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Abstract - This paper describes the work of design-
ing and building a two-wheeled self-balancing robot
capable of carrying a person. This system is sim-
ilar to the non-linear and unstable inverted pen-
dulum on a cart. The linearised system equations
for the robot dynamics is found and the system is

simulated and stabilised with a controller in Mat-
lab. The robot is built using two 24V 500W DC

motors. The robot is controlled with an Arduino
Pro mini with an 8-bit ATmega328P AVR microcon-

troller running at 16MHz. To find the angle of the
robot the readings from a MPU-6050 gyroscope and
accelerometer is fused using a Kalman filter. The
controller we have implemented is a manually tuned

PID-controller written in C/C++. With a Bluetooth
module we were able to establish communication be-
tween the robot and an Android Application written

for the purpose so that data could be read from the
robot and the PID-values of the controller could be
set. By manual tuning it was possible to achieve sta-
bility for the robot carrying a person.

I. INTRODUCTION

In today’s modern world there are several different types of
personal transportation. One of the more interesting ones is
the two-wheeled balancing robot, commercially known as a
Segway. It seems fascinating that this vehicle is able to keep
upright while a person is driving it. There is however room
for improvement of this vehicle by making data such as speed
and a map with location available to the user while driving.
This paper will cover the process of building and program-
ming a balancing robot which can communicate with an An-
droid application via Bluetooth.

II. MODEL OF THE SYSTEM

There are several different ways to model a balancing robot.
One of the simplest ways is to model it as a cart with an
inverted pendulum on top. As our robot is built with two
wheels directly mounted on the platform on which the user
stand, the torque form the motors will have an effect on both
the wheels and the body of the robot. The robot will there-
fore be modelled as two wheels connected to a body. The free
body diagram of this model is shown on Fig[I] The following
assumptions are used when modelling the robot:

The wheels are rolling (no slipping)

All bodies are rigid

The body is rotating around the center of gravity (CG)
The mechanical losses are approximately zero

e

Fig. 1: The free body diagrams for one of the wheels (left) and the
body (right)

When using Newtons second law of motion and the re-
lationship between torque and angular acceleration, a set of
equations for the wheel and the body of the robot (including
the driver) can be set up. The forces from the free body di-
agram in Fig[l] is used. The equations for each wheel are:

1
1
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The equations for the x- and y-direction of the body can eas-
ily be written. For the torque equation, we have to translate
the torque 7 at the end of the body to a torque in the CG. As
the angle that the body is rotating is the same whether it is

rotating around the end or the CG we say that ;g—g = ?—;‘

which will yield 70¢ = 79 7enq. The equations for the
body can now be set up: N

M- i, = Fx @
M- -jy=Fy—-M-y (5)
. T
Ib@g-9:QIb’CGT—Fysinqﬁ-l+FXcosq§~l (©6)
b,end

An approximation when the robot is balancing is that
Tp = Ty. The y-coordinate will be constant for both the
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wheel and the body of the robot. This will give §p = 0.
These approximation can be substituted in equation @) and
(@). The forces Fx, Fy, Fgx and Fgy can now be elim-
inated from the equations (I) to (6) which will give the
two governing equations for the motion of the robot. These
equations are linearised with the small angle approximations
sin ¢ = ¢ and cos ¢ = 1 and with the assumption that the an-
gular velocity i sufficiently small to be approximated to zero:
<ﬁ2 = 0. The linear equations are:

(21, — M7? — 2mr?)i,, = =277 (7)

Iy cadly,enda = Miyllyena — Mgloly ena + 271 ca

®)
From these equations the transfer functions from 7 to ¢ and
from 7 to %, can be found by eliminating a variable and
Laplace transforming. The transfer function from 7 to X is
shown in @]) In a similar way, the transfer function from 7
t0 ¢, Grg = % can be found. This transfer function is shown
in (10).

—2r
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III. SIMULATION

The transfer functions for the robot was used to simulate it
and to design a controller in Matlab. As the model does not
include the dynamics of the motors, the controller designed
in Matlab can not be implemented directly on the robot. The
purpose of these simulations is to show that stability of the
system can be achieved. When simulating the system it was
additionally assumed that the body of the robot (including
the driver) can be modelled as a rod. The measured data for
the simulation is shown in Table[T}

Table 1: Measured quantities for the simulations

Mass of wheel m 5.15kg
Mass of robot without wheels | mM,-0pot 20.1 kg
Mass of person Mperson 80 kg
Height of person h 1.83 m
Radius of the wheel r 0.17 m
Radius of the rim Trim 0.097 m
Cross sectional torus radius b 0.0385 m

