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Abstract—We propose a security methodology for Machine
Learning (ML) pipelines, supporting the definition of key security
properties of ML assets, the identification of threats to them as
well as the selection, test and verification of security controls.
Our proposal is based on STRIDE, a widely used approach to
threat modeling originally developed by Microsoft. We adapt
STRIDE to the Artificial Intelligence domain by taking a security
property-driven approach that also provides guidance in selecting
the security controls needed to alleviate the identified threats.
Our proposal is illustrated via an industrial case study.

Index Terms—Artificial Intelligence security, Threat modeling,
Vulnerability assessment.

I. INTRODUCTION

Machine Learning (ML) is playing a major role in a wide
range of application domains. However, when ML models are
deployed in production, they can be fooled and misled in
ways that can have profound security implications. The call to
improve the security of Artificial Intelligence (AI) systems [1]
has attracted widespread attention from the ML community,
which has given rise to a new vibrant line of research in
security and privacy of ML models and related applications.
The ML literature is now plentiful with research papers
addressing the security of ML models, including several valu-
able survey papers discussing individual vulnerabilities and
possible defensive techniques. Existing work mainly focuses
on ingenious mechanisms that allow attackers to compromise
the ML-based systems at the two core phases of the learning
process, that is the training and the inference stages.
In this work, we investigate the distinct, though related,
problem of defining a practical methodology for assessing
ML-based systems’ security. We approach the problem from
the point of view of the security practitioner who has to deal
with ML-based systems rather than from the one of the AI
expert dealing with security. We argue that, given the current
variety and scope of threats and attacks to ML models, there
is some confusion about what exactly the security analyst is
expected to do to alleviate them. The goal of this paper is to
propose an asset-centered methodology for identifying threats
to ML-based systems. Our proposal is based on STRIDE [2],
a well-known and widely used approach to threat modeling
originally developed by Microsoft. STRIDE has been iden-

tified by Microsoft itself and by independent agencies like
the European Union Agency for Cybersecurity (ENISA) as a
promising starting point for AI threat modeling. We argue that
our extension to the original STRIDE provides an ML-specific,
security property-driven approach to threat detection which
can also provide guidance in selecting the security controls
needed to alleviate the identified threats.

The rest of the paper is structured as follows. Section II
offers a quick overview of relevant research in AI security.
Section III illustrates the reference ML life-cycle and presents
the key ML data assets together with the failure modes
specific for each of them. Section IV describes our STRIDE-
AI methodology to identifying threats to ML data assets, while
Section V applies it to a real use case selected from the AI-
ML applications developed in the TOREADOR H2020 project.
Finally, Section VI draws our conclusions.

II. RELATED WORK

A. Secure Machine Learning

Many research papers have investigated the security issues
of ML so far, so we will start from surveys. Barreno and
Huang [3]–[5] were among the first to systematically survey
the literature on attacks against ML systems. Subsequent work
has addressed attacks and defence strategies with varying
degrees of breadth and depth [6]–[9]. An overview of the
evolution of this research area over the last few years can
be found in [10]. Recently, the US National Institute of Stan-
dards and Technology (NIST) has published a taxonomy of
adversarial machine learning complemented by a terminology
of related key concepts [11]. The NIST document is aimed
at establishing a common language for future standardization.
Also the ISO/IEC JTC 1/SC 42 international standard commit-
tee’s work includes several topics in the AI security area. The
report ISO/IEC TR 24028:2020 [12], for instance, analyzes
some threats that may contribute to the erosion of trust in
AI systems and briefly discusses approaches to managing
them. In parallel with the above efforts, research investigated
techniques for preventing undesired behavior of ML models
by controlling a priori their training sets and parameters
[13]–[19]. For example, Huang et al. [17] have proposed an
automated verification framework for checking safety of feed-
forward deep neural networks based on exploration of regions
around data points of interest to search for specific adversarial
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manipulations. The focal point of the work by Raghunathan et
al. [14] was a method for producing certificates of robustness
for two-layer neural networks, which can be optimized at
training time jointly with the network itself. The recent work
by our group [19] proposed a framework suitable for practical
certification of distributed ML-powered applications based on
statistical monitoring of ML models’ behavior at inference
time.

