, so typically using one filter is sufficient.\n",
@@ -367,7 +367,7 @@
" \"performance_details\": True,\n",
" \"interpolated_frames\": True,\n",
" # \"project_ids\": [\"\", \"\"],\n",
- " # \"model_run_ids\": [\"\", \"\"] \n",
+ " # \"model_run_ids\": [\"\", \"\"]\n",
"}\n",
"\n",
"# Note: Filters follow AND logic, so typically using one filter is sufficient.\n",
@@ -427,7 +427,7 @@
"# stream_type=lb.StreamType.ERRORS\n",
"# ).start()\n",
"\n",
- "# if export_task.has_result(): \n",
+ "# if export_task.has_result():\n",
"# export_task.get_stream(\n",
"# converter=lb.FileConverter(file_path=\"./result.txt\"),\n",
"# stream_type=lb.StreamType.RESULT\n",
@@ -575,7 +575,7 @@
"# stream_type=lb.StreamType.ERRORS\n",
"# ).start()\n",
"\n",
- "# if export_task.has_result(): \n",
+ "# if export_task.has_result():\n",
"# export_task.get_stream(\n",
"# converter=lb.FileConverter(file_path=\"./result.txt\"),\n",
"# stream_type=lb.StreamType.RESULT\n",
@@ -719,7 +719,7 @@
"# stream_type=lb.StreamType.ERRORS\n",
"# ).start()\n",
"\n",
- "# if export_task.has_result(): \n",
+ "# if export_task.has_result():\n",
"# export_task.get_stream(\n",
"# converter=lb.FileConverter(file_path=\"./result.txt\"),\n",
"# stream_type=lb.StreamType.RESULT\n",
@@ -877,7 +877,7 @@
{
"metadata": {},
"source": [
- "# Make the API request \n",
+ "# Make the API request\n",
"req = urllib.request.Request(mask_url, headers=client.headers)"
],
"cell_type": "code",