From these measured quantities, the rest of the quantities
for the transfer function can be calculated. The moment of
inertia for the a rod rotating about the end and about the CG
18 Iy ena = MT’ﬂ and I) cq = Ml—gz The wheel is split up in
the rim and the tire. The moment of inertia for the tire is that
for a torus ( (a® + %bQ)mmbber ) [12]]. The mass of the torus
is the volume of it ( 272b% (7,4, + b) ) times the density of
rubber (which is approximately 1.1 - 10® kg/m3 [3, p. 11]).
The moment of inertia for the rim is that of a disk having a
mass that is m — Myypper. The total moment of inertia for
the wheel is the sum of that for the torus and the disk. The
quantities used in the simulations are shown in Table[2]

Table 2: Calculated quantities for the simulations

m 5.15 kg

M 100.1 kg

l 0.915m

r 0.17m
Ib,end 111.74 kgm2
Ib,CG 27.94 k‘gm2

I, 0.089 kgm?

g 9.8 m/s?

A. Controller design with Ziegler-Nichols method

To analyse the system a Bode plot was used and the poles of
the system was found. The Bode plot is shown in Fig. 2]

Bode plot with no controller
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Fig. 2: Bode plot of the system with no controller

The system has two poles on the imaginary axis at
+5.668¢. This is also visible at the Bode plot where the
phase “jumps” —180° at approximately 5.7rad/s. The gain
is chosen to be Kp iy = 800 to get the magnitude above
0dB until approximately 20rad/s. The cycle time is measured
to Ty = 0.4s and the controller is now designed after the
Ziegler-Nichols method [10} p. 296]. The formulas and the
values are shown in Table 3l

Table 3: Values for the Ziegler-Nichols designed controller

Formula Value

Kp =0.6Kp,rit | 480
Ti — 0.5T0 0.2
T4 = 0.13T} 0.052

The transfer function of the controller that is imple-
mented is the one shown in (IT)) with & = 0.1

s+ 1 g8+ 1
;8 aTrgs+1

G.(s)=Kp (11)
This transfer function is that of a PI-Lead controller which is
how the theoretical PID-controller can be implemented.
With the controller in the system, the step response will be as
shown on Fig. 3]
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Fig. 3: Step response of system with the Ziegler-Nichols designed

Fig. 4: Step response of the system with the controller designed by
controller. The step is 10° on ¢

choosing w.. The step is 10° on ¢

The step response is oscillatory but damped and the fig-
ure shows that the output is almost stable 2s after the input

018 Step response from system in simulink with limit on ©
\
was applied. So it can be seen that it is possible to make the orst) .
system stable. The response will be even better if the system oaal \\
is made slower (the cycle time Ty is increased). i |
\ |
01F \ 1
B. Controller design by choosing w, | \
0.06 - 4
L . . |
Another way of designing a controller is by choosing the ool |
cross frequency, w.. When this frequency is chosen, the val- . \
ues for the controller can be calculated with the equations in o
r A —
Table 4} We have chosen w,. to be 40rad/s. _—
002 - 0‘5 1‘ 15
Time (seconds)
Table 4: Values for controller designed by placing w.

Formula Value
_ T
Kp = ooy | 1270
T, = 974 0.3953
T
—— 0.0791
T4 /(@)

This design method will give a better step response from
the system. It is shown in Fig[d]

The oscillations are damped and the system is in almost
perfect equilibrium 1 second after the disturbance is applied.
The system is sufficiently fast to be usable. In order to be that
fast the system needs to apply a very large torque. The torque
at time 0 is 2230Nm which is not realistic with the used mo-
tors. Assuming that the motor is a DC shunt-connected mo-
tor, the equation 7ye, = %(VT — K¢w,,) will apply [1
p.- 803]. The motor have a no load speed at 24.1V, 2953rpm
and a rated load 1.89Nm at 24.35V, 2542rpm [9]. From these

numbers the maximum torque (with a gearing of 6.7:1) is
calculated to 84.3Nm for each motor.

Fig. 5: Step response of the system with the controller designed by

choosing w.. The step is 10° on ¢ and 7 is saturated at
84.3Nm

In Simulink it is possible to put a saturation in the sys-
tem. When doing this the step response will be as shown on
Bl The figure shows that the system is still stable even with
the saturation of 7. This shows that it is indeed possible to
make the system stable when using a PI-Lead controller.

IV. HARDWARE

The robot is controlled by an 8-bit ATmega328P AVR mi-
crocontroller runnning at I6MHz. The microcontroller takes
measurements from a MPU-6050 via I2C. This is a so called
IMU (Inertial measurement unit) which in this case is a 3-
axis accelerometer and a 3-axis gyroscope in one package.
The angle is calculated by taking atan2 to the y- and z-
components from the accelerometer[4]]. The angle obtained
in this way will have a lot of high frequency noise on top of
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it due to linear accelereration when the robot moves. There-
fore the gyroscope is needed. The output from the gyroscope
is converted to degrees per seconds and then integrated to
obtain the angle. This approach will also integrate the er-
ror which will make the angle drift over time. To solve
these issues we are using a Kalman filter written by Kris-
tian Lauszus[8]. The Kalman filter takes the angle obtained
from the accelerometer, the gyroscope reading in degrees per
second and At as arguments. The angle from the Kalman fil-
ter is then used as input to a PID-controller which will output
the PWM-value to the motor driver controlling the motors.