B. Threat Modeling for Artificial Intelligence

We argue that threat modeling methodologies should play
an important role in the security analysis of AI systems by
supporting the security expert’s understanding of how ML-
based systems fail. Until now, only a few studies have taken
this perspective for the identification of ML security risks.
Researches that have points of connection with ours are
presented in [20]–[23]. The recent AI Threat Landscape [20],
released by the European Union Agency for Cybersecurity
(ENISA), sets a baseline for a common understanding on
cybersecurity threats to AI. The ENISA report identifies a list
of assets within the AI ecosystem and maps threats against
them taking into account the stages of the typical AI life-cycle.
The Architectural Risk Analysis (ARA) [21] proposed by the
Berryville Institute of Machine Learning (BIML) features a
design-level view. ARA identifies 78 specific risks associated
with a generic ML-based system and organizes them into a
“top-ten” list. Further efforts to understand how ML-based
systems may fail and, consequently, how to respond to such
failures have been made by Microsoft through the release of
guidelines for the mitigation and triage of AI-specific security
threats [22]. Microsoft’s approach, which develops, like we
do, on STRIDE threat-modeling [2], does not address the
security properties definition. Rather, it is based on a taxonomy
that classifies ML failure modes into two categories, namely
intentional and unintentional failures. Intentional failures are
mapped to a list of attacks reported in the literature [24].
Other recent works explore “turn-key” applicability to ML-
based systems of security assessment methods used in the field
of software engineering. Wilhjelm and Younis [23] decompose
ML models into three components, namely input, processing
and output, and discuss how to identify threats based on their
attack vectors. In order to rank the impact of the identified
risks, the authors make use of a bug bar [25] for associating
severity levels to threats. Our own recent work [26] proposes
such a metric based on the notion of a “gold standard” data
set for assessing ML models’ degradation.

III. ML-BASED APPLICATION LIFE-CYCLE

Although there exist many diverse types of learning
tasks [27], the development process of ML-based systems has
an intrinsic iterative multi-stage nature [28]. Fig. 1 shows our
reference ML life-cycle, starting from requirements analysis
and ending with the ML model’s maintenance in response
to changes. While this life-cycle does not cover all possible
developments, we will use it to identify the key data assets

Fig. 1. Our reference ML life-cycle.

produced at each phase and to analyze their failure modes.
We start by outlining the activities carried out at each stage.

The initial stage of the ML life-cycle, Data Management,
includes a number of steps, a major one being the ingestion
of the data required for the next stages. Ingestion occurs from
multiple sources, and the data collected can either be stored
or immediately used. Pre-processing techniques are then used
to create a consistent data set suitable for training, testing and
evaluation. The next step, Model Learning, involves selecting
an ML model that handles the task of interest. Depending
on the goals and the amount of knowledge available to the
learner, different ML techniques can be used, such as super-
vised, unsupervised and reinforcement learning. In the training
process of a supervised ML-based system, a learning algorithm
is provided with predefined inputs and known outputs that
are used for model training. The learning algorithm computes
error metrics to determine whether the model is learning well,
i.e. it delivers the expected output not only on the inputs
it has seen in training, but also on test data it has never
seen. The so-called hyper-parameters, which control how the
training is done (e.g., how the error is used to modify the ML
model’s internal parameters), are set during the Model Tuning
stage. While being tuned, the ML model is also validated
to determine whether it works properly on inputs collected
independently from the original training and test sets. The
transition from development to production is handled in the
Model Deployment stage. In this stage, the model executes
inferences on real inputs, generating the corresponding results.
As the production data landscape may change over time, in-
production ML models require continuous monitoring. The
final ML life-cycle stage, Model Maintenance, monitors the
ML model and retrains it when needed.

A. AI Assets

At each stage of the ML life-cycle, multiple digital assets
are generated and used. Before performing threat assessment,
we need to identify the assets the threats may apply to. At-risk
assets can be grouped into six different categories, as shown
in Fig. 2. For the sake of conciseness, in this paper we mostly
focus on the data assets.1 Table I shows the assets’ failure

1A complete asset list as well as documentation used for the case study
(Section V) is available at https://github.com/LaraMauri/STRIDE-AI
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modes, i.e. how they may fail to show the properties needed
for a correct execution of the corresponding stage.

Fig. 2. Assets in the AI ecosystem.

