diff --git a/tests/integration/annotation_import/conftest.py b/tests/integration/annotation_import/conftest.py index 56724d2ae..83215a6ba 100644 --- a/tests/integration/annotation_import/conftest.py +++ b/tests/integration/annotation_import/conftest.py @@ -7,7 +7,7 @@ from typing import Type from labelbox.schema.labeling_frontend import LabelingFrontend -from labelbox.schema.annotation_import import MALPredictionImport, AnnotationImportState +from labelbox.schema.annotation_import import LabelImport, MALPredictionImport, AnnotationImportState @pytest.fixture @@ -327,18 +327,14 @@ def model_run(rand_gen, model): @pytest.fixture def model_run_with_model_run_data_rows(client, configured_project, - annotation_submit_fn, model_run_predictions, model_run): configured_project.enable_model_assisted_labeling() - upload_task = MALPredictionImport.create_from_objects( - client, configured_project.uid, f'mal-import-{uuid.uuid4()}', + upload_task = LabelImport.create_from_objects( + client, configured_project.uid, f"label-import-{uuid.uuid4()}", model_run_predictions) upload_task.wait_until_done() - label_ids = [] - for data_row_id in {x['dataRow']['id'] for x in model_run_predictions}: - label_ids.append( - annotation_submit_fn(configured_project.uid, data_row_id)) + label_ids = [label.uid for label in configured_project.labels()] model_run.upsert_labels(label_ids) time.sleep(3) yield model_run diff --git a/tests/integration/conftest.py b/tests/integration/conftest.py index f67506116..03c743f88 100644 --- a/tests/integration/conftest.py +++ b/tests/integration/conftest.py @@ -21,6 +21,7 @@ from labelbox.schema.invite import Invite from labelbox.schema.user import User from labelbox import OntologyBuilder, Tool +from labelbox.schema.annotation_import import LabelImport IMG_URL = "https://picsum.photos/200/300" @@ -298,37 +299,7 @@ def configured_project(project, client, rand_gen, image_url): @pytest.fixture -def annotation_submit_fn(client): - - def submit(project_id, data_row_id): - feature_result = client.execute( - """query featuresPyApi ($project_id : ID!, $datarow_id: ID! - ) {project(where: { id: $project_id }) { - featuresForDataRow(where: {dataRow: { id: $datarow_id }}) {id}}} - """, { - "project_id": project_id, - "datarow_id": data_row_id - }) - features = feature_result['project']['featuresForDataRow'] - feature_ids = [feature['id'] for feature in features] - res = client.execute( - """mutation createLabelPyApi ($project_id : ID!,$datarow_id: ID!,$feature_ids: [ID!]!,$time_seconds : Float!) { - createLabelFromFeatures(data: {dataRow: { id: $datarow_id },project: { id: $project_id }, - featureIds: $feature_ids,secondsSpent: $time_seconds}) {id}}""", - { - "project_id": project_id, - "datarow_id": data_row_id, - "feature_ids": feature_ids, - "time_seconds": 10 - }) - return res['createLabelFromFeatures']['id'] - - return submit - - -@pytest.fixture -def configured_project_with_label(client, rand_gen, annotation_submit_fn, - image_url): +def configured_project_with_label(client, rand_gen, image_url): project = client.create_project(name=rand_gen(str)) dataset = client.create_dataset(name=rand_gen(str), projects=project) data_row = dataset.create_data_row(row_data=image_url) @@ -355,11 +326,10 @@ def configured_project_with_label(client, rand_gen, annotation_submit_fn, "width": 50 } }] - upload_task = MALPredictionImport.create_from_objects( - client, project.uid, f'mal-import-{uuid.uuid4()}', predictions) + upload_task = LabelImport.create_from_objects( + client, project.uid, f'label-import-{uuid.uuid4()}', predictions) upload_task.wait_until_done() - labels = annotation_submit_fn(project.uid, data_row.uid) - time.sleep(3) - yield [project, labels] + label = next(project.labels()).uid + yield [project, label] dataset.delete() project.delete()