The schematic in Fig. [6] shows the circuit of the robot.
It consist of an Arduino Pro Mini, a 7805 linear 5V regula-
tor a LM324 operational amplifier which is used as a buffer
for a deadman switch - see section [A] The
LM324 is also used to buffer the output from a voltage di-
vider connected directly to the 6S LiPo batteries for mea-
suring the voltage. The robot is powered by three of those
batteries, giving a total capacity of 9000mAbh.

i
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Fig. 6: Schematic of the main PCB

The last operational amplifier is used as a inverting ampli-
fier. The negative input is connected to a 10k{2 potentiometer
through a 10k resistor. The potentiometer is connected to
the steering mechanism. The positive input is connected to
an adjustable voltage divider. This allows us to adjust the
output to roughly 2.5V when the steering mechanism is in
the neutral position. This does not have to be exactly 2.5V,
as the microcontroller will calibrate the steering when pow-
ered on. This allows us to tell if the user is tilting the steering
rod and by how much. This reading is used in the control
algorithm to make the robot turn.

The steering mechanism is made out of /2" water pipe.
It consists of the handlebar at the top mounted to 105cm of
vertical pipe which is connected to a horizontal 30cm piece
using a 90° fitting. The horizontal piece is mounted inside
two bearings with the potentiometer mounted in the end of
it. A solid piece of iron was welded to the inside of the
pipe at the 90° fitting to give some extra strength. Finally
two springs are mounted to give mechanical feedback when
moving the steering rod.

On the main PCB we have broken out headers for the
MPU-6050, a Bluetooth SPP module[3] and the two motor

drivers[[11]. These are rated a 34V at a continuous current
of 23A. We have mounted these on some custom heatsinks
which should increase the rated continuous current to well
above 30A. The motor drivers are used to drive the 5S00W
24V DC motors[9]]. A custom hub is mounted between each
of the motors and the rim of a 3.00-8 solid rubber wheel.

The entire board is powered using a LM2596 adjustable
switching regulator. This is used to step the voltage from
the batteries (25.2V to 21.6V) down to approximately 8V.
Finally a buzzer is connected to the microcontroller via a
BC547 transistor to give audio feedback to the user.

Fig. [7|shows a picture of the final robot with all the elec-
tronics mounted on the top on a breadboard. The vertical
metal piece below the robot is just there to keep it upright
while taking the photo.

Fig. 7: Picture of the finished robot

A. Safety concerns

To prevent the robot from applying full power to the motors
due to some bug in the firmware we decided to use a deadman
button which is a momentary push button on the handlebar.
It is connected to two operational amplifiers configured as
buffers - see Fig. [§] The outputs from the two buffers are
connected to the reset lines of the motor drivers. Ensuring
that the motor drivers are reset unless the button is pressed.

Furthermore some safety precautions should be taken
with regards to the LiPo batteries, as they can potentially
catch on fire if not treated correctly. Therefore it is strictly
critical that all the cells are balanced and they should not be
mechanically damaged.

V. CODE FOR THE ROBOT
The code for the robot is written in C/C++. It uses some

functions and libraries from the popular open source platform
Arduino. This includes the I2C library (called Wire) and the
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time keeping functions micros and millis[2]. Furthermore it
uses a Kalman filter library written by Kristian Lauszus[8]].

Fig. [§| shows a rough flow chart of the code running on
the microcontroller. At first the microcontroller is powered
on by connecting the battery to the LM2596 regulator. Then
it initializes an input which makes it able to read the cur-
rent status of the deadman button. After that it sets the pin
connected to the buzzer to output and reads the different val-
ues from the EEPROM including PID-values, Kalman values
etc. If it detects that the EEPROM values should be restored
(if the structure of the values have changed due to a value
being added or removed) it will turn on the buzzer for 1 sec-
ond and proceed afterwards. The next step is to initialize
the UART (Universal asynchronous receiver/transmitter) at
57600 baud rate, the pins connected to the motor drivers and
finally configure the MPU-6050 at a sample rate of S00Hz
and set the accelerometer +2¢g and the gyroscope range to
+250deg/s. Then calibrates the steering and finally it turns
on the buzzer for 100 milliseconds and initializes the timers
it uses for timekeeping.