IV. MODELING THREATS TO ML DATA ASSETS

We now discuss how assets’ failure modes can be used
to identify threats. Classically, Threat Modeling (TM) is the
process of reviewing the security of a system, identifying
critical areas, and assessing the risk associated with them. TM
is a fundamental phase in the design of any information system
because it allows profiling and prioritizing problems as well
as assessing the value that potential mitigation would have in
alleviating threats. A typical TM process [31] consisting of
five steps is shown in Table II.

Several TM methods are available. Popular approaches
include PASTA [32], a risk-centered TM framework consisting
of seven stages within which different elicitation tools are
used, and OCTAVE [33], which is a three-phase method
focusing on the assessment of the organizational risks rather
than the technological ones. Originally defined by Loren
Kohnfelder and Praerit Garg [34], [35], STRIDE is the most
mature one. It has been applied to many vertical domains,
including cyber-physical systems and healthcare applications
[36]–[40]. STRIDE uses a set of six threats based on its
acronym, which stands for Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of service, and Elevation of
privilege; Table III shows their definitions.

Our discussion of the ML life-cycle and its key data assets
(Section III) has covered steps 2 and 3 of the TM process. We
need to set the security objectives (step 1), and then proceed
with the threat identification step (step 4) and the vulnerability
identification one (step 5).
We start by proposing our ML-specific definitions of the
classic CIA3 − R security properties (step 1). Then, we
will discuss how assets’ failure modes can jeopardize these
properties. Finally, we will use the results of our analysis for
identifying threats to the ML life-cycle (step 4).

A. Extending STRIDE to ML-based Systems

The CIA3 − R hexagon [41] includes the six main com-
ponents of security. Each STRIDE threat corresponds to the
violation of a CIA3−R security property, as shown in Table
IV.

While STRIDE can be directly applied to vertical domains,
we argue that applying it to AI-ML requires customization
of the desired set of properties in order to match the domain
assets’ specific failure modes [42]. Below, we propose our
ML-specific definition of CIA3−R security properties. Then,
we map the failure modes of the data assets generated in our
ML life-cycle (Section III) to the violation of one or more of
these properties. For each mapping, we associate (the effects
of) the corresponding failure to one or more STRIDE threats to
ML-based systems. Table V shows our proposed definition of
an ML-specific CIA3−R hexagon. The above definitions are
hopefully self-explanatory; for the sake of conciseness, we will
only elaborate on our definition of the confidentiality property
[43] by considering a classification problem: mapping the
items of a data space DS to categories of interest belonging
to a set C = (C1, ..Cn). A representative sample S ( DS is
used to tabulate a partial classification function f : S → C,
obtaining a labeled training set, which by abuse of notation
we shall also call f . We use the training set f to train an
ML model that will be able to compute another function
F : DS → C. Finally, we deploy F into production, using it
to classify individuals from DS as needed.
This standard procedure may disclose ML data, for example
if the entries in f can be inferred from F .2 Our definition
of confidentiality expresses the property as an achievable goal
[44]: observing the execution of a confidential ML model F ,
one should be able to infer the same information about an
entry e ∈ f as by observing F ′, obtained using the training
set f −{e}+{r}, where r is a random entry. The same holds
for validation and augmented data assets.
The resulting threat identification is summarized in Table
VI, where we also report some known attacks exploiting
vulnerabilities to STRIDE-AI threats.

B. Threats Prioritization

Threat-ranking techniques are used to associate a security
risk level to each threat. A popular technique is represented by
the so-called bug bars, which come in the form of tables listing
the criteria used to classify bugs. Recently, Microsoft has
released a bug bar [25] to rank ML threats, focusing on inten-
tional malicious behavior against ML-based systems. However,
threat prioritisation bug bars are not always easy to explain to
non-security-savvy users. One of the first developed methods
to assess the severity of threats is DREAD, an acronym
referring to five categories (Damage Potential, Reproducibility,
Exploitability, Affected Users and Discoverability). DREAD,
which was designed to complement STRIDE, assigns to each
threat a value from 1 to 10. As it turned out that it can lead
to inconsistent results due to the intrinsic subjectivity of the
rating process [52], the DREAD scaled rating system is no
longer recommended for exclusive use; yet, it is still used for

2For instance, if F is computed using the Nearest-Neighbor technique (i.e.
∀x ∈ DS,F (x) = f(px) where px is the point in S closest to x according
to some domain distance), f is integral part of the definition of F and is
therefore fully disclosed to the external service whenever F is deployed.
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TABLE I
ML DATA ASSETS AND THEIR FAILURE MODES.

