diff --git a/examples/basics/getting_started.ipynb b/examples/basics/getting_started.ipynb
index a48f0506e..51925d066 100644
--- a/examples/basics/getting_started.ipynb
+++ b/examples/basics/getting_started.ipynb
@@ -243,7 +243,7 @@
"metadata": {},
"source": [
"queued_data_rows = project.export_queued_data_rows()\n",
- "ground_truth_list = lb_types.LabelList()\n",
+ "ground_truth_list = list()\n",
"\n",
"for datarow in queued_data_rows:\n",
" annotations_list = []\n",
diff --git a/examples/integrations/detectron2/coco_object.ipynb b/examples/integrations/detectron2/coco_object.ipynb
index f8678fa71..20295c922 100644
--- a/examples/integrations/detectron2/coco_object.ipynb
+++ b/examples/integrations/detectron2/coco_object.ipynb
@@ -415,7 +415,7 @@
{
"metadata": {},
"source": [
- "labels_mea = lb_types.LabelList()\n",
+ "labels_mea = list()\n",
"\n",
"with ThreadPoolExecutor(4) as executor:\n",
" futures = [executor.submit(get_label, label.data) for label in val_labels]\n",
@@ -527,7 +527,7 @@
"# This is still a bit slow due to the amount of processing for each data row.\n",
"# For larger datasets this has to leverage multiprocessing.\n",
"\n",
- "labels_mal = lb_types.LabelList()\n",
+ "labels_mal = list()\n",
"with ThreadPoolExecutor(4) as executor:\n",
" data_rows = dataset.data_rows()\n",
" images = [lb_types.ImageData(url = data_row.row_data, uid = data_row.uid, external_id = data_row.external_id) for data_row in data_rows]\n",
@@ -581,4 +581,4 @@
"execution_count": null
}
]
-}
\ No newline at end of file
+}
diff --git a/examples/integrations/detectron2/coco_panoptic.ipynb b/examples/integrations/detectron2/coco_panoptic.ipynb
index a36f916eb..3e96f770c 100644
--- a/examples/integrations/detectron2/coco_panoptic.ipynb
+++ b/examples/integrations/detectron2/coco_panoptic.ipynb
@@ -194,7 +194,7 @@
"model_name = \"detectron_panoptic_model\"\n",
"\n",
"proj = client.get_project(project_id)\n",
- "labels = proj.label_generator().as_list()\n"
+ "labels = list(proj.label_generator())\n"
],
"cell_type": "code",
"outputs": [],
@@ -205,8 +205,8 @@
"source": [
"# Set some labels aside for the val set.\n",
"raw_data = labels._data\n",
- "labels = lb_types.LabelList(raw_data[100:])\n",
- "val_labels = lb_types.LabelList(raw_data[:100]) "
+ "labels = list(raw_data[100:])\n",
+ "val_labels = list(raw_data[:100]) "
],
"cell_type": "code",
"outputs": [],
@@ -1008,12 +1008,13 @@
{
"metadata": {},
"source": [
- "labels_mea = lb_types.LabelList()\n",
+ "labels = list()\n",
"with ThreadPoolExecutor(4) as executor:\n",
" futures = [executor.submit(get_label,label.data) for label in val_labels]\n",
" for future in tqdm(as_completed(futures)):\n",
- " labels_mea.append(future.result())\n",
+ " labels.append(future.result())\n",
"\n",
+ "labels_mea = LabelGenerator(labels)\n",
"labels_mea.add_url_to_masks(signer) \\\n",
" .add_url_to_data(signer) "
],
@@ -1287,7 +1288,7 @@
"# For larger datasets this has to leverage multiprocessing.\n",
"\n",
"\n",
- "labels_mal = lb_types.LabelList()\n",
+ "labels_mal = list()\n",
"with ThreadPoolExecutor(4) as executor:\n",
" data_rows = dataset.data_rows()\n",
" images = [lb_types.ImageData(url = data_row.row_data, uid = data_row.uid, external_id = data_row.external_id) for data_row in data_rows]\n",
@@ -1365,4 +1366,4 @@
"execution_count": null
}
]
-}
\ No newline at end of file
+}
diff --git a/examples/label_export/images.ipynb b/examples/label_export/images.ipynb
index e36d905fd..e6ed52fed 100644
--- a/examples/label_export/images.ipynb
+++ b/examples/label_export/images.ipynb
@@ -1,18 +1,16 @@
{
- "nbformat": 4,
- "nbformat_minor": 5,
- "metadata": {},
"cells": [
{
+ "cell_type": "markdown",
"metadata": {},
"source": [
"
\n",
" \n",
" | "
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {},
"source": [
"\n",
@@ -24,28 +22,30 @@
" \n",
" | "
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {},
"source": [
"# Image Data Export\n",
"* Export labels from image annotation projects"
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {},
+ "outputs": [],
"source": [
"!pip install \"labelbox[data]\""
- ],
- "cell_type": "code",
- "outputs": [],
- "execution_count": null
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {},
+ "outputs": [],
"source": [
"import labelbox as lb\n",
"import labelbox.types as lb_types\n",
@@ -53,41 +53,41 @@
"from PIL import Image\n",
"import numpy as np\n",
"import os"
- ],
- "cell_type": "code",
- "outputs": [],
- "execution_count": null
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {},
"source": [
"# API Key and Client\n",
"Provide a valid api key below in order to properly connect to the Labelbox Client."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {},
+ "outputs": [],
"source": [