Now the main loop is running. As it can be seen on the
flow chart it will run forever until power is removed. The
first step is to check if any of the diagnostic pins on the mo-
tor driver are high, this means that there is some kind of
fault[[11]. If that is the case it will turn on the buzzer to alert
the user that something is wrong. The next is to check if any
new IMU data is available. The MPU-6050 is configured so
it will hold a pin high if there are new measurements avail-
able. This is needed, as the microcontroller can run the loop
much faster than the sensors sample rate. If there is no new
data from the IMU it will check if any data is available at
the serial port. This is used to configure PID-values, Kalman
values, the amount of turning etc. If new measurements are
available it will read the sensors and calculate the angle us-
ing the Kalman filter. Then it reads the steering input from
the potentiometer and checks if the robot is upright and the
deadman button is pressed. If that is not the case it either
means that the robot has fallen over or the user has let go of
the button. In this case it will turn off the motors. If not it
will calculate new PWM-values for the motors using a PID-
controller.

Finally the battery voltage is checked. If the battery is
too low it will start the buzzer. After this final step it will go
back to the start of the loop.

One important aspect of the PID-controller is that it will
try to push the user back when the robot speeds up. This will
make sure that the motors will never reach their maximum
speed which would cause the robot to fall over. Furthermore
the turning speed is decreased as the speed of the motors in-
creases. This is needed as the gentle turning at high speeds
and rapid turning when standing still will make the user less
likely to fall off. A rough estimate of the speed of the motors
is done by integrating the PWM-value.

Power on

‘ Init deadman button and buzzer ‘

Read EEPROM values

‘ Init serial, motors and IMU

Calibrate steering

‘ Beep buzzer and init timers ‘

Is motor driver diagnostic o
A pins set?

Yes

Turn on buzzer

Is deadman button pressed
and not laying down?

Turn on buzzer

Fig. 8: Flowchart of the main loop

VI. ANDROID APPLICATION

In order to easily tune the PID-values and get data from the
robot we wrote an Android application in Java. A picture of
the different screens can be seen at Fig. [0

In the first screen the user is able to see the current draw
of the motors, the turning value, battery level, run time and
finally the PWM-value on a custom speedometer. The next
screen allows the user to adjust the PID-values, target angle
and adjust how fast the robot should be able to turn. The
third screen shows the current position on a map. The posi-
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tion is obtained using the built-in GPS module of the Android
device. The fourth and final screen shows a graph of the cur-
rent angle calculated using the accelerometer, gyroscope and
the angle estimated using the Kalman filter. It also allows the
users to adjust the Kalman filter coefficients.

The communication between the microcontroller and An-
droid application is done via Bluetooth. In order to make sure
that the data is parsed properly a protocol for this was imple-
mented. It consist of a constant string header, then one byte
to indicate the command and then one byte indicating the
length of the data to follow. After the data there is a check-
sum. This checksum is calculated by taking XOR of each
byte in the message excluding the header. The full serial pro-
tocol can be seen in the source code[7]].

181 BalancingRobotFullSizeAndroid

weo P e weo

t n

y and Kristian Lauszus P: 2.80 I: 2.00
Target Angle: 0.00  Turni

Current draw: 0.00A

Turning value: -0.19

Battery level: 26.03V

Run time: 0 min 36 sec

Fig. 9: Screenshot of Android application

VII. DISCUSSION AND IMPROVEMENTS

The final product turned out just as we planned, but there
is still room for some improvements that we left out due to
time constraints. One major thing would be to mount en-
coders on the robot, so the velocity could be estimated more
precisely. This should make it possible to get the robot to
travel a bit smoother especially uphill. It would also allow it
to balance on its own without a person on it. Also we would
consider routing out a slot in the plate for the steering rod to
prevent the bottom of the steering mechanism from hitting
the ground if the user falls off. The pipe have already been
reinforced by welding a solid piece of iron inside the pipe at
the 90° fitting in order to make it able to withstand falling.
Also the PID-controller could be improved a bit as we could
implement dynamic gain that would depend on the battery
level and weight of the person riding the vehicle. This could
for instance be measured using strain gauges mounted on the
base. This would also allow us to tell if a person is standing
on the robot or not. Also we have considered replacing the
current tires (made out of solid rubber) with pneumatic tires
to make them slightly lighter, but also to make the ride more
comfortable on rough terrain.

VIII. CONCLUSION

We achieved stability of the robot carrying a person with
manual tuning of the PID-values. The robot is able to send
current draw, turning value, battery level, run time, PWM-
value and data from the accelerometer, gyro and Kalman fil-
ter to the Android application. The application can set the
PID-values, target angle, turning scale and Kalman filter val-
ues. The project was thus successful in terms of achieving
stability of the robot and communicating with an Android
Application. Further improvements on the the design can
be made such as improving the PID-control algorithm and
adding encoders to the wheels to measure the speed and po-
sition of the robot.
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