ML data asset Failure mode

Functional requirements model the domain of interest, the problem
to be solved, and the task to be executed by the ML model. Non-
functional requirements identify architectural (hardware) and code
(software) needs.

Requirements may fail when they are built in isolation from the circumstances that make the
ML model necessary. Specifically, functional requirements about the ML model’s accuracy
may fail by not taking into account the adverse effect of non-functional properties mandated
by regulations and by not considering the severity of information leaks.

Raw Data refers to any type of information gathered at the Data
Management stage, before it is transformed or analyzed in any way.

Raw data assets fail when they are not sufficiently representative of the domain or unfit for the
ML model business goal (e.g. due to sample size and population characteristics). Data size does
not always guarantee it is representative of a domain. If data selection is biased towards some
elements that have similar characteristics (a phenomenon called selection bias) then, even a
large data set will not be representative enough. Assessing whether data is representative enough
cannot be done a priori; it is only possible after having identified the purpose for collecting the
data. Selection bias has been described in the scientific literature as due to malpractice [29].

Labeled Data refers to sets of scalar or multi-dimensional data items
used at the Model Learning stage. This data is tagged with informative
labels, for the purpose of training a supervised ML model.

Labeled data sets fail when enough data items are deleted or omitted, a sufficient number of
spurious labeled data is included into the data set, or enough labels are modified. When the
labeled data set is used for the purpose of training an ML model, all such modifications affect
the model inference (e.g., shifting the model’s classification boundary).

Validation Data is also used at the Model Learning stage, but differs
from ordinary labeled data in usage and, usually, in collection circum-
stances. Validation data sets are mostly used to perform an evaluation
of the ML model in-training, e.g. by stopping training (early stopping)
when the error on the validation set increases too much [30], as this
is considered a sign of over-fitting.

Validation data sets fail when their labeled data items are modified. Modification of validation
data affects how the error computed on the validation data set fluctuates during training, and
even a single modification on the validation set may be enough for introducing a spurious error
increase that could cut short the training. Elimination of outliers in the validation data set may
alleviate/prevent failure.

Augmented Data is labeled data that is complemented at the Model
Tuning stage by additional data produced by transformations or by
generative ML models. Augmentation increases labeled data sets’
diversity, which is supposed to prevent over-fitting.

Augmented data sets may fail due to inconsistency with the training set they are derived
from. Heuristic data augmentation schemes are often tuned manually by humans, and defective
augmentation policies may cause ML models to lose rather than gain accuracy from the
augmented data.

Held-out Test Cases (HTCs) are inputs used to test ML models in
production, i.e. in the Model Maintenance stage. HTCs include special
inputs of high interest for the application.

The rationale for HTCs is that even if an ML model keeps showing good accuracy, its
performance on specific inputs may become unacceptable. HTCs fail when the ML model’s
accuracy metrics computed on them does not correspond to the business goals of the application.
Careless selection of HTCs has been known to trigger unneeded model retraining.

Inferences are results computed by ML models based on real inputs,
according to the task of interest in the Model Deployment and Model
Maintenance stages.

Inferences may fail by showing high entropy, i.e. conveying little information useful for the
ML task at hand.

TABLE II
A 5-STEP TM PROCESS.

Step Description

1 Objectives
Identification

States the security properties the system should have.

2 Survey Determines the system’s assets, their interconnections
and connections to outside systems.

3 Decomposition Selects the assets that are relevant for the security anal-
ysis.

4 Threat
Identification

Enumerates threats to the system’s components and assets
that may cause it to fail to achieve the security objectives.

5 Vulnerabilities
Identifications

Examines identified threats and determines if known
attacks show that the overall system is vulnerable to them.

quick preliminary threat assessments, as we will do for the
case study described in the next section.

V. USE CASE

We will now apply STRIDE-AI to a real use case se-
lected from the AI-ML applications developed in TOREADOR
H2020 project3. The cyber-security of such applications is a
goal of another ongoing H2020 project, THREAT-ARREST4.
We focus on a scenario contributed by the Light-source
company (henceforth LIGHT), one of the major European

3https://cordis.europa.eu/project/id/688797
4https://cordis.europa.eu/project/id/786890

TABLE III
STRIDE THREATS IN A NUTSHELL.