"# Add your api key and project\n",
"API_KEY = None\n",
"client = lb.Client(api_key=API_KEY)\n",
"project = client.get_project(PROJECT_ID)"
- ],
- "cell_type": "code",
- "outputs": [],
- "execution_count": null
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {},
"source": [
"### Export the labels\n",
"* Data can be exported to annotation objects or raw_json (old export format)"
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {},
+ "outputs": [],
"source": [
"labels = project.label_generator()\n",
"\n",
@@ -104,7 +104,7 @@
{
"metadata": {},
"source": [
- "* Optionally convert to a `LabelList` for small to medium sized datasets\n",
+ "* Optionally convert to a `list` for small to medium sized datasets\n",
"* This is more convenient than the `LabelGenerator` but less memory efficient\n",
"* Read more about the differences [here](https://colab.research.google.com/github/Labelbox/labelbox-python/blob/master/examples/annotation_types/label_containers.ipynb)"
],
@@ -113,7 +113,7 @@
{
"metadata": {},
"source": [
- "labels = labels.as_list()"
+ "labels = list(labels)"
],
"cell_type": "code",
"outputs": [],
@@ -169,4 +169,4 @@
"execution_count": null
}
]
-}
\ No newline at end of file
+}
diff --git a/examples/label_export/text.ipynb b/examples/label_export/text.ipynb
index db7b4cc4b..41ab0f4bd 100644
--- a/examples/label_export/text.ipynb
+++ b/examples/label_export/text.ipynb
@@ -110,7 +110,7 @@
{
"metadata": {},
"source": [
- "Optionally, convert to a `LabelList` for small to medium-sized datasets.\n",
+ "Optionally, convert to a `list` for small to medium-sized datasets.\n",
"\n",
"This is more convenient than the LabelGenerator, but less memory efficient. Read more about the differences [here](https://colab.research.google.com/github/Labelbox/labelbox-python/blob/master/examples/annotation_types/label_containers.ipynb)."
],
@@ -119,7 +119,7 @@
{
"metadata": {},
"source": [
- "labels = labels.as_list()"
+ "labels = list(labels)"
],
"cell_type": "code",
"outputs": [],
diff --git a/examples/model_diagnostics/custom_metrics_demo.ipynb b/examples/model_diagnostics/custom_metrics_demo.ipynb
index e2b20516a..87d7df119 100644
--- a/examples/model_diagnostics/custom_metrics_demo.ipynb
+++ b/examples/model_diagnostics/custom_metrics_demo.ipynb
@@ -262,7 +262,7 @@
{
"metadata": {},
"source": [
- "predictions = lb_types.LabelList()\n",
+ "predictions = list()\n",
"for (image_url, external_id) in notebook.tqdm(image_data):\n",
" image = lb_types.ImageData(url=image_url, external_id=external_id)\n",
" height, width = image.value.shape[:2]\n",
@@ -580,4 +580,4 @@
"execution_count": null
}
]
-}
\ No newline at end of file
+}
diff --git a/examples/model_diagnostics/model_diagnostics_demo.ipynb b/examples/model_diagnostics/model_diagnostics_demo.ipynb
index c87e187ae..190198b13 100644
--- a/examples/model_diagnostics/model_diagnostics_demo.ipynb
+++ b/examples/model_diagnostics/model_diagnostics_demo.ipynb
@@ -269,7 +269,7 @@
{
"metadata": {},
"source": [
- "predictions = lb_types.LabelList()\n",
+ "predictions = list()\n",
"for (image_url, external_id) in notebook.tqdm(image_data[:10]):\n",
" image = lb_types.ImageData(url=image_url, external_id=external_id)\n",
" height, width = image.value.shape[:2]\n",
@@ -549,4 +549,4 @@
"execution_count": null
}
]
-}
\ No newline at end of file
+}
diff --git a/examples/model_diagnostics/model_diagnostics_guide.ipynb b/examples/model_diagnostics/model_diagnostics_guide.ipynb
index 7690e0a8e..9c355fcb1 100644
--- a/examples/model_diagnostics/model_diagnostics_guide.ipynb
+++ b/examples/model_diagnostics/model_diagnostics_guide.ipynb
@@ -207,7 +207,7 @@
{
"metadata": {},
"source": [
- "predictions = lb_types.LabelList()\n",
+ "predictions = list()\n",
"for label in notebook.tqdm(labels):\n",
" annotations = []\n",
" image = label.data\n",
@@ -352,4 +352,4 @@
"execution_count": null
}
]
-}
\ No newline at end of file
+}
diff --git a/labelbox/data/annotation_types/collection.py b/labelbox/data/annotation_types/collection.py
index 32d323946..096e72817 100644
--- a/labelbox/data/annotation_types/collection.py
+++ b/labelbox/data/annotation_types/collection.py
@@ -22,6 +22,9 @@ class LabelList:
Use on smaller datasets.
"""
+ warnings.warn("LabelList is deprecated and will be "
+ "removed in a future release.")
+
def __init__(self, data: Optional[Iterable[Label]] = None):
if data is None:
self._data = []
@@ -187,6 +190,9 @@ def __init__(self, data: Generator[Label, None, None], *args, **kwargs):
super().__init__(data, *args, **kwargs)
def as_list(self) -> "LabelList":
+ warnings.warn("This method is deprecated and will be "
+ "removed in a future release. LabeList"
+ " class will be deprecated.")
return LabelList(data=list(self))
def assign_feature_schema_ids(