

Arithmetics.

Question 1.

Find integers $s, t \in \mathbb{Z}$ such that the equation $gcd(a, b) = s \cdot a + t \cdot b$ holds for the following pairs:

a) (a, b) = (45, 10)

b) (a, b) = (13, 11)

c) (a, b) = (13, 12)

Question 2.

Show that gcd(n, m) = gcd(n + m, m) for all $n, m \in \mathbb{N}$.

Question 3.

Find the set of all solutions to the congruence $17(2x + 5) - 4 \equiv 2x + 4 \pmod{5}$. Then project the congruence into \mathbb{Z}_5 and solve the resulting equation in \mathbb{Z}_5 . Compare the results.

Question 4.

Consider modular 5 arithmetic, and the set $S = \{(0, 0), (1, 1), (2, 2), (3, 2)\}$. Find a polynomial $P \in \mathbb{Z}_5[x]$ such that $P(x_i) = y_i$ for all $(x_i, y_i) \in S$.

Algebra.

Question 5.

Consider the multiplicative group \mathbb{Z}_{13}^* of modular 13 arithmetic. Choose a set of 3 generators of \mathbb{Z}_{13}^* , define its associated Pedersen hash function, and compute the Pedersen hash of $(3, 7, 11) \in \mathbb{Z}_{12}$.

Question 6.

Consider the ring of modular 6 arithmetics $(\mathbb{Z}_6, +, \cdot)$. Show that $(\mathbb{Z}_6, +, \cdot)$ is not a field.

Question 7.

Consider the prime field \mathbb{F}_{13} . Compute the Legendre symbol $\left(\frac{x}{13}\right)$ and the set of roots \sqrt{x} for all elements $x \in \mathbb{F}_{13}$.

Elliptic Curves.

Question 8.

Look up the definition of curve BLS12-381, implement it in SageMath, and compute the number of all curve points.

Question 9.

Compute the following expression for projective points on $E_1(\mathbb{F}_5 P^2)$ using the projective goup law:

- **a)** $[0:1:0] \oplus [4:3:1]$
- **b)** $[0:3:0] \oplus [3:1:2]$
- **c)** $-[0:4:1] \oplus [3:4:1]$

d) $[4:3:1] \oplus [4:2:1]$

and then solve the equation $[X : Y : Z] \oplus [0 : 1 : 1] = [2 : 4 : 1]$ for some point [X : Y : Z] from the projective short Weierstrass curve $E_1(\mathbb{F}_5\mathsf{P}^2)$.

Question 10.

Consider the elliptic curve secp256k1 and show that secp256k1 is not a Montgomery curve.

Question 11.

Consider the Tiny-jubjub curve. Show that the polynomial $t^4 + 2 \in \mathbb{F}_{13}[t]$ is irreducible. Then write a SageMath program to implement the finite field extension \mathbb{F}_{13^4} , implement the curve extension $TJJ_13(\mathbb{F}_{13^4})$ and compute the number of curve points.

Question 12.

Consider the curve alt_bn128 and the generators g_1 and g_2 of $\mathbb{G}_1[p]$ and $\mathbb{G}_2[p]$. Write a SageMath program that computes the Weil pairing $e(g_1, g_2)$.

Statements.

Question 13.

Consider modular 6 arithmetic (working in \mathbb{Z}_6), the alphabet $\Sigma = \mathbb{Z}_6$ and the following decision function:

$$R: \Sigma^* \to \{true, false\}; < x_1, \dots, x_n > \mapsto \begin{cases} true & n = 1 \text{ and } 3 \cdot x_1 + 3 = 0 \\ false & else \end{cases}$$

Compute all words in the associated language *L*, provide a constructive proof for the statement "There exists a word in *L*" and verify the proof.

Question 14.

Consider the Tiny-jubjub curve together with its twisted Edwards addition law.

- a) Define an instance alphabet Σ_I , a witness alphabet Σ_W , and a decision function R_{add} with associated language L_{add} such that a string $(i; w) \in \Sigma_I^* \times \Sigma_W^*$ is a word in L_{add} if and only if *i* is a pair of curve points on the Tiny-jubjub curve in Edwards form, and *w* is the sum of those curve points.
- **b)** Choose some instance $i \in \Sigma_l^*$, provide a constructive proof for the statement "There is a witness $w \in \Sigma_W^*$ such that (i; w) is a word in L_{add} ", and verify that proof.
- **c)** Find some instance $i \in \Sigma_{I}^{*}$ such that *i* has no knowledge proof in L_{add} .
- d) Define an R1CS such that words in L_{add} are in 1:1 correspondence with solutions to this R1CS.

Circuit compilers.

Question 15.

Let $F = \mathbb{F}_{13}$ be the modular 13 prime field and $x \in F$ some field element. Define a statement in the PAPER language from the MoonMath Manual such that given instance x a field element $y \in F$ is a witness for the statement if and only if y is the square root of x.

Brain-compile the statement into a circuit and derive its associated Rank-1 Constraint System. Consider the instance x = 9 and compute a constructive proof for the statement.

Question 16.

Let \mathbb{F} be a finite field. Derive algebraic circuits and associated Rank-1 Constraint Systems for the following operators: NOR, XOR, NAND, EQU.

Question 17.

Let \mathbb{F} be a field. Define a circuit that enforces field inversion for a point of a twisted Edwards curve over \mathbb{F} .