Threat Description

Spoofing Identity A user takes on the identity of another. For example,
an attacker takes on the identity of an administrator.

Tampering with Data Information in the system is modified by an attacker.
For example, an attacker changes a data item.

Repudiation Information about a transaction is deleted in order to
deny it ever took place. For example, an attacker deletes
a login transaction to deny he ever accessed an asset.

Information Disclosure Sensitive information is stolen and sold for profit. For
example, information on user behavior is stolen and
sold to a competitor.

Denial of Service
(DoS)

This involves exhausting resources required to offer
services. For example, in a DoS against a data flow
the attacker consumes network resources.

Elevation of Privilege
(EoP)

This is a threat similar to spoofing, but instead of taking
on the ID of another, the attacker elevates his own
security level to an administrator.

renewable energy providers, who is a partner in both projects.
In this use case, AI-ML techniques are employed for failure
prediction and power flow optimization on the energy grid.
The use case architecture is shown in Fig. 3 and its operation
is described by the following steps:

1) Sensors placed at power station sites send data about
power and other variables to a local Data Logger card
equipped for network communication. The Data Logger
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TABLE IV
THREATS VS. CIA3 −R PROPERTIES IN STRIDE-AI.

Property Threat

Authenticity Spoofing

Integrity Tampering

Non-repudiability Repudiation

Confidentiality Information Disclosure

Availability Denial-of-Service (DoS)

Authorization Elevation-of-Privilege (EoP)

TABLE V
ML-SPECIFIC CIA3 −R HEXAGON.

Property ML-specific definition

Authenticity The output value delivered by a model has been verifiably
generated by it.

Integrity Information used or generated throughout a model’s life-cycle
cannot be changed or added to by unauthorized third parties.

Non-repudiation There is no way to deny that a model’s output has been
generated by it.

Confidentiality Using a model to perform an inference exposes no informa-
tion but the model’s input and output.

Availability When presented with inputs, the model computes useful
outputs, clearly distinguishable from random noise.

Authorization Only authorized parties can present inputs to the model and
receive the corresponding outputs.

Fig. 3. The Predictive Maintenance Architecture.

has a local root-of-trust.
2) The Data Logger card forwards the data to a Receiver

within the LIGHT ICT infrastructure.
3) The Anonymity (Anon) agent retrieves the data and ap-

plies some pre-processing, including metadata removal.
Removal is not performed for training data, whose
metadata are dummy.

4) Pre-processed input data is streamed to a Connector on
the TOREADOR platform.

5) Input data is stored in the TOREADOR platform, then
fed to an ML model for training/validation or failure
prediction.

6) In production, inference (Raw Prediction Data) is re-
turned to the LIGHT platform (predictions are not
returned during training).

7) LIGHT employees log into a Dashboard on the LIGHT
platform and drill into the inferences.

8) Raw Prediction data is used for further action (includ-
ing pro-actively maintaining components at the power
station).

With reference to the TM process in Table II, a security
expert applying the STRIDE-AI methodology has a ready-
made set of objectives (the CIA3 − R hexagon) and assets
categories (the ones on Fig. 2). The expert starts by performing
architecture decomposition and identifying the relevant assets,
as shown by the annotations in Fig. 3. For each asset, the
expert chooses a set of properties of interest within CIA3−R.
For the sake of conciseness, let us consider only one of the
identified data assets, the training data stream (Asset #4).
The complete mapping of all identified assets, properties and
threats is provided in the Appendix (Table VIII).
The training data stream asset belongs to the Labeled Data
asset category; therefore, it should exhibit the Integrity and
Authenticity properties to prevent known failures (Table VI).5

The third step is threat identification. Again from Table VI,
the security expert identifies Tampering and Spoofing as the
threats corresponding to the assets’ property profile.
The next step of the TM process is vulnerabilities identifi-
cation, where the security expert interacts with the system
developers to describe under which conditions the threats
associated to the assets can materialize. For Asset #4, the
Tampering threat corresponds to attackers making changes
or injecting spurious data in the sensor data stream, while
the Spoofing threat corresponds to attackers posing as the
TOREADOR ML model to the LIGHT data platform, and as
the LIGHT platform to the TOREADOR model. The expert
needs to assess whether the threats are atomic or composite,
i.e. they require one or more conditions to hold for being
exploited. The (simplified) threat trees for the Spoofing and
Tampering threats are shown in Figures 4 and 5, respectively.

Fig. 4. The Spoofing threat tree.

The Spoofing threat tree corresponds to a standard failure
mode of distributed platforms. The Tampering threat tree is

5Other asset categories will have different property profiles. For example,
the library used for training the ML model will need Integrity and Authenticity
(to ensure its code has not been tampered with) and Availability (to make
sure it will be capable of performing the training or inference task within the
deadline).

5
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TABLE VI
MAPPING DATA ASSETS’ FAILURE MODES TO CIA3 −R HEXAGON.

Asset Properties Threats Known attacks

Requirements Availability DoS While no direct attacks to requirements have been reported, unexpected legal liabilities deriving from defective
requirements have been described in a number of concrete cases [45], including ML models for medical
diagnostics.

Raw Data Authenticity,
Confidentiality,
Availability,
Authorization

Spoofing,
Disclosure,
DoS,
EoP

Attacks by data owners introduce selection bias on purpose when publishing raw data in order to affect inference
to be drawn on the data. Reported examples [46] include companies who release biased raw data with the hope
competitors would use it to train ML models, causing competitors to diminish the quality of their own products
and consumer confidence in them. In perturbation-style attacks, the attacker stealthily modifies raw data to get a
desired response from a production-deployed model [24]. This compromises the model’s classification accuracy.

Labeled Data Authenticity,
Integrity

Spoofing,
Tampering

Append attacks target availability by adding random samples to the training set to the point of preventing any
model trained on that data set from computing any meaningful inference. Other modifications to the training data
set (backdoor or insert attacks) jeopardize the ML model’s integrity by trying to introduce spurious inferences
[47]. Attackers randomly draw new labels for a part of the training pool to add an invisible watermark that can
later be used to “backdoor” into the model.

Augmented Data Integrity,
Availability

Tampering,
DoS

Adversarial data items tailored to compromise ML model inference can be inserted during data augmentation
[48] in order to make them difficult to detect.

Validation Data Integrity,
Availability

Tampering,
DoS

Attacks can shorten the training of the ML model by compromising just a small fraction of the validation data set.
“Adversarial” training data generated by these attacks are quite different from genuine training set data [49].

Held-Out Test Cases Integrity,
Confidentiality,
Availability

Tampering,
Disclosure,
DoS

Evaluating an ML model’s performance on HTCs involves reducing all of the information contained in the HTCs
outputs to a single number expressing accuracy. The literature reports slicing attacks [50], which poison the
held-out data set to produce misleading results. Slicing attacks introduce specific slices of data that doctor the
model’s accuracy, making it very different from how it performs on the in-production data set.

Inferences Authenticity,
Integrity,
Availability,
Authorization

Spoofing,
Tampering,
DoS,
EoP

Inferences need to carry informative content. The literature reports eavesdropping attacks (a survey can be found
in [51]) to distributed ML models involving eavesdropping on inferences.

Fig. 5. The Tampering threat tree.

more ML-specific, as it affects the training data stream by
injecting spurious data items (i.e., adding data that do not come
from LIGHT, with random or chosen labels) or by modifying
data items that come from LIGHT by flipping the labels. The
difference between the Tampering threat sub-trees (Fig. 5)
is relevant for the expert’s assessment, as the leftmost sub-
tree can be deleted as the expert knows that the data items
are signed by the Data Logger cards, but not the rightmost
one: Loggers’ signature would not prevent label flipping on
training data, as labels are added on the LIGHT platform
before streaming the training set to TOREADOR.

TABLE VII
DREAD RATING FOR THE SPOOFING AND TAMPERING THREATS.

Threats D R E A D Average [Rating]

Spoofing 5 2 4 2 7 4.0 [Medium Risk]

Tampering 7 2 6 2 5 4.4 [Medium Risk]

We can now compute the relative priorities of the Spoofing
and Tampering threats by utilizing a DREAD scorecard, whose
scores are shown in Table VII. For the training data stream
asset, the potential damage that could result from a spoofing
attack includes backdoor generation and substitution of data
about power emission or consumption, which could alter met-
rics and reporting. The expertise required to perform spoofing
varies depending on which branch of the Spoofing threat tree
is considered. As the TOREADOR platform supports a two-
factor authentication, in case the LIGHT users’ credentials
consist only of a username and password, it may prove easier
to gain access to TOREADOR by password cracking or by
stealing the credentials (e.g, via phishing emails). An attack
exploiting the Spoofing threat may result in tampering. If an
attacker is able to tamper with the training data stream, she
can perform label flipping or other types of data manipulation.
The exploitation of this threat depends on the presence of
constraints on data manipulation; as labels are added on the
LIGHT platform, while data points are collected and signed by
Data Loggers, adding new data with random labels requires
more effort than flipping labels of existing data to obtain a
particular output in the presence of certain input values.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we outlined STRIDE-AI, an approach to
identifying threats to ML models. Our methodology was
illustrated with the help of a use case. We are well aware
that no threat identification method is effective without pro-
viding also guidance in selecting the security controls needed
to alleviate the identified threats. Unfortunately, no security
control framework specifically designed for ML models is
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available. While security control selection is outside the scope
of this paper, we contributed to addressing this point by putting
forward the idea of a trusted environment for ML models
training and operation [53]. We argue that Distributed Ledger
Technologies (DLTs) can provide a complete security control
framework for ML [54]. DLT can support achieving CIA3−R
properties, making interfering with ML inference results less
attractive for attackers.
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APPENDIX

TABLE VIII
COMPLETE MAPPING FOR THE ASSETS IDENTIFIED IN THE USE CASE.

Use case asset Properties Threats

#1. Excess Raw Data Authenticity,
Integrity

Spoofing,
Tampering

#2. Raw Data (Stream) Authenticity,
Integrity

Spoofing,
Tampering

#3. Raw Data (Batch) Authenticity,
Integrity,
Authorization

Spoofing,
Tampering,
EoP

#4. Training Data (Stream) Authenticity,
Integrity

Spoofing,
Tampering

#5. Training +
Validation Data (Stream)

Authenticity,
Integrity,
Non-repudiability,
Authorization

Spoofing,
Tampering,
Repudiation,
EoP

#6. Input Data (Stream) Authenticity,
Integrity,
Non-repudiability

Spoofing,
Tampering,
Repudiation

#7. Model Parameters +
Hyper-parameters

Integrity,
Non-repudiability

Tampering,
Repudiation

#8. Inferences (Stream) Authenticity,
Integrity,
Non-repudiability,
Availability

Spoofing,
Tampering,
Repudiation,
DoS

#9. Inferences (Batch) Authenticity,
Integrity,
Availability,
Authorization

Spoofing,
Tampering,
Dos,
EoP
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J. Snover, “Failure Modes in Machine Learning Systems,” CoRR, vol.
abs/1911.11034, 2019. [Online]. Available: http://arxiv.org/abs/1911.
11034

[25] A. Marshall, J. Parikh, E. Kiciman, and R. S. S. Kumar, “AI/ML Pivots
to the Security Development Lifecycle Bug Bar,” 2019. [Online]. Avail-
able: https://docs.microsoft.com/it-it/security/engineering/bug-bar-aiml

[26] L. Mauri and E. Damiani, “Estimating Degradation of Machine Learning
Data Assets,” ACM Journal of Data and Information Quality, vol. 1,
no. 1, 2021.

[27] M. de Prado, J. Su, R. Dahyot, R. Saeed, L. Keller, and N. Vállez,
“AI Pipeline - bringing AI to you. End-to-end integration of data,
algorithms and deployment tools,” CoRR, vol. abs/1901.05049, 2019.
[Online]. Available: http://arxiv.org/abs/1901.05049

[28] E. Damiani and F. Frati, “Towards Conceptual Models for Machine
Learning Computations,” in Conceptual Modeling - 37th International
Conference, ER 2018, Xi’an, China, October 22-25, 2018, Proceedings,
ser. Lecture Notes in Computer Science, vol. 11157. Springer, 2018,
pp. 3–9.

[29] J. Abah, “The Quest for Statistical Significance: Ignorance, Bias and
Malpractice of Research Practitioners,” International Journal of Re-
search, vol. 5, pp. 112–129, 2018.

[30] L. Prechelt, “Early Stopping - But When?” in Neural Networks: Tricks
of the Trade - Second Edition, ser. Lecture Notes in Computer Science,
G. Montavon, G. B. Orr, and K. Müller, Eds. Springer, 2012, vol. 7700,
pp. 53–67.

[31] S. Myagmar, A. J. Lee, and W. Yurcik, “Threat modeling as a basis for
security requirements,” in in Proceedings of the IEEE Symposium on
Requirements Engineering for Information Security, 2005.

[32] T. UcedaVelez and M. M. Morana, Risk centric threat modeling. Wiley
Online Library, 2015.

[33] E. A. Oladimeji, S. Supakkul, and L. Chung, “Security threat modeling
and analysis: A goal-oriented approach,” in ICSE 2006, 2006.

[34] A. Shostack, “Experiences Threat Modeling at Microsoft,” in
MODSEC@MoDELS, ser. CEUR Workshop Proceedings, vol. 413.
CEUR-WS.org, 2008. [Online]. Available: http://ceur-ws.org/Vol-413/
paper12.pdf

[35] ——, Threat Modeling: Designing for Security. Wiley, 2014.
[36] G. Martins, S. Bhatia, X. Koutsoukos, K. Stouffer, C. Tang, and

R. Candell, “Towards a Systematic Threat Modeling Approach for
Cyber-physical Systems,” in 2015 Resilience Week (RWS), 2015, pp.
1–6.

[37] R. Khan, K. McLaughlin, D. Laverty, and S. Sezer, “Stride-based Threat
Modeling for Cyber-Physical Systems,” in 2017 IEEE PES Innovative
Smart Grid Technologies Conference Europe (ISGT-Europe), 2017, pp.
1–6.

[38] M. Cagnazzo, M. Hertlein, T. Holz, and N. Pohlmann, “Threat Modeling
for Mobile Health Systems,” in 2018 IEEE Wireless Communications
and Networking Conference Workshops (WCNCW), 2018, pp. 314–319.

[39] V. E. Urias, B. Van Leeuwen, W. M. S. Stout, and H. Lin, “Applying
a Threat Model to Cloud Computing,” in 2018 International Carnahan
Conference on Security Technology (ICCST), 2018, pp. 1–5.

[40] B. Jelacic, D. Rosic, I. Lendak, M. Stanojevic, and S. Stoja, “STRIDE to
a Secure Smart Grid in a Hybrid Cloud,” in Computer Security. Springer
International Publishing, 2018, pp. 77–90.

[41] R. Hasan, S. Myagmar, A. J. Lee, and W. Yurcik, “Toward a threat
model for storage systems,” in Proceedings of the 2005 ACM Workshop
On Storage Security And Survivability, StorageSS 2005, Fairfax, VA,
USA, November 11, 2005. ACM, 2005, pp. 94–102.

[42] M. Abomhara, G. Køien, and M. Gerdes, “A STRIDE-Based Threat
Model for Telehealth Systems,” in NISK Journal, 2015, pp. 82–96.

[43] S. Cimato and E. Damiani, Some Ideas on Privacy-Aware Data Analytics
in the Internet-of-Everything. Cham: Springer International Publishing,
2018, pp. 113–124.

[44] C. Dwork, “Differential Privacy,” in Automata, Languages and Pro-
gramming, 33rd International Colloquium, ICALP 2006, Venice, Italy,
July 10-14, 2006, Proceedings, Part II, ser. Lecture Notes in Computer
Science, vol. 4052. Springer, 2006, pp. 1–12.

[45] J. S. Allain, “From Jeopardy! to Jaundice: The Medical Liability
Implications of Dr. Watson and Other Artificial Intelligence Systems,”
Louisiana Law Review, vol. 73, 2013.

[46] D. Yeung, “When AI Misjudgment Is Not an Accident,” 2018.
[Online]. Available: https://blogs.scientificamerican.com/observations/
when-ai-misjudgment-is-not-an-accident/

[47] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted Backdoor
Attacks on Deep Learning Systems Using Data Poisoning,” CoRR, vol.
abs/1712.05526, 2017. [Online]. Available: http://arxiv.org/abs/1712.
05526

[48] H. Eghbal-zadeh, K. Koutini, P. Primus, V. Haunschmid,
M. Lewandowski, W. Zellinger, B. A. Moser, and G. Widmer,
“On Data Augmentation and Adversarial Risk: An Empirical
Analysis,” CoRR, vol. abs/2007.02650, 2020. [Online]. Available:
https://arxiv.org/abs/2007.